• Aucun résultat trouvé

Non-Newtonian fluids through porous media: micro- and macro-scale properties of power-law fluids

N/A
N/A
Protected

Academic year: 2021

Partager "Non-Newtonian fluids through porous media: micro- and macro-scale properties of power-law fluids"

Copied!
21
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 14409

To cite this version : Pierre, Frédéric and Davit, Yohan and Loubens,

Romain de and Quintard, Michel Non-Newtonian fluids through porous

media: micro- and macro-scale properties of power-law fluids. (2015)

In: Complex Fluid Flow in Porous Media, 12 October 2015 - 14 October 2015 (Bordeaux, France). (Unpublished)

(2)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions In

Non-Newtonian fluids through porous media:

micro- and macro-scale properties of

power-law fluids

F. Pierre

1,3,∗

, Y. Davit

1,2

, R. de Loubens

3

and M.

Quintard

1,2

1Universit´e de Toulouse ; INPT, UPS ; IMFT (Institut de M´ecanique des

Fluides de Toulouse), All´ee Camille Soula, F-31400 Toulouse, France

(3)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Overview

Introduction

Context

Rheology

Porous media

Permeability prediction

Numerical Study

Numerical set up

Numerical results

Modelling macro-scale the phenomena

Conclusions

(4)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Introduction: How do non-Newtonian effects

impact porous media flows ?

The physic is complex,

non-linearities,memory effects,adsorption...

Porous media flow is also complex,

multi-scale,

confinement effects...

Polymer flows in EOR,

increase viscosities,reduce instabilities.

˙γ!10−6 s−1 Fig: Power-law fluid flowing through a Bentheimer sandtone

(5)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Context

µ = µ0 ⇒ hUi = −K·∇pµ0 ⇒ hUi ∝ k∆pk ⇒ 1

µ = µβ ˙γn−1 ⇒ hUi = −K(khUik)·∇pµ0 ⇒ hUi ∝ k∆pk1/n ⇒ 2

˙

γ

c 1 2

˙γ

µ

Fig: Non-Newtonian rheology

hU

c

i

non-Newtonian regime 2 Newtonian regime 1

?

hUi

k

Fig: k versus hUi Refs: Auriault et al. 2002; Getachew et al. 1998; Lecourtier et al. 1984; Seright et al. 2011; Sorbie et al. 1991; Zitha et al. 1995

(6)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Context

Literature: ˙γeq = α4(hUi/φ)√ 8k/φ , Chauveteau 1982.

Two misunderstood parameters;

Req = p8k/φ, comes from analogy with a single pipe. Is it still

valid in complex multi-scale porous media?

α: fitting parameter coming from core-flood experiments. Many

hidden physical phenomena (adsorption, time-dependant effects, mass transport)...

Our Goal: Model only the simplest phenomenon (using plateau +

(7)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Rheology

Time-independent fluids, no yield stress. Common models are, ◮ plateau + power-law, µ =    µ0 if ˙γ < ˙γc, µ0  ˙ γ ˙ γc n−1 else, (1) ◮ Carreau, ◮ generalized Newtonian.

Choice of plateau + power-law

(and tried others).

This leads at a macro scale to,

hUi ∝ ( k∆pk k∆pk1/n (2) 10−410−310−210−1 100 101 102 103 104 10−2 10−1 100

˙γ/ ˙γ

c

µ

0 plateau + power-law Carreau generalized Newtonian

Fig: A few rheological model

(8)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Porous Media

Keywords: wide panel, isotopic, pore size distribution (PSD).

1 2 2D Array name : A φ = 0.72 k0 = 1.1 104 φ = 0.75 k0 = 1.3 104 3D Packing name : P φ = 0.35 k0 = 33 φ = 0.44 k0 = 46 3D Bentheimer name : B φ = 0.18 k0 = 1.92 φ = 0.17 k0 = 0.82 3D Clashach name : C φ = 0.13 k0 = 0.27 φ = 0.14 k0 = 0.48

Tab: Porous medium investigated (k0 in Darcy unit, for liquid)

φ

ց

k

0

ց

(9)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Permeability prediction

Porous media X-ray micro-tomography Denoising & Threholding Downsampling Meshing Solver Solution REV ? (b) Resolution ? Subjectivity ? (c) and (d) Error induced ? Grid quality Schemes accuracy (a) Workflow 0 200 400 600 800 1,000 0 0.5 1 1.5

l

(µm)

φ

∗ B1 B2 C1 C2 S1 S2

(b) φ∗ versus cube length

(c) Thresholding 1 (d) Thresholding 2

(10)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical set up

Equations: 0 = −∇p + ∇ · [ν( ˙γ)(∇U + ∇UT)], ∇ · U = 0 .

FVM with OpenFOAM, 2nd order schemes.

Permeameter, no-slip conditions.

Grid convergence study, 80 millions meshes, 105 hours of CPU time, use

of HPC. Fig: P1 grid 100 101 10−1 100 101 102

1/



hh0



e

(h

U

i)

in

%

S C B

(11)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical results - Two regimes

Relevant dimensionless non-Newtonian number, U= hUi

hUci.

10

−6

10

−1

10

0

10

1

hU

c

i

sl

op

e

=

1

n

hUi m.s

−1

k

Fig: Dimensionless permeability k∗ = k/k

0 versus hUi. Rheology: n = 0.75 and ˙γlim = 1s−1.

(12)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical results - Varying n

Varying n: k ∝ khUik1−n is equivalent to hUi ∝ k∆pk1/n.

10−10 10−9 10−8 10−7 10−6 10−5 10−4 100 101 slope = 1 − n hUi m.s−1 k ∗ n = 0.75 n = 1.15

Fig: Dimensionless permeability k∗ = k/k0 versus hUi for the C1 case.

(13)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical results - Varying ˙γ

c

Varying ˙γc: hUci ∝ ˙γc. This leads to, hUci = φ × ˙γcℓeff .

Rheology: embedded in ˙γ c. ◮ Topology: embedded in ℓ eff. ◮ Use of φ. 10−9 10−8 10−7 10−6 10−5 10−4 10−3 100 hUi m.s−1 k ∗ ˙γc = 100s−1 ˙γc = 101s−1 ˙γc = 102s−1

Fig: Dimensionless permeability k∗ = k/k0 versus hUi for the C1 case.

(14)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical results - Microscopic Phenomenology

hUi = 0.1cm.D

−1

hUi = 1cm.D

−1

hUi = 8cm.D

−1

hUi = 22cm.D

−1

(15)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Numerical results - Microscopic Phenomenology

Identify a critical pore throat volume with PDF.

Media k0 φ φPT A1 1.1 104 0.72 0.175 A2 1.3 104 0.75 0.252 P1 33 0.35 0.085 P2 46 0.44 0.10 B1 1.92 0.18 0.025 B2 0.82 0.17 0.022 C1 0.27 0.13 0.010 C2 0.48 0.14 0.014

Tab: Medium description ( k0 in Darcy unit)

0 0.2 0.4 0.6 0.8 1 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 ˙γ∗ c % VPT ˙γ∗ P D F

Fig: PDF of ˙γ∗ at U= 1 for media C1.

Legend : for ˙γc = 100s−1, for ˙γc = 101s−1,

(16)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Transition’s model

Our goal: predict hUci = φ × ˙γc

eff.

Equivalent to: predict ℓ

eff.

Validation by comparison between the model and hU

ci calculation

(cross-over method). Model for ℓeff :

Use ofk

0. For Newtonian fluids, √k0 is a pure topological parameter

(even if PDE are needed). We have tried: p8k0/φ, p32k0/φ, pk0/φ,

√ k0.

Use of Kozeny-Carman formulation and equivalent diameter, Kozeny 1927; Plessis et al. 1994; Sadowski 1963.

Use of volume or surface of the medium (Vpart, V

medium, Spart), Li et al.

2011; Ozahi et al. 2008.

Best results using simply ℓeff = √k0. Leading to:

hUci = φ ˙γc

p

(17)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Transition’s model

Is ℓeff = √k0 so surprising? ˙γeq = α4 (hUi/φ) p8k0/φ ⇐⇒ hUci = √1 2φα × φ ˙γc p k0 (4)

This would mean that without complex physical phenomena, ℓeff = √k0 is a

good estimation for the ℓeff.

Ref erence Medium √1

2φα

Lecourtier et al. 1984 P1 0.71

Chauveteau 1982 P1 0.87

Chauveteau 1982 C 0.52

Fletcher et al. 1991 C 0.46

(18)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Full model

10

−6

10

−1

10

0

10

1

hU

c

i

hUi m.s

−1

k

Fig: Dimensionless permeability k∗ = k/k

0 versus hUi. Rheology: n = 0.75 and ˙γlim = 1s−1.

(19)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Full model

Relevant dimensionless non-Newtonian number, U= hUi

hUci = hUi φ× ˙γc√k0 10−2 10−1 100 101 102 103 100 101 U∗ k ∗

Fig: k∗ versus U∗. A1, A2, B1, B2, C1, C2,

(20)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

Conclusions & Applications

Studying cut-off phenomena due to non-Newtonian fluid through porous media.

Model the transition using rheological and topological parameters, ˙γ

c

and ℓeff.

Definition of a dimensionless non-Newtonian number U, which characterizes the regime.

Potential applications,

use in core-flood experiments,

estimation of critical distances characterizing the regime transition in petroleum and environmental engineering.

(21)

fluids through porous media F.Pierre Introduction Context Rheology Porous media Permeability prediction Numerical Study Numerical set up Numerical results Modelling macro-scale the phenomena Conclusions

This work was performed using HPC resources from CALMIP (Grant 2015-11). This work was supported by Total.

Figure

Fig: Non-Newtonian rheology
Fig: Permeability prediction issues
Fig: Grid convergence study
Fig: Dimensionless permeability k ∗ = k/k 0 versus hUi. Rheology: n = 0.75 and ˙γ lim = 1s −1 .
+7

Références

Documents relatifs

Let us note that stationary convective regimes in the problem of heat explosion in a porous medium were already observed in literature [13], [14]. We show in this work that

This paves the way for highly circularly polarized compact light sources based on ensembles or single quantum dots, as well as electrical initialization of a single quantum bit

Based on recent evidence indicating a role for the transforming growth factor- β (TGF-β) pathway in sporadic and familial small vessel disease we studied fibronectin, fibrillin-1

2. El informe de auditoría recopila las conclusiones y hallazgos relevantes identificados durante la etapa de ejecución. Incorpora las conclusiones sobre la situación

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Cette étude met en évidence l’efficacité et le bénéfice obtenu dans la prise en charge des coliques néphrétiques simples grâce à la mise en place d’une filière post

Pour ce qui est de l’Est du Niger, les données sur les stratégies d’adaptation aux effets des changements climatiques sont très peu documentées, ce qui justifie la présente

Compte-tenu du fait qu’en présence d’ions argent dans la sous-phase, les isothermes ne sont plus réversibles en fonction de la pression de surface, nous avons choisi de réaliser