• Aucun résultat trouvé

Potential estimation of titratable acidity in cow milk using mid-infrared spectrometry

N/A
N/A
Protected

Academic year: 2021

Partager "Potential estimation of titratable acidity in cow milk using mid-infrared spectrometry"

Copied!
23
0
0

Texte intégral

(1)

P t ti l

ti

ti f tit t bl

Potential estimation of titratable

acidity in cow milk using

mid-acidity in cow milk using mid

infrared spectrometry

Colinet F.G.1, Soyeurt H.1,2, Anceau C.3, Vanlierde A.1

Keyen N.y 3,  Dardenne P., 4, Gengler N., g 1,2 and Sindic M.3

1 Animal Science Unit, Gembloux Agro-Bio Tech, ULg, Belgium 2 National Fund for Scientific Research, Belgium

3 Food Technology Unit, Gembloux Agro-Bio Tech, ULg, Belgium 3 ood ec o ogy U t, Ge b ou g o o ec , U g, e g u 4 Valorisation of Agricultural Products Department, Walloon

(2)

Context

Context

ƒ

Interest of MIR spectrometry 

• Review of Soyeurt H ICAR 2010Review of Soyeurt H., ICAR 2010

(3)

Context

Context

ƒ

Estimation of technological abilities

• Finer and more accurate estimationsFiner and more accurate estimations

9 Better support to farmers/producers

9 Finer management of the herd

9 Finer management of the herd

(4)

Context

Context

ƒ

Cheese making process

• Global cheese yieldGlobal cheese yield

• Milk coagulation properties

9 t 40 % f i ti ( )

9 up to 40 % of variation among cows       (Ikonen et al., 2004)

ƒ

Factors influencing milk coagulation kinetics

• Coagulation enzyme

• Protein and calcium contents in milkProtein and calcium contents in milk

(5)

Context

Context

ƒ

Titratable acidity (TA)

• TA influences all phases of milk coagulationTA influences all phases of milk coagulation

• Developed acidity results from bacterial activity 9 L ti id 9 Lactic acid 9 Collection, transportation, and transformation of milk h lk • Fresh milk 9 Some components: carbondioxide, citrates, casein,  lb i / l b li d h h albumin/globulin and phosphates   9 Buffer action

(6)

Objective

Objective

ƒ

To investigate the potential use of MIR 

spectrometry in order to predict TA

p

y

p

• TA recorded as Dornic degree

• Walloon Region of Belgium

• Walloon Region of Belgium

(7)

Material and methods

Material and methods

ƒ

Sampling

• Walloon Region of BelgiumWalloon Region of Belgium

• Large variability: several criteria 9 Milk li i di id l b lk ilk 9 Milk sampling: individual or bulk milk 9 Breed: Dual Purpose Belgian Blue, Holstein, Red‐Holstein, b li d d Montbeliarde and Jersey 9 Time of sampling:  morning milking, evening milking or mix of 50 % morning & 50 % evening milk samples

(8)

Material and methods

Material and methods

ƒ

Analysis

• 225 samples225 samples • Milk Lab (Comité du Lait, Battice, Belgium) 9 MIR F Milk S FT6000 t t 9 MIR Foss MilkoScanFT6000 spectrometer 9 Analysed traits: fat, protein, free fatty acid (FFA), urea, l d ( ) i ll ( ) d lactose, dry matter (DM), somatic cell count (SCC) and pH 9 SCC Î Somatic Cell Score (SCS)

(9)

Material and methods

Material and methods

ƒ

Analysis

• Titratable acidityTitratable acidity

9 Recorded as Dornic degree (D°) 9 0 1 N NaOH solution 9 0.1 N NaOH solution 9 Consumption of NaOH to shift the pH value from 6.6 to 8.4 (phenolphthalein) (phenolphthalein) 

(10)

Material and methods

Material and methods

ƒ

Calibration procedure

• First derivative pretreatmentFirst derivative pretreatment

• Partial least square regressions 22 tli • 22 outliers • Statistical parameters 9 Mean and standard deviation (SD) 9 Standard error of calibration (SEC) 9 Calibration coefficient of determination (R²C)

(11)

Material and methods

Material and methods

ƒ

Calibration procedure

• Cross‐validationCross validation 

9 To determine the number of factors

9 To assess the accuracy of equation

9 To assess the accuracy of equation 9 Partitioning randomly the calibration set: 102 groups St ti ti l t t th • Statistical parameters to assess the accuracy 9 Standard error of cross‐validation  (SECV) 9 Calibration coefficient of determination (R²CV) 9 RPD = SD / SECV

(12)

Results

Results

ƒ

Characterization of the samples

Trait Mean SD Trait Mean S Fat (%) 3.88 1.03 Protein (%) 3.49 0.52

FFA (mmol/100 g of Fat) 5.63 8.62

Urea (g/100 mL) 0.023 0.011 Lactose (g/100 mL) 4 85 0 35 Lactose (g/100 mL) 4.85 0.35 DM (%) 12.66 1.25 SCS 3.31 1.90 pH 6.69 0.09

(13)

Results

Results

ƒ

Characterization of the samples

Trait Mean SD Trait Mean S Fat (%) 3.88 1.03 Protein (%) 3.49 0.52

FFA (mmol/100 g of Fat) 5.63 8.62

Urea (g/100 mL) 0.023 0.011 Lactose (g/100 mL) 4 85 0 35 Lactose (g/100 mL) 4.85 0.35 DM (%) 12.66 1.25 SCS 3.31 1.90 pH 6.69 0.09 TA (D°) 16.27 2.27 Coefficient of Variation = 14 %

(14)

Results

Results

ƒ

Observed correlations among milk components

Fat FFA Protein Urea Lactose DM SCS pHp

TA (D°) 0.04NS 0.13* 0.39*** 0.18** 0.21** 0.26*** ‐0.16* ‐0.32*** Fat 0.41*** 0.42*** 0.13* ‐0.19** 0.89*** 0.18** ‐0.18** FFA 0.68*** 0.41*** ‐0.17** 0.50*** 0.04NS ‐0.38*** Protein 0.30*** ‐0.07NS 0.69*** 0.10NS ‐0.26*** Urea 0.18** 0.25*** ‐0.18** ‐0.01NS Lactose 0.11NS ‐0.40*** 0.66*** DM 0.07NS ‐0.06NS

(15)

Results

Results

ƒ

Observed correlations among milk components

Fat FFA Protein Urea Lactose DM SCS pHp

TA (D°) 0.04NS 0.13* 0.39*** 0.18** 0.21** 0.26*** ‐0.16* ‐0.32*** Fat 0.41*** 0.42*** 0.13* ‐0.19** 0.89*** 0.18** ‐0.18** FFA 0.68*** 0.41*** ‐0.17** 0.50*** 0.04NS ‐0.38*** Protein 0.30*** ‐0.07NS 0.69*** 0.10NS ‐0.26*** Urea 0.18** 0.25*** ‐0.18** ‐0.01NS Lactose 0.11NS ‐0.40*** 0.66*** DM 0.07NS ‐0.06NS SCS ‐0.19**

(16)

Results

Results

ƒ

Observed correlations among milk components

Fat FFA Protein Urea Lactose DM SCS pHp

TA (D°) 0.04NS 0.13* 0.39*** 0.18** 0.21** 0.26*** ‐0.16* ‐0.32*** Fat 0.41*** 0.42*** 0.13* ‐0.19** 0.89*** 0.18** ‐0.18** FFA 0.68*** 0.41*** ‐0.17** 0.50*** 0.04NS ‐0.38*** Protein 0.30*** ‐0.07NS 0.69*** 0.10NS ‐0.26*** Urea 0.18** 0.25*** ‐0.18** ‐0.01NS Lactose 0.11NS ‐0.40*** 0.66*** DM 0.07NS ‐0.06NS

(17)

Results

Results

ƒ

Observed correlations among milk components

Fat FFA Protein Urea Lactose DM SCS pHp

TA (D°) 0.04NS 0.13* 0.39*** 0.18** 0.21** 0.26*** ‐0.16* ‐0.32*** Fat 0.41*** 0.42*** 0.13* ‐0.19** 0.89*** 0.18** ‐0.18** FFA 0.68*** 0.41*** ‐0.17** 0.50*** 0.04NS ‐0.38*** Protein 0.30*** ‐0.07NS 0.69*** 0.10NS ‐0.26*** Urea 0.18** 0.25*** ‐0.18** ‐0.01NS Lactose 0.11NS ‐0.40*** 0.66*** DM 0.07NS ‐0.06NS SCS ‐0.19**

(18)

Results

Results

ƒ

Statistical parameters

• 10 factors10 factors • Mean ± SD = 16.22 D° ± 2.01 (n = 203) SEC 0 56 D° • SEC = 0.56 D° • R²C = 92.25 %

(19)

Results

Results

ƒ

Cross‐validation

SECV = 0.64 D° CV = 89.88 % RPD = SD / SECV = 3.13 

(20)

Conclusions

Conclusions

ƒ

R

2C

and R

2CV

• High and around 90 %High and around 90 %

• Higher than observed correlations (max 39 %)

RPD 2

ƒ

RPD > 2

Î Feasibility of TA prediction in bovine milk

Î Feasibility of TA prediction in bovine milk      

from MIR spectrum

Î Calibration equation good predictor and

Î Calibration equation: good predictor and      

usable in most applications (including research)

(21)

Perspectives

Perspectives

ƒ

Validation with new set of samples

ƒ

Use of this equation

Use of this equation

• Walloon Database: 900,000 spectra

• Study of TA variability in the Walloon dairy cattle

9 Detection of potential effects of breed, season, DIM...

• Development of a genetic evaluation

• TA breeding values + others traits = a new economicTA breeding values   others traits   a new economic  index for cheese making abilities ?

(22)

Acknowledgments

Acknowledgments

ƒ

Study related to the INTERREG project 

ƒ

Acknowledgments for financial support

Acknowledgments for financial support

• European Commission p

• Walloon Regional Ministry of Agriculture

(23)

Thank you for your attention

Thank you for your attention

Corresponding author’s e‐mail: Frederic.Colinet@ulg.ac.be

ƒ

Acknowledgments for collaboration

ƒ

Acknowledgments for collaboration

• Valorisation of Agricultural Products Department,  W ll A i l l R h C Walloon Agricultural Research Center • Food Technology Unit, Gembloux Agro‐Bio Tech, ULg • Milk Committee of Battice ll d ( bl) • Walloon Breeding Association (AWE asbl) • Walloon dairy breeders

Références

Documents relatifs

En effet, pour certains enfants, l’ ajout d’ une information peut être une charge supplémentaire s’ il ne perçoit pas le lien avec l’apprentissage en cours.. Bara (sous presse)

Ainsi, j’ai pu remarquer que plusieurs artistes, en plus d’utiliser la répétition dans leur protocole de création, avaient eux aussi des intérêts pour la

The crystal structures of 5-(5-furan-2-yl)-2'-deoxyuridine (II), 5-(5-bromofuran-2-yl)-2'-deoxyuridine (IV) and 5-(3-bromothien-2-yl)-2'-deoxyuridine (V) have been studied in order

This study demonstrates that: (i) two-thirds of our patients presenting with DVT did have a concomitant but clinically unsuspected PE; (ii) four-fifths of our patients with PE also

Par ailleurs, enseigner serait naturel pour l’Homme. On apprend un savoir en faisant des efforts mais aussi en disposant d’une transmission culturelle et sociale. Notre cerveau

(Gallery Chamber) of the homothermic zone of the Balcarka Cave (Moravian Karst, Czech Republic) during the fall, a period of limited ventilation.. There were recognized various

Furthermore, R1 values, which depend on both iron and myelin storage, present positive correlations with amyloid burden in both grey and white matter of frontal, temporal

Nous pouvons émettre l’hypothèse qu’il est possible d’aider les élèves à gérer leurs émotions par le biais d’outils pratiques mis en place en classe, que si l’on apprend