• Aucun résultat trouvé

Complex fluids: non-Newtonian flows in porous media: upscaling problems

N/A
N/A
Protected

Academic year: 2021

Partager "Complex fluids: non-Newtonian flows in porous media: upscaling problems"

Copied!
28
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

This is an author’s version published in: http://oatao.univ-toulouse.fr/20692

To cite this version:

Davit, Yohan and Zami-Pierre, Frédéric and Loubens, Romain de and Quintard, Michel Complex fluids: non-Newtonian flows in porous media: upscaling problems. (2018) In: 4th Summer School "Flow and Transport in Porous and Fractured media: Development, Protection, Management ad Sequestration of Subsurface Fluids", 25 June 2018 - 7 July 2018 (Cargèse, France).

Open Archive Toulouse Archive Ouverte

Any correspondence concerning this service should be sent

(2)

6/26/18

1Institut de Mécanique des Fluides de Toulouse (IMFT) -

Université de Toulouse, CNRS-INPT-UPS, Toulouse FRANCE

2Total, CSTJF, Avenue Larribau, 64018 Pau, France

Non-Newtonian Flows in Porous

Non-Newtonian Flows in Porous

Media: upscaling problems

Media: upscaling problems

Davit Y.

1

, Zami-Pierre F.

1,2

, de Loubens

R.

2

and Quintard M.

1

4th Cargèse Summer School, 2018

(3)

Transport in Porous Media 2/27

M. Quintard

Objective/Outline

Objective/Outline

Motivation: flow of polymer solutions, question

about heuristic models in Res. Engng

Upscaling

– Introduction (generalized Stokes)

– Transition

– Induced anisotropy, effect of disorder, effect of

size of the UC, ...

Further problems: exclusion zone, viscoelastic

Conclusions

(4)

Multi-Scale Analysis

Multi-Scale Analysis

()=0

=g(x)

*(

〈ψ〉

)=0

〈ψ =〉= g*(x) Pore-Scale Darcy-Scale

Sequential multi-scale patternUsed in DRP, Res. Engng,

Hydro., etc...

Objectives of macro-scale

theories:

– Smoothing operator . → Macro ⟨.⟩ → Macro ⟩ → Macro variables, Eqs & BCs

– Micro-macro link →

Determination of Effective Properties

Needs Scale Separation:

lβ ,lσ REV?≪REV?≪ ≪REV?≪ L

η-region ω-region L Pore-Scale V Darcy-Scale Reservoir-Scale V∞ β-phase σ-phase lβ

(process dependent)

(5)

Transport in Porous Media 4/27

M. Quintard

Multi-Scale Analysis: Upscaling

Multi-Scale Analysis: Upscaling

Techniques

Techniques

Form of the equations?

– averaging and TIP (Marle, Gray, Hassanizadeh, …) – averaging and closure (Whitaker, …)

– homogenization (Bensoussan et al., Sanchez-Palencia, Tartar, …), also “closure”

– stochastic approaches (Dagan, Gelhar, ...)Effective properties calculations?

– Assuming the form of Eqs: interpret experiments or DNS

– Upscaling with “closure” (averaging, homogenization, stochastic): provides local Unit Cell problems

Many Open Problems: High non-linearities, Strong couplings,

(6)

A simple introduction to

A simple introduction to

upscaling with “closure”

upscaling with “closure”

x

x

x

DNS aver.

c

Closure:

Macro

Micro

Macro-scale Equation

b

x ● Tomography ● Reconstruction ● Geostatistics ● ...

Effective property

(7)

Transport in Porous Media 6/27

M. Quintard

Flow of a non-Newtonian fluid

Flow of a non-Newtonian fluid

Pore-Scale problem (Re~0)

Upscaling: (vol. aver. ⟨ψ

β

⟩=ε

β

⟨ψ

ψ

β

β

with ε

β

=V

β

/V)?

 10-3 10-2 10-1 100 101 102 103 10-1 100 ˙ γ / γ˙ c µ /µ 0

plateau + power law Carreau cross-fluid

Rheology:

(8)

Typical local (over a REV) features

Typical local (over a REV) features

30°

velocity

viscosity

Pressure dev.

Remark (far from BCs)

(9)

Transport in Porous Media 8/27

M. Quintard

Upscaling flow of a

Upscaling flow of a

non-Newtonian fluid

Newtonian fluid

Averaging (vol. aver.

⟨ψ

β

⟩=ε

β

⟨ψ

ψ

β

β

with ε

β

=V

β

/V)

+...

Closure?

macro

micro

(10)

Closure”?

Closure”?

Under several constraints: scale

separation, far from BCs, ...

⇒ Problem must be solved for each value of v

〈v

β

β

!

Tentatively:

(11)

Transport in Porous Media 10/27

M. Quintard

A classical story: the linear case

A classical story: the linear case

and Darcy’s law

and Darcy’s law

Closure (any solution is a linear combination of

elementary solutions for ⟨ψv

β

β

=e

i

for i=1,2,3)

Macro-Scale equation and effective properties

Important: Proof of symmetry of K

0

requires periodicity!

Intrinsic permeability: Darcy’s law:

(see Sanchez-Palencia, Whitaker, ….)

(12)

Calculations of the permeability

Calculations of the permeability

3 possibilities

– Initial closure problem

– Transformation of

closure problem into

~Stokes with source

term and periodic

pressure and velocity

– “permeameters”:

no-periodicity

Making image periodic?

– I: Percolation problem – II: Loss of anisotropy

– III: potentially various bias

See discussion in Guibert et al., 2015

Case of “diffusion” problem: e.g., permeability, effective diffusion

● thin layers + periodicity ● Eff. Medium ● …..

I

II

III

(13)

Transport in Porous Media 12/27

M. Quintard

Calculations over non-periodic

Calculations over non-periodic

images

images

“permeameters”

– All methods have bias

⟨ψv

x

β

≠0

– K

xy

≠K

yx P 1

x

y

P 2

P 1 P 2 classical Bamberger

See discussion in: Manwart et al. 2002; Piller et al. 2009; Guibert et al., 2015; ...

Note: minimal bias if large sample

and anisotropy along the axis

(14)

Linear Case:

Linear Case:

Non-Newtonian Fluid

Newtonian Fluid

Fluid rheology

No generic closure

independent of fluid

velocity! Generic

macro-scale law:

Representation as a

deviation from Darcy’s

law

– k

n

, P (rotation

“matrix”): depend on

⟨ψv

β

β

(modulus and

orientation)

10-3 10-2 10-1 100 101 102 103 10-1 100 ˙ γ /γ˙c µ /µ0

plateau + power law Carreau cross-fluid

(15)

Transport in Porous Media 14/27

M. Quintard

Test cases

Test cases

HPC center EOS-Calmip:

Typically: 10

8

mesh cells

10

5

cores×hours

Clashach Bentheimer

2D

Needs very fine grid!

often

limited to

(16)

Resolution with OpenFoam

Resolution with OpenFoam

FVM with OpenFOAM (SIMPLE, second-order scheme)

Use of HPC, calculations up to 100 millions mesh elements

a total of 100000 hours of CPU time.

Conform orthogonal hexahedral elements.

Multi-criteria grid convergence study = OK.

(17)

Transport in Porous Media 16/27 M. Quintard

Results

Results

Computations allows

to analyze various

features:

– Properties of

pore-scale fields (PDFs)

– Transition:

• Starts in a few narrow

constrictions

• Scaling for transition?

⟨Uc⟩FL

non-Newt onian regime Newt onian regime k n= 1 k n≠1 ⟨U ⟩FL k (a pp are nt)

⟨ψ.⟩

FL

= intrinsic fluid

average

∝U

(1-n )

(18)

Structure of the Velocity Field

Structure of the Velocity Field

backflow

Normalized pdf ~similar between Newtonian and

non-Newtonian flow! Not valid for pdf of ∇⟨ψp

β

z

y

newtonian non-newtonian

(19)

Transport in Porous Media 18/27 M. Quintard

Transition Scaling

Transition Scaling

10-2 103 101

⟨ψU c⟩FL

10-2 10-1 1 (a ) k ∗ v s ⟨ψU ⟩FL µm .s-1 10-1 A1 A2 C1 C2 B1 B2 P 1 P 2 (b ) k ∗ v s U∗ 100 100 101 Zami-Pierre et al., 2015

(20)

Impact of Domain Size

Impact of Domain Size

16 18 20 22 24 1 2 3 4 5 6 7 L kn σ = 0 σ = 0.2 − 6 − 4 − 2 0 2 4 6 1 2 3 4 5 6 7 L α (d eg re e) σ = 0 σ = 0.2

Anisotropy induced by non-linear behavior decreases with

↗ L for disordered media

Effective property variance decreases with

↗ L

θ=22°

~x

~y

⟨vn ≠1β

α

⟨vn =1β

θ

∇⟨ pβ⟩β-ρβg

(21)

Transport in Porous Media 20/27

M. Quintard

Impact of Domain Size

Impact of Domain Size

0 20 40 60 0 2 4 6 L/Req k n B m ed iu m : k n 0 20 40 60 − 3 − 2 − 1 0 L/Req R ot at io n A ng les (° ) B medium: α B medium: β

Disorder → no anisotropy induced by

non-linearity if L large enough!

θ=22°

Req (pore size)

(22)

Impact of disorder and velocity

Impact of disorder and velocity

10−1 100 101 1 2 3 4 5 U∗ kn Aσ=0 Aσ=0.051 Aσ=0.101 Aσ=0.201 Aσ=0.301 B 10−2 10−1 100 101 −4 −2 0 U∗ A n g le α o f P Aσ=0 Aσ=0.051 Aσ=0.101 Aσ=0.201 Aσ=0.301 B

(23)

Transport in Porous Media 22/27

M. Quintard

Practical Consequences

Practical Consequences

Eng. Practice: apparent Darcy’s law

Discussion:

– P=I for all 〈vvβ〉β if isotropic disordered media and REV (→ need tests for

various sizes)!

– Apparent permeability ~ scales with (K0)½ → classical scaling “may”

introduce artificial dependence upon parameters such as porosity:

– Description of transition near the critical velocity may not be well

described by an apparent viscosity (no observed angle in the apparent

permeability in the case of PLCO)

Fitting parameter (rock dependent)

(24)

Further upscaling

Further upscaling

η-region ω-region L Pore-Scale V Darcy-Scale Reservoir-Scale V β-phase σ-phase lβ cont. DLVO effective BC zone model SubPore-Scale

Depletion layer

treated as an

effective BC

Zami-Pierre et al., 2017

see Chauveteau (1982),

Sorbie & Huang (1991)

(double-layer model)

(25)

Transport in Porous Media 24/27 M. Quintard

Further upscaling

Further upscaling

Viscoelastic fluids

Rheological models

FENE-P:

(26)

-see previous discussion on “apparent permeability”, etc…

- elastic turbulence?

Deborah number:

Example of results: De et al., soft matter, 2018

Example of results: De et al., soft matter, 2018

...also Weissenberg number ☺

Normal stress along average flow direction

De= 0.001 0.1

(27)

Transport in Porous Media 26/27

M. Quintard

Further perspectives: N-momentum

Further perspectives: N-momentum

equations, multi-component aspects, ...

equations, multi-component aspects, ...

Superfluid: 2 momentum equations → complex behavior →

macro-scale model?

Polymer solution as multi-component systems:

– Mechanical segregation, degradation (bio., mech.) – Model? • Momentum balances: – diffusion theory or – N-momentum equations • Composition: – Continuous models or

– PBM (population balance model), ...

see Allain et al. (2010, 2013, 2015), Soulaine et al. (2015, 2017)

mol. weight

(28)

Conclusions

Conclusions

Upscaling tells that this is not always possible to separate in an

apparent Darcy’s law permeability and viscosity

Specific anisotropy effects

Simplifications arise for disordered media

Various results published in the literature for various rheology:

power-law (...), Ellis and Herschel–Bulkley fluids (Sochi & Blunt, 2008), Yield-Stress Fluids (Sochi, 2008), etc…

Additional problems: retention effects, Inaccessible Pore

Volume (IPV), mobile/immobile effects

Perspectives: viscoelastic, multicomponent, coupling with other

Références

Documents relatifs

en raison de leur contagiosité prolongée et partant, du risque accru de transmission nosocomiale, les cas suspects de TB-MR devraient, dans la mesure du

رلا تدهش ًاروضح ةرصاعملا ةيرئازجلا ةياو ًايعون رلا جاتنلإا ثيح نم روضحلاو يئاو نفلا رهظ ذإ ،ي ةلحرم اوزواجت نويئاور تلا م تاو نر اوهج نوكتل ديدج وه ام

To extend the work of Sauloy to the non-Fuchsian case, we have to approximate the Borel-Laplace summation of a given formal power series solution of a linear differential equation, by

Dans les 2 cas, l’invasion par les espèces exotiques est déjà fortement enclenchée et risque d’augmenter avec la mort des frênes dans un contexte d’ecological meltdown

The feeding and temperature control unit is designed to be expandable to accommodate more materials feed lines and print head modules by using multi-channel ADC's and

qui peut être envisagé par l'observation de certains cycles élémentaires ou de groupements fonctionnels. Les sédiments étudiés sont toujours submergés; ils

Les lignes codant les fonctionnalités du logiciel (le code source) sont en libre accès, l’entreprise promeut le développement d’une communauté pour contribuer à