• Aucun résultat trouvé

Impact of control algorithm solutions on Modular Multilevel Converters electrical waveforms and losses

N/A
N/A
Protected

Academic year: 2021

Partager "Impact of control algorithm solutions on Modular Multilevel Converters electrical waveforms and losses"

Copied!
2
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu

Handle ID: .http://hdl.handle.net/10985/13677

To cite this version :

François GRUSON, Julian FREYTES, Shabab SAMIMI, Philippe DELARUE, Xavier GUILLAUD, Frédéric COLAS, Mohamed Moez BELHAOUANE - Impact of control algorithm solutions on Modular Multilevel Converters electrical waveforms and losses - In: EPE ECCE europe 2014, Suisse, 2015-09-07 - EPE ECCE europe 2015 - 2015

Any correspondence concerning this service should be sent to the repository Administrator : archiveouverte@ensam.eu

(2)

• Context :

control of the stored energy of the MMC (Modular Multilevel Converter)

• Objectives :

Study the impact of two control variants (compensation of the average or the instantaneous AC grid power) :

differential and AC grid currents, capacitor voltages ripple, losses.

F. Gruson

1

, J. Freytes

2

, S. Samimi

2

, P. Delarue

3

, X. Guillaud

2

, F. Colas

1

, M.M. Belhaouane

2

1L2EP, Arts et Métiers ParisTech, 8Bd Louis XIV, 59046 Lille, France; 2L2EP, Ecole Centrale de Lille, 59650 Villeneuve d’Ascq, France ; 3 L2EP, Université Lille 1, 59655 Villeneuve d’Ascq, France

• The impact of two control variants (compensation of the average or the instantaneous AC grid power) : differential and AC grid currents, capacitor voltages ripple, losses.

Conclusion

Simulation Results

Impact of control algorithm solutions on Modular Multilevel

Converters electrical waveforms and losses

If capacitor voltage balancing is achieved:

Simplified model of MMC

ua m mub muc la m mlb mlc ga v gb v gc v ga

i

gb

i

gc

i

ua i iub iuc lb i ilb ilc _ cua tot

v vcub tot_ vcuc tot_

_ cla tot v vclb tot_ vclc tot_ dc

i

dc

v

C N C N C N C N C N C N mua v mla v mub v mlb v muc v mlc v

Current Control of the MMC Converter

Modeling of the MMC converter

_ _

_ _

;

;

ml i l i cl i tot mu i l i clui tot

cl i tot clui tot

l i l i u i u i v m v v m v dv dv C C m i m i N dt N dt          ; ; 2 2 2 mu i ml i ml i mu i ui li diff i diff i v i v v v v i i i   v   v   ( ) ( ) ( ) 2 2 2 gd

arm arm arm

vd gd gd gq di L R L v v L R i L i dt         ( ) ( ) ( ) 2 2 2 gq

arm arm arm

vq gq v q gd di L R L v v L R i L i dt          + - idiff i_ref

 

i diff C s       i pu C s sgd ref i gq ref i   gq i gd i  

 

1 s P  s  R s P  ++ gi

v

  ' pu pu L  _ cui tot v _ cli tot v diff i i li m gi i / 2 dc v ' pu pu L    i pu C s     + + ui m

, ,

with ia b c

, ,

with ia b c

This converter has 11 independent state variables

Requires 11 control loops to achieve the global control Current control  5 control loops

Stored Energy Control  6 other control loops (3*sum+3*difference)

Stored Energy Control of the MMC Converter

_

(

)

.

, ,

(

)

ˆ

ˆ

cl i cu i dc diff i DC AC i T cl i cu i v i diff i AC T

d W

W

V i

p

dt

with

i

a b c

d W

W

v i

dt

 





0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 2 4 6 8 10x 10 8 time (s) A c ti ve P ow e r (W ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 2 4 6 8 10 12x 10 7 time (s) R é a c ti ve P ow e r (V A R ) Qmes Qref Pac Pdc Pref 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 6 6.5 7 x 105 Time (s) E qui va le nt C apa ci tor V ol ta ge s (V ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -2000 0 2000 Time (s) A C G ri d C ur re nt s (A ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -500 0 500 1000 Time (s) di ff er ent ia l C ur re nt s (A ) Δ = 104kV Δ = 100kV

At t=0.1s : a slope is done in the AC power references (Pac) equal to 0.8 GW and the reactive reference (Qac) to 100MVAR. Before 0.55s, the Stored Energy control compensate the average power (Pac/3)

After 0.55s, the Stored Energy control compensate the instantaneous one for each phase (paci).

L 50 mH C 10 mF R 50 mΩ N 400 Larm 50 mH Vdc 640 kV Rarm 50 mΩ ω 314 rad.s-1 SN 1100MVA Vg 192 kV Tr_igdq 5ms Tr ∑Vci_tot 50ms Tr_idiffi 10ms Tr ΔVci_tot 100ms Conduction losses:

Simulation Losses Comparison Results

Switching losses: Passive elements losses:

+

+

=

Total MMC losses: + +

 

vDC

C

s

dc

v

p

ACi diff i DC ref

i

 

vAC

C

s

dc

v

diff i AC ref

p

diff i AC ref

i

diff i DC ref

p

- + 2 _ cli tot

v

Filter - + 2 _ cui tot

v

Filter 2 _ _ref cli tot

v

2 _ _ref cui tot

v

+ + +

-+ + +

-

, ,

3

AC AC i

P

p

with

i

a b c

 introducing the AC fluctuating power term

-Reduce the ripples in the vc_tot since pAC= pDC

The choice of introducing or not the fluctuating part of the AC power modifies the control  - different quantity of activated sub-modules

- current passes through a different number of IGBT and diodes.

it may have sense to use a control inducing a slightly larger current if this current passes through more diodes.

- IGBT conduction losses>diode conduction losses

the hypothesis of limiting the RMS current can be questionable.

521 ARMS 581 ARMS

• compensation of the average AC grid power:

• differential currents are constant

• Vci_tot ripple are 4% higher

• compensation of the instantaneous AC grid power:

• differential currents have DC and AC components at 2ω • RMS differential currents is 11% higher

• Losses

Usual assumption is not every time validate

the MMC converter using considerable number of semiconductor; the losses are not only related to the RMS current value but also to the way of this current (diode or IGBT)  therefore to the control Usual assumption:

To Limit the losses, the Idiff-i value is limited by considering only the average power of the AC grid (Pac) in the stored energy control (pAC≠ pDC)

cos(2 t

)

, ,

3

AC AC i gi gi

P

p

V I

 

with

i

a b c

cos(2 t ) 3 AC AC i gi gi P p  V I   3 AC AC i P p

Références

Documents relatifs

Notre travail a pour objectif de répondre à la question d’étude : comment fabriquer un médicament sous forme d’une solution injectable et quellessont les

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

ABSTRACT: A modified binary differential evolution scheme is devised to identify an optimal protection strategy that minimizes the consequences of cascading failures on

For the regimes with liquid water injection at the inlet, namely the mixed regime and the pure liquid invasion regime, the density of liquid injection points α must be speci

To the best of our knowledge, ours is the first computationally efficient near-optimal learning algorithm for the problem of cooperative learning with nonstochastic

Now we address the use of the resonant light scattering by colloidal gold particles for the imaging and detection in microfluidic systems using

Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet- constructed hierarchically porous TiO2/rGO hybrid architecture for high-performance

This overexploitation has greatly increased following the implementation of the National Malaria Control Plan (NMCP) with a drift in the use of nets distributed by nurses of