• Aucun résultat trouvé

Heat transport through thermal insulation: an application of the principles of thermodynamics of irreversible processes

N/A
N/A
Protected

Academic year: 2021

Partager "Heat transport through thermal insulation: an application of the principles of thermodynamics of irreversible processes"

Copied!
8
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASME : Applied Mechanical Division, 80, pp. 1-4, 1986

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Heat transport through thermal insulation: an application of the

principles of thermodynamics of irreversible processes

Kumaran, M. K.; Stephenson, D. G.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=cd2675ca-eb0b-4051-8284-62eae0a46003

https://publications-cnrc.canada.ca/fra/voir/objet/?id=cd2675ca-eb0b-4051-8284-62eae0a46003

(2)

I

Ser

no.

i44

) $r

National Research

Conseil national

c . 2

Council Canada

de recherches Canada

Institute for

lnstitut de

Research in

recherche en

Construction

construction

Heat Tmnsport Through Thermal

Insulation: An Application of the

Principles of Thermodynamics of

Irreversible Processes

by M.K. Kumaran and D.G. Stephenson

Reprinted from

ASME Paper No. 86-WA/HT-70, p. 1-4

ASME Winter Annual Meeting

Anaheim, California, December 7

-

12, 1986

(IRC Paper No. 1445)

Price $2.00

NRCC 27451

NRC

-

ClSTl

I

R

C

L I B R A R Y

MAY

28

;ss7

B I B L I O T H ~ Q U E

I R C

CNRC

-

IClST

(3)

Les a u t e u r s u t i l i s e n t

l e s

p r i n c i p e s de

l a

thermodynamique d e s

p r o c e s s u s

i r r g v e r s i b l e s pour

a n a l y s e r

l a t r a n s m i s s i o n d e

c h a l e u r

3

t r a v e r s

l e s

i s o l a n t s t h e r m i q u e s

secs.

11s

c o n s i d b r e n t

l e

f l u x d e c h a l e u r comme l a combinaison d e s modes

d e t r a n s f e r t de c h a l e u r p a r c o n d u c t i o n e t p a r rayonnement, e t

i l s

e n t i r e n t d e s S q u a t i o n s ph'enom6nologiques.

Les mesures

r g a l i s i k s e n l a b o r a t o i r e l e u r p e r m e t t e n t d e d e t e r m i n e r

l e

f l u x

d e c h a l e u r t r a v e r s a n t un spscimen d ' i s o l a n t e n f i b r e d e v e r r e

pour v e r i f i e r l a v a l i d i t 6 d e c e t t e mgthode.

11s

f o r m u l e n t une

e x p r e s s h o n

p r g c i s a n t

l a dgpendance

d e

l a

c o n d u c t i b i l i t g

t h e r m i q u e a p p a r e n t e d e l ' i s o l a n t

s e c 3

l ' b g a r d d e l a

tempgrature.

Les donnges e x p g r i m e n t a l e s concernant un panneau

d e cgramique s o n t b i e n reprGsent6es p a r l ' e x p r e s s i o n d'une

gamme d e t e m p e r a t u r e d e

800

K.

Les a u t e u r s proposent une

e x t e n s i o n de

l a

mgthode th'eorique pour d g c r i r e l e t r a n s p o r t

s i m l t a n g de

c h a l e u r e t

d t h u m i d i t 6

3

t r a v e r s

l ' i s o l a n t

thermique.

(4)

THE

A

a Socrety 9hall not be rest

sston a* meellngs of Ine SI scussjon Ic pr~nted gnly ~f Irn ASME for ?siteen nontl) rntfd ~n USA ~ o l s i b l s far s 3ciery or of it. the paper l a IS a!ter the m

OF

MECH ,ew

Y o r k ,

b

raremania or oprnlonr sdv ! D.v~srons or S=c!luns. or

publ~shed In an PSME JUI ee!llg ,anted In pap vrinted In Its Jrnnl Papers ers or in d ~ s publicalrons arp ava~laille ABSTRACT

Heat Transport Through Thermal Insulation: An

Application of the Principles of Thermodynamics of

Irreversible Processes

M.

K. KUMARAN and 0. G. STEPHENSON

Building Services Section

Institute for Research in Construction

National Research Council Canada

Ottawa, Canada, K I A OR6

The p r i n c i p l e s of i r r e v e r s i b l e thermodynamics a r e u s e d t o i n t e r p r e t h e a t t r a n s f e r t h r o u g h d r y t h e r m a l i n s u l a t i o n . The h e a t f l u x i s t r e a t e d a s coupled c o n d u c t i v e and r a d i a t i v e modes of h e a t t r a n s f e r and phenomenological e q u a t i o n s a r e a c c o r d i n g l y d e r i v e d . L a b o r a t o r y measurements of h e a t f l u x t h r o u g h a specimen of g l a s s f i b r e i n s u l a t i o n a r e u s e d t o check t h e v a l i d i t y of t h e approach. An e x p r e s s i o n i s d e r i v e d f o r t h e t e m p e r a t u r e dependence of t h e a p p a r e n t t h e r m a l c o n d u c t i v i t y of d r y t h e r m a l i n s u l a t i o n . The e x p e r i m e n t a l d a t a f o r a c e r a m i c board a r e w e l l r e p r e s e n t e d by t h e e x p r e s s i o n f o r a t e m p e r a t u r e r a n g e of 800 K. An e x t e n s i o n of t h e t h e o r e t i c a l method t o d e s c r i b e s i m u l t a n e o u s h e a t and m o i s t u r e t r a n s p o r t t h r o u g h t h e r m a l i n s u l a t i o n i s s u g g e s t e d . where

(c)

i s t h e t e m p e r a t u r e g r a d i e n t i n t h e d i r e c t i o n dx

of t h e h e a t t r a n s f e r and ( A ' ) and (A") a r e

p r o p o r t i o n a l i t y c o n s t a n t s t h a t d e s c r i b e c o n d u c t i v e ( s o l i d

+

g a s ) and r a d i a t i v e modes of h e a t t r a n s f e r , r e s p e c t i v e l y . The u s e of F o u r i e r r e l a t i o n and R o s s e l a n d ' s a p p r o x i m a t i o n , t o g e t h e r w i t h t h e t h e o r y of i r r e v e r s i b l e p r o c e s s e s (T.I.P.)

(1-6)

c a n p r o v i d e a method t o l o o k a t t h e i n t e r a c t i o n between c o n d u c t i v e and r a d i a t i v e modes of h e a t t r a n s f e r i n t h e r m a l i n s u l a t i o n . T h i s p a p e r d e s c r i b e s s u c h a n a p p l i c a t i o n of T.I.P. t o h e a t t r a n s f e r t h r o u g h t h e r m a l i n s u l a t i o n . ' A t h r e e - t e r m e x p r e s s i o n i s d e r i v e d f o r t h e h e a t f l u x t h r o u g h t h e i n s u l a t i o n . One t e r m r e p r e s e n t s t h e c o n d u c t i v e p a r t , t h e s e c o n d , t h e r a d i a t i v e p a r t and t h e t h i r d . t h e i n t e r a c t i o n between t h e two D a r t s .

KEY WORDS The b a s i c p o s t u l a t e s of T.I.P. a r e :

1 ) The r a t e (0) of e n t r o p y p r o d u c t i o n p e r u n i t volume Heat t r a n s f e r , t h e r m a l i n s u l a t i o n , thermodynamics i s g i v e n by t h e sum of t h e p r o d u c t s of f l u x e s ( J i ) of i r r e v e r s i b l e p r o c e s s e s , r a t e of e n t r o p y p r o d u c t i o n , and a s s o c i a t e d f o r c e s ( I $ ~ ) i . e . phenomenological e q u a t i o n s , m o i s t u r e . 0 =

C

Jiei

( 3 ) INTRODUCTION i Heat i s t r a n s f e r r e d t h r o u g h d r y t h e r m a l i n s u l a t i o n by a c o m b i n a t i o n of c o n d u c t i o n and r a d i a t i o n . Models d e s c r i b e d i n t h e l i t e r a t u r e i n t e r p r e t t h e h e a t t r a n s f e r a s t h e sum of s o l i d c o n d u c t i o n , g a s c o n d u c t i o n and r a d i a t i o n . I n e n g i n e e r i n g a p p l i c a t i o n s , t h e , i n t e r a c t i o n between c o n d u c t i o n and r a d i a t i o n i s u s u a l l y n e g l e c t e d and t h e a p p a r e n t t h e r m a l c o n d u c t i v i t y (Aapparent) of a t h e r m a l i n s u l a t i o n i s w r i t t e n as

where (As) i s t h e c o n t r i b u t i o n from s o l i d c o n d u c t i o n , (A ) from g a s c o n d u c t i o n and (Ar) from r a d i a t i o n .

g

These models u s e F o u r i e r r e l a t i o n and Rosseland a p p r o x i m a t i o n t o w r i t e e x p r e s s i o n s f o r t h e h e a t f l u x (9) a s 2 ) The components of t h e f l u x a r e l i n e a r f u n c t i o n s of t h e components of f o r c e s and a r e g i v e n by phenomenological e q u a t i o n s as where t h e c o e f f i c i e n t s Lik a r e c a l l e d phenomenological c o e f f i c i e n t s . 3 ) The c r o s s phenomenological c o e f f i c i e n t s , s u b j e c t t o c e r t a i n m a t h e m a t i c a l r e s t r i c t i o n s , obey t h e Onsager r e c i p r o c a l r e l a t i o n s

(g)

i . e . L . . = L . 1 J ~i ( 5 )

Presented at the Winter Annual Meeting Anaheim, California - December 7-12, 1986

(5)

Thus f o r a n i r r e v e r s i b l e p r o c e s s , a s s o c i a t e d w i t h

two s i m u l t a n e o u s f l u x e s , J1 and J2

where and @ 2 a r e t h e f o r c e s c o r r e s p o n d i n g t o J1

and J 2 , r e s p e c t i v e l y and

Heat T r a n s p o r t and E n t r o p y P r o d u c t i o n

The e n t r o p y f l u x t h r o u g h any m a t e r i a l is:

The d i r e c t i o n of t h e S v e c t o r is t h e same a s t h e d i r e c t i o n of t h e h e a t f l u x ( q ) , s i n c e t h e t e m p e r a t u r e (T) i s a s c a l a r . I f we make t h e x a x i s p a r a l l e l t o t h e e n t r o p y and h e a t f l u x v e c t o r s , t h e d e r i v a t i v e i s dx d S = l . * - q

.dT.

-

dx T dx

T2

d x ( 9 )

The second t e r m of Eq. ( 9 ) i s t h e r a t e a t which

e n t r o p y i s b e i n g produced i n u n i t volume of t h e

m a t e r i a l ; i.e.,

When h e a t i s t r a n s f e r r e d by c o n d u c t i o n ,

Thus f o r h e a t c o n d u c t i o n , from Eqs. ( 3 ) , ( 4 ) , ( 1 0 ) and ( 1 1 ) I f t h e h e a t i s t r a n s f e r r e d by r a d i a t i o n qr

-

T3

dT

dx ( 1 4 ) ( t h i s i s t h e Rosseland a p p r o x i m a t i o n f o r t h e r m a l r a d i a t i o n ) . I n t h i s c a s e When h e a t c o n d u c t i o n and h e a t t r a n s f e r by r a d i a t i o n o c c u r t o g e t h e r , t h e f l u x and f o r c e v e c t o r s h a v e two components, and t h e phenomenological e q u a t i o n t h a t i n t e r r e l a t e s t h e s e components becomes:

where a , b and c a r e t h e phenomenological c o e f f i c i e n t s . S i n c e q c and q r a r e i n t h e same d i r e c t i o n , t h e y may b e added a l g e b r a i c a l l y t o o b t a i n t h e t o t a l h e a t f l u x The f i r s t t e r m i n t h e b r a c k e t g i v e s t h e c o n d u c t i v e p a r t of t h e h e a t t r a n s f e r , t h e t h i r d term, t h e r a d i a t i v e p a r t and t h e second t e r m , t h e i n t e r a c t i v e p a r t . T h i s i n d i c a t e s t h a t t h e a p p a r e n t fv$rmal c o n d u c t i v i t y s h o u l d b e a q u a d r a t i c f u n c t i o n of T

.

The o b j e c t i v e of t h i s p a p e r i s t o check t h i s h y p o t h e s i s .

A TEST OF THE HYPOTHESIS

The form of t h e t e m p e r a t u r e dependence of t h e

a p p a r e n t t h e r m a l c o n d u c t i v i t y t h a t i s i n d i c a t e d by

Eq. ( 1 8 ) c a n b e checked by measuring t h e t o t a l r a t e of

h e a t f l o w t h r o u g h s e m i - t r a n s p a r e n t m a t e r i a l s . It i s

c o n v e n i e n t t o d e f i n e a q u a n t i t y Q a s

Then d x = ( a

+

2 b e ~ l . '

+

c.T3)

dT

dx (20)

Hence from ( 1 8 ) and ( 2 0 ) .

t h e n q = - - . dQ dx (21) I f one measures t h e , t o t a l h e a t f l u x (q1-2) t h r o u g h a sample of t h i c k n e s s t , when t h e s u r f a c e s a r e k e p t a t T1 and T2, S i m i l a r e q u a t i o n s c a n b e w r i t t e n when t h e s u r f a c e s a r e

m a i n t a i n e d a t T3 and T,,, T5 and T6, e t c . These

e q u a t i o n s c a n b e combined i n t o a m a t r i x form

b

and s o l v e d f o r

5

,

-

and

2

.

(6)

T e s t Specimens l a b o r a t o r i e s i n Canada and t h e United S t a t e s

(10).

Two t e s t specimens were prepared from a s h e e t of These d a t a a r e i n t h e form of t h e a p p a r e n t thermal medium d e n s i t y g l a s s f i b e r board produced by Johns c o n d u c t i v i t y a t f o u r mean t e m p e r a t u r e s r a n g i n g from Manville Co. f o r t h e N a t i o n a l Bureau of S t a n d a r d s , 533 K t o 1363 K. These d a t a were f i t t e d by a q u a d r a t i c Washington, D.C. The average d e n s i t y of t h e sample was i n ~ 1 . ~ . Table 2 g i v e s t h e s e d a t a and t h e v a l u e s of 51 kg*m-j. Specimens were c u t and placed i n wooden a , b and c t h a t were d e r i v e d from them, and shows t h e frames. The dimensions of t h e specimens were 58.42 x c a l c u l a t e d v a l u e s of t h e a p p a r e n t thermal c o n d u c t i v i t y . 58.57 x 2.64 cm. The two specimens weighed 461.2 g and The q u a d r a t i c i n T ~r e p r e s e n t s t h e d a t a v e r y w e l l * ~

461.3 g, and were i d e n t i c a l i n a l l o t h e r r e s p e c t s . over t h i s r e l a t i v e l y wide range of temperatures. The These specimens were d r i e d i n an oven a t 323 K f o r one v a l u e s of t h e c o e f f i c i e n t s a , b, and c depend on t h e week and t h e n t h e y were mounted on a 60 cm guarded h o t n a t u r e of t h e m a t e r i a l , and may a l s o depend on t h e p l a t e a p p a r a t u s b u i l t according t o ASTM s p e c i f i c a t i o n s e m i s s i v i t y of t h e bounding s u r f a c e s and t h e t h i c k n e s s

(2).

Steady s t a t e measurements were made a t t e n of t h e sample. Measurements on s i m i l a r samples of d i f f e r e n t s e t s of boundary temperatures. d i f f e r e n t t h i c k n e s s e s a r e needed t o check on t h e s e

p o s s i b i l i t i e s . These r e s u l t s show, however, t h a t t h e s e EXPERIMENTAL RESULTS c h a r a c t e r i s t i c c o e f f i c i e n t s a r e n o t f u n c t i o n s of

temperature o r temperature g r a d i e n t , and t h a t t h e The t e s t r e s u l t s and t h e d e r i v e d v a l u e s of a , b a n a l y s i s based on T.I.P. i s v a l i d f o r t h i s t y p e of and c a r e g i v e n i n Table 1, a l o n g w i t h v a l u e s of h e a t i n s u l a t i o n m a t e r i a l . The i n t e r a c t i o n between t h e h e a t f l u x c a l c u l a t e d u s i n g t h e s e v a l u e s of a , b and c and conduction and r a d i a t i o n i s t a k e n i n t o account w i t h o u t t h e boundary t e m p e r a t u r e s f o r t h e v a r i o u s t e s t s . The having t o e s t a b l i s h t h e temperature d i s t r i b u t i o n s t a n d a r d d e v i a t i o n between t h e measured and c a l c u l a t e d through t h e m a t e r i a l .

v a l u e s of h e a t f l u x i s 0.04 W/m2 when t h e f l u x ranged

from 23.4 t o 52.6 w/m2. Table 2

Table 1 The apparent thermal c o n d u c t i v i t y (happarent) of a ceramic board a t d i f f e r e n t temperatures. Heat flow through a dry sample of medium d e n s i t y g l a s s

f i b e r i n s u l a t i o n (51 kg*m-3); T1 and T2 a r e s u r f a c e

t e m p e r t u r e s and q1-2 i s t h e h e a t f l u x T 'apparent (W/meK) (K) Measured Calculated* 41-2 533 0.073 0.073 Measured Calculated*

2

)

2)

w/m2 w/m2 813 0.114 0.113 293.92 273.97 23.47 23.43 1088 0.189 0.189 303.11 283.16 24.24 24.29 1363 0.312 0.311 312.63 293.48 24.21 24.24 a = 5.40 x W/m-K b = 1.92 x w / ~ * K ~ . ~ 322.08 303.25 24.75 24.78 c = 9.40 x 10-I W/m*K4 331.61 313.62 24.72 24.66 *'apparent = a

+

2 b ~ l . ~

+

c T~

343.13 323.3,, 28.47 28.43 An Extension t o Heat T r a n s f e r Through Moist M a t e r i a l s The p r i n c i p a l advantage of t h e TIP approach i s 354.02 333.88 30.21 30.24 t h a t i t can be extended t o i n c l u d e a d d i t i o n a l

components i n t h e f l u x v e c t o r . An e n c l o s e d porous 363.46 343.21 31.65 31.66 system t h a t h a s moist m a t e r i a l a d j a c e n t t o a warm

boundary w i l l have vapour flowing from t h e warm r e g i o n 314.22 286.33 34.90 34.93 t o t h e c o o l e r r e g i o n . The h e a t f l u x ( q v ) a s s o c i a t e d

w i t h t h i s vapour flow can be r e p r e s e n t e d a s , 333.61 293.86 52.61 52.60

dPV dT

a = 1.896 x W/m-K q v = - k ( h * - ) - dT dx

b = 1.764 x 10-7 ~ / r n * K ~ . ~

c = 4.520 x 10-lo w / ~ * K ~ where k = vapour p e r m e a b i l i t y of t h e m a t e r i a l ,

t = 26.4 mm h = e n t h a l p y of s a t u r a t e d vapour a t T, Pv = s a t u r a t i o n vapour p r e s s u r e of water a t T. 2b (T2.5- T$.5)

*ql-2 =

5

(Ti-T2) +

-

t 2.5t dPv

Around 300 K t h e product h c a n be approximated by

+

5

(T:

-

T;) A.~15*4. 1 dT

4 t

As

t h e NRC guarded h o t p l a t e a p p a r a t u s i s l i m i t e d l T h i s approximation h a s been d e r i v e d from t a b u l a t e d t o t e m p e r a t u r e s between 273 K and 365 K, t h e v a l i d i t y v a l u e s of e n t h a l p y and vapour p r e s s u r e of water a t of Eq. (16) could only be e s t a b l i s h e d over t h i s l i m i t e d s a t u r a t i o n v s temperature. These d a t a a r e p u b l i s h e d r a n g e of temperature. However, some h i g h t e m p e r a t u r e i n ASHRAE Handbook of Fundamentals, 1985, Ch. 6, d a t a were a v a i l a b l e from a s e t of round-robin Table 2: p. 6.6.

(7)

T h i s means t h a t t h e f l u x ( J v ) s h o u l d be

The phenomenological e q u a t i o n f o r h e a t t r a n s p o r t by c o n d u c t i o n , r a d i a t i o n and m o i s t u r e m i g r a t i o n becomes

The c o e f f i c i e n t s a , b and c can be d e t e r m i n e d from t e s t s on a d r y sample and t h e c o e f f i c i e n t s d, e and f from a d d i t i o n a l t e s t s on a m o i s t sample of t h e same m a t e r i a l . Of c o u r s e , t h e c o q o n e n t qv of h e a t f l u x w i l l o n l y o c c u r when t h e r e i s m o i s t u r e i n t h e warm p a r t s , o f t h e m a t e r i a l . As soon a s a l l t h e m o i s t u r e h a s m i g r a t e d t o t h e c o l d e s t r e g i o n , t h e m o i s t u r e f l u x and a s s o c i a t e d h e a t f l u x w i l l s t o p ; t h e c o n d u c t i o n and r a d i a t i o n w i l l c o n t i n u e a s l o n g a s a t e m p e r a t u r e g r a d i e n t e x i s t s . e - CONCLUSION The p o s t u l a t e s of t h e Thermodynamics of I r r e v e r s i b l e P r o c e s s e s s i m p l i f y t h e a n a l y s i s of h e a t t r a n s f e r i n s i t u a t i o n s where more t h a n one mode of h e a t t r a n s f e r o c c u r s . T h i s a p p r o a c h t a k e s a c c o u n t of energy s h i f t i n g from one mode of t r a n s p o r t t o a n o t h e r w i t h i n t h e m a t e r i a l w i t h o u t h a v i n g t o d e t e r m i n e t h e

t e m p e r a t u r e d i s t r i b u t i o n through t h e m a t e r i a l . The approach, which h a s been shown t o be a p p l i c a b l e t o h e a t t r a n s f e r t h r o u g h t h e r m a l i n s u l a t i o n , may a l s o be a p p l i c a b l e t o h e a t t r a n s p o r t t h r o u g h s e m i - t r a n s p a r e n t g a s e s i n t h e combustion chambers of f u r n a c e s and i n t e r n a l combustion e n g i n e s .

It a p p e a r s t h a t t h e i n t e r a c t i o n between c o n d u c t i v e and r a d i a t i v e modes of h e a t t r a n s f e r amounts t o

a p p r o x i m a t e l y 6% of t h e h e a t f l u x t h r o u g h t h e two specimens, f o r t h e r a n g e of t e m p e r a t u r e r e p o r t e d i n t h i s paper. F u r t h e r t e s t i n g i s needed t o check t h e v a l i d i t y of Eq. ( 2 7 ) when m o i s t u r e m i g r a t i o n c o n t r i b u t e s t o t h e h e a t t r a n s p o r t t h r o u g h porous m a t e r i a l s . The c u r r e n t s t u d y h a s d e m o n s t r a t e d t h a t h e a t t r a n s p o r t t h r o u g h a s e m i - t r a n s p a r e n t medium l i k e g l a s s f i b e r i n s u l a t i o n can be c a l c u l a t e d by u s i n g t h r e e c o e f f i c i e n t s t h a t c h a r a c t e r i z e t h e m a t e r i a l . The v a l u e s of t h e s e c h a r a c t e r i s t i c c o e f f i c i e n t s c a n be d e t e r m i n e d from measurements o f t h e t o t a l h e a t f l o w t h r o u g h a sample of t h e m a t e r i a l w i t h v a r i o u s c o m b i n a t i o n s of t h e boundary t e m p e r a t u r e s . These c h a r a c t e r i s t i c c o e f f i c i e n t s a p p e a r t o be independent of t e m p e r a t u r e o v e r a wide range. I n t h i s r e s p e c t , t h e y a r e p r e f e r a b l e t o t h e v a l u e of t h e a p p a r e n t t h e r m a l c o n d u c t i v i t y , which i s a f u n c t i o n of t e m p e r a t u r e . The a p p a r e n t t h e r m a l c o n d u c t i v i t y c a n be c a l c u l a t e d f o r any v a l u e of mean t e m p e r a t u r e when t h e v a l u e s of t h e c h a r a c t e r i s t i c c o e f f i c i e n t s a r e known. a b d b c e d e f ACKNOWLEDGEMENT The a u t h o r s g r a t e f u l l y acknowledge t h e t e c h n i c a l a s s i s t a n c e o f M r . J . G . T h s r i a u l t . T h i s p a p e r i s a c o n t r i b u t i o n of t h e I n s t i t u t e f o r Research i n C o n s t r u c t i o n , N a t i o n a l R e s e a r c h C o u n c i l o f Canada. REFERENCES T-l

dT

d x

dT

dx T6.7 d x P r i g o g i n e , I., I n t r o d u c t i o n t o Thermodynamics of I r r e v e r s i b l e P r o c e s s e s , I n t e r s c i e n c e P u b l i s h e r s , New York, 134 p. (1967). de G r o o t , S.R., Thermodynamics of I r r e v e r s i b l e P r o c e s s e s , North Holland P u b l i s h i n g Company, Amsterdam, 242 p. (1951).

Haase, R., Thermodynamics of I r r e v e r s i b l e P r o c e s s e s , Addison-Wesley P u b l i s h i n g Company, London, Ch. 4, p. 215-470 (1969).

Denbigh, K.G., The Thermodynamics of t h e Steady S t a t e , Methuen 6 Company Ltd., London, 97 p. (1951).

F i t t s , D.D., Non-equilibrium Thermodynamics, McGraw-Hill, New York, 173 p. (1962).

d e G r o o t , S.R. and Mazur, P., Non-equilibrium Thermodynamics, Dover P u b l i c a t i o n s , Inc., New York, Ch. I - V I , p. 1-77 (1984). Onsager, L., R e c i p r o c a l R e l a t i o n s i n I r r e v e r s i b l e P r o c e s s e s , I. P h y s i c a l Review, Vol. 37, p. 405 (1931). Onsager, L., R e c i p r o c a l R e l a t i o n s i n I r r e v e r s i b l e P r o c e s s e s , 11. P h y s i c a l Review, Vol. 38, p. 2265 (1931). ASTM C177: S t a n d a r d T e s t Method f o r S t e a d y - S t a t e Thermal.Transmission P r o p e r t i e s by Means of t h e Guarded Hot P l a t e , Annual Book of ASTM S t a n d a r d s , P a r t 18, p. 20 (1981).

Bomberg, M., I n s t i t u t e f o r Research i n C o n s t r u c t i o n , P r i v a t e communication.

(8)

T h i s p a p e r

i s

b e i n g d i s t r i b u t e d i n r e p r i n t

form by

t h e I n s t i t u t e f o r R e s e a r c h i n

C o n s t r u c t i o n .

A

l i s t

of b u i l d i n g p r a c t i c e

and r e s e a r c h p u b l i c a t i o n s a v a i l a b l e from

t h e I n s t i t u t e may be o b t a i n e d by w r i t i n g t o

t h e ~ u b l i c a t i b n s S e c t i o n ,

I n s t i t u t e f o r

R e s e a r c h i n C o n s t r u c t i o n , N a t i o n a l Research

C o u n c i l

o f

C a n a d a ,

O t t a w a ,

O n t a r i o ,

KlA 0R6.

Ce document e s t d i s t r i b u d s o u s forme d e

t i r 6 - 8 - p a r t

p a r 1 ' I n s t i t u t de r e c h e r c h e e n

c o n s t r u c t i o n .

On

p e u t o b t e n i r une l i s t e

d e s p u b l i c a t i o n s d e 1 ' I n s t i t u t p o t t a n t s u r

l e s t e c h n i q u e s ou l e s r e c h e r c h e s e n

matisre

d e b t t i m e n t e n d c r i v a n t

B

l a S e c t i o n d e s

p u b l i c a t i o n s ,

I n s t i t u t de

r e c h e r c h e

e n

c o n s t r u c t i o n ,

C o n s e i l

n a t i o n a l

d e

r e c h e r c h e s du Canada,

Ottawa ( O n t a r i o ) ,

KIA 0R6.

Figure

Table  1  The  apparent  thermal  c o n d u c t i v i t y   (happarent)  of

Références

Documents relatifs

With other real-life signals, recorded in rooms and by devices different from those used for Figure 8 , the interfer- ence reduction is consistent with the cases with

Domain-independent implicit and explicit transformations for Visual Data Mining using Differential Evolution and Genetic Programming aiming at preserving the similarity structure of

Rate of sputtering from argon positive ion bombardment versus voltage for

Number of reference strains representing the 15 serovars of A. pleuropneumoniae where gene is divergent or missing for each gene, ordered as in A. pleuropneumoniae L20 genome

The main power setting corresponded to the power required to meet the regulatory requirement that the vessel make 6 knots in open water, which was slightly different for each

Furthermore, factor analysis of ratings of the most attractive images revealed a factor structure similar that obtained when people rated real office spaces.. Preferred luminances

Remacemide and its active desglycinyl metabolite are well-tolerated at relatively high doses in humans, have dem- onstrated significant neuroprotective efficacy in animal models

The pressure distribution, and indeed the motion of the solid phase also appeared to be sensitive to the frictional properties of the granular material in the vicinity of fluid