• Aucun résultat trouvé

Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles

N/A
N/A
Protected

Academic year: 2021

Partager "Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles"

Copied!
16
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Field

Crops

Research

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / f c r

Crop

model

improvement

reduces

the

uncertainty

of

the

response

to

temperature

of

multi-model

ensembles

Andrea

Maiorano

a,∗

,

Pierre

Martre

a,∗

,

Senthold

Asseng

b

,

Frank

Ewert

c,1

,

Christoph

Müller

d

,

Reimund

P.

Rötter

e,2

,

Alex

C.

Ruane

f

,

Mikhail

A.

Semenov

g

,

Daniel

Wallach

h

,

Enli

Wang

i

,

Phillip

D.

Alderman

j,5,6

,

Belay

T.

Kassie

b

,

Christian

Biernath

k

,

Bruno

Basso

l

,

Davide

Cammarano

b,3

,

Andrew

J.

Challinor

m,n

,

Jordi

Doltra

o

,

Benjamin

Dumont

l

,

Ehsan

Eyshi

Rezaei

c,y

,

Sebastian

Gayler

p

,

Kurt

Christian

Kersebaum

q

,

Bruce

A.

Kimball

r

,

Ann-Kristin

Koehler

m

,

Bing

Liu

s

,

Garry

J.

O’Leary

t

,

Jørgen

E.

Olesen

u

,

Michael

J.

Ottman

v

,

Eckart

Priesack

k

,

Matthew

Reynolds

j

,

Pierre

Stratonovitch

g

,

Thilo

Streck

w

,

Peter

J.

Thorburn

x

,

Katharina

Waha

d,4

,

Gerard

W.

Wall

r

,

Jeffrey

W.

White

r

,

Zhigan

Zhao

i,z

,

Yan

Zhu

s

aUMRLEPSE,INRA,MontpellierSupAgro,2PlaceViala,34060Montpellier,France

bAgriculturalandBiologicalEngineeringDepartment,UniversityofFlorida,Gainesville,FL-32611,USA cInstituteofCropScienceandResourceConservation,UniversityofBonn,D-53115Bonn,Germany dPotsdamInstituteforClimateImpactResearch,D-14473Potsdam,Germany

eNaturalResourcesInstituteFinland(Luke),FI-01301Vantaa,Finland fNASAGoddardInstituteforSpaceStudies,NewYork,NY-10025,USA

gComputationalandSystemsBiologyDepartment,RothamstedResearch,Harpenden,HertsAL52JQ,UK hINRA,UMR1248Agrosystèmesetdéveloppementterritorial,F-31326,Castanet-Tolosan,France iCSIROAgriculture,BlackMountain,ACT2601,Australia

jCIMMYTInt.AP6-641,D.F.Mexico06600,Mexico

kInstituteofBiochemicalPlantPathology,HelmholtzZentrumMünchen,GermanResearchCenterforEnvironmentalHealth,D-85764Neuherberg,Germany lDepartmentofGeologicalSciencesandW.K.KelloggBiologicalStation,MichiganStateUniversity,EastLansing,MI-48823,USA

mInstituteforClimateandAtmosphericScience,SchoolofEarthandEnvironment,UniversityofLeeds,LeedsLS29JT,UK

nCGIAR-ESSPProgramonClimateChange,AgricultureandFoodSecurity,InternationalCentreforTropicalAgriculture,A.A.6713,Cali,Colombia oCantabrianAgriculturalResearchandTrainingCentre,39600Muriedas,Spain

pInstituteofSoilScienceandLandEvaluation,UniversityofHohenheim,D-70599Stuttgart,Germany

qInstituteofLandscapeSystemsAnalysis,LeibnizCentreforAgriculturalLandscapeResearch,D15374Müncheberg,Germany rUSDA,AgriculturalResearchService,USArid-LandAgriculturalResearchCenter,Maricopa,AZ85138,USA

sCollegeofAgriculture,NanjingAgriculturalUniversity,Nanjing,Jiangsu210095,China

tGrainsInnovationPark,DepartmentofEconomicDevelopmentJobs,TransportandResources,Horsham3400,Australia uDepartmentofAgroecology,AarhusUniversity,8830Tjele,Denmark

vTheSchoolofPlantSciences,UniversityofArizona,Tucson,AZ85721,USA

wInstituteofSoilScienceandLandEvaluation,UniversityofHohenheim,D-70599Stuttgart,Germany xCSIROAgriculture,306CarmodyRoad,StLuciaQueensland4067,Australia

yCenterforDevelopmentResearch(ZEF),Walter-Flex-Straße3,53113Bonn,Germany zChinaAgriculturalUniversity,Beijing100193,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received19November2015 Receivedinrevisedform4May2016 Accepted5May2016

Availableonlinexxx

a

b

s

t

r

a

c

t

Toimproveclimatechangeimpactestimatesandtoquantifytheiruncertainty,multi-modelensembles (MMEs)havebeensuggested.Modelimprovementscanimprovetheaccuracyofsimulationsandreduce theuncertaintyofclimatechangeimpactassessments.Furthermore,theycanreducethenumberof modelsneededinaMME.Herein,15wheatgrowthmodelsofalargerMMEwereimprovedthrough

∗ Correspondingauthorsat:UMRLEPSE,INRA,MontpellierSupAgro,2PlaceViala,34060Montpellier,France. E-mailaddresses:maiorano.andrea@gmail.com(A.Maiorano),pierre.martre@supagro.inra.fr(P.Martre). 1 Presentaddress:LeibnizCentreforAgricultural36LandscapeResearch(ZALF),D15374Müncheberg,Germany.

2 Presentaddress:DepartmentofCropSciences,DivisionCropProductionSystemsintheTropics,Georg-August-UniversitätGöttingen,D-37077Göttingen,Germany 3 Presentaddress:JamesHuttonInstitute,Invergowrie,Dundee,Scotland,DD25DA,UK.

4 Presentaddress:CSIROAgriculture,306CarmodyRd,4067StLucia,Australia.

5 Presentaddress:DepartmentofPlantandSoilSciences,OklahomaStateUniversity,Stillwater,OK,74078-6028,USA. 6 StartingfromP.D.A.theauthorlistisinalphabeticalorder.

http://dx.doi.org/10.1016/j.fcr.2016.05.001

(2)

Keywords: Impactuncertainty Hightemperature Modelimprovement Multi-modelensemble Wheatcropmodel

re-parameterizationand/orincorporatingormodifyingheatstresseffectsonphenology,leafgrowthand senescence,biomassgrowth,andgrainnumberandsizeusingdetailedfieldexperimentaldatafrom theUSDAHotSerialCerealexperiment(calibrationdataset).Simulationresultsfrombeforeandafter modelimprovementwerethenevaluatedwithindependentfieldexperimentsfromaCIMMYT world-widefieldtrialnetwork(evaluationdataset).Modelimprovementsdecreasedthevariation(10thto 90thmodelensemblepercentilerange)ofgrainyieldssimulatedbytheMMEonaverageby39%inthe calibrationdatasetandby26%intheindependentevaluationdatasetforcropsgrowninmeanseasonal temperatures>24◦C.MMEmeansquarederrorinsimulatinggrainyielddecreasedby37%.Areduction

inMMEuncertaintyrangeby27%increasedMMEpredictionskillsby47%.Resultssuggestthatthemean levelofvariationobservedinfieldexperimentsandusedasabenchmarkcanbereachedwithhalfthe numberofmodelsintheMME.Improvingcropmodelsisthereforeimportanttoincreasethecertaintyof model-basedimpactassessmentsandallowmorepractical,i.e.smallerMMEstobeusedeffectively.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Wheatis themostwidelygrowncropintheworldand pro-videsmorethan20%ofthedailyproteinandfoodcaloriesforthe worldpopulation(Shiferawetal.,2013).Withapredictedworld populationof9 billionin 2050,the demandfor foodincluding wheatisexpectedtoincreasebythen(AlexandratosandBruinsma, 2012).Climatetrendsaresignificantlyaffectingagricultural pro-ductionsystems,includingwheat,inseveralregionsoftheworld, therebyposingriskstoglobalfoodsupplyandsecurity(Sundström etal.,2014).Therefore,quantifyingthepotentialimpactofclimate variabilityoncropshasbecomeapriorityinordertodevelop effec-tiveadaptationandmitigationstrategies(BurtonandLim,2005; Dentonetal.,2014).

Process-basedcropsimulationmodelsareusefultoolstoassess theimpactofclimateastheyconsidertheinteractionbetween climatevariablesandcropmanagementandtheireffectsoncrop productivity.Theiruseinclimateimpactstudiesandforanalyzing anddevelopingadaptationandmitigationstrategieshasincreased duringtherecentyears(Byjeshetal.,2010;Donatellietal.,2012; Moradietal.,2013;Rosenzweigetal.,2014).Nevertheless,most of thecurrent crop modelslack explicitdefinitions of relevant physiologicalthresholdsandcropresponsestoextremeweather events,particularlyfortemperaturesexceedingthesethresholds (Rötteretal.,2011).Theseomissionsmightbeoneofthereasonfor theconsiderabledifferencesinestimatesofgrainyieldobserved amongmodelsespeciallyforhightemperatures,andbetween mod-elsandfieldobservations(Palosuoetal.,2011).Inaddition,sincea clearmethodologyislacking,mostclimatechangeimpact assess-mentsforagriculturehavenotaddressedcropmodeluncertainties (Müller,2011),whichhavebecomeamajorconcernrecentlyin cli-mateimpactassessments(Lobelletal.,2006;Ruaneetal.,2013; Zhangetal.,2015).

Whiteetal.(2011)reportedthatover40wheatcropmodels areinuseworldwide.Theydifferintheprocessestheyinclude, or in the modelling approaches used to simulatephysiological processes.Arecentworkcarried outbytheWheatTeamofthe Agricultural Model Inter-comparison and Improvement Project (AgMIP)(Rosenzweigetal.,2013)compared27wheatcrop mod-elsandshowedthatagreaterportionoftheuncertaintyinclimate changeimpactprojectionswasduetovariationsamongcrop mod-elsthantovariationsamongclimatemodels,andthatuncertainties in simulated yield increaseddramatically under high tempera-tureconditions (Asseng et al.,2013).Followingtheexample of theclimatemodellingcommunity,toincreasereliabilityofimpact estimatesandtogivebetterestimatesofuncertainty,useofcrop multi-modelensembles(MME)hasbeensuggested(Assengetal., 2015;Bassuetal.,2014;Lietal.,2015;Pirttiojaetal.,2015).Model improvementshavebeensuggestedforimprovingtheaccuracyof

simulationsandreducingtheuncertaintyofclimateimpact assess-ments(Assenget al., 2013;Challinor et al., 2014;Rötteret al., 2011).Martreetal.(2015)arguedthatoneoftheconsequencesof modelimprovementswillbethereductionofthenumberofmodels requiredforanacceptablelevelofsimulationuncertainty. Further-more,theimprovementofthemodelsinanensembleusinggood qualityfield-basedexperimentaldatacouldsubstantiallywiden therangeofresearchquestionstobeaddressedandincreasethe confidenceinsimulationresultsofapplicationsunderchanged cli-maticormanagementconditions(Martreetal.,2015).

Herein,weinvestigatedtheeffectsofmodelimprovementsin 15wheatcropmodelswithregardstoheatstressanditsimpacton modelperformances,uncertainty,andthenumberofcropmodels requiredinmulti-modelensemblesusedforimpactstudies.

2. Materialsandmethods

2.1. Experimentaldata

Detailedquality-assesseddatafromtheUSDA‘HotSerialCereal’ (HSC)experiment(Grantetal.,2011;Kimballetal.,2015;Ottman etal.,2012;Walletal.,2011)andfromthe‘InternationalHeatStress GenotypeExperiment’(IHSGE)coordinatedbyCIMMYT(Reynolds etal.,1994b)wereused.Bothexperimentswerewellwateredand fertilizedtoavoiddroughtandnutritionalstresstoassurethat tem-peraturewouldbethemainenvironmentalvariable.Dailyglobal solarradiation,maximum andminimum airtemperature, aver-agewindspeed, dewpoint temperatureandprecipitationwere recorded at weather stations near the experimental plots. The meandailyaverageairtemperatureforthegrowingseason (sow-ingtophysiologicalmaturity)wascalculatedfromminimumand maximum daily air temperatures as described in Asseng et al. (2015) and reportedin Supplementary InformationS2. In both experimentsphenologicaldevelopmentmeasurementsincluded: emergencedate(Zadockscale10),anthesisdate(Zadockscale65), andmaturitydate(Zadock scale89).Fromthesemeasurements thenumberofdaysfromsowingtoanthesis(days),fromanthesis tomaturity(days),andfromsowingtomaturity(days)were calcu-lated.Inbothexperiments,theplotswerekeptweed-free,andplant protectionmethodswereusedasnecessarytominimizedamage frompestanddiseases.Thetwodatasetsarefurtherdescribedin Assengetal.(2015).Followingisabriefdescriptionwithfocuson themeasurementdatathatwereavailableforthisstudy.

The HSC experiment was conducted at Maricopa, AZ, USA (33.07◦N,111.97◦W,361ma.s.l.):Thespringwheatcultivar‘Yecora RojO’wassownabouteverysixweeksfortwoyears,andinfrared heatersweredeployedonsixofthesowingdatesinaT-FACE (tem-peraturefree-aircontrolledenhancement)systemwhichwarmed thecanopiesoftheheatedplotsonaverageby1.3◦Cand2.7◦C

(3)

during theday and thenight, respectively (targets were 1.5◦C and 3.0◦C; modeswere 1.4◦C and 3.0◦C; Kimball etal., 2015). YecoraRojoisofshortstature,requireslittletonovernalization, isnotorlittlephotoperiodsensitive,andmaturesearly(Qualset etal.,1985).In-seasonmeasurementsincludedleafareaindex(LAI, m2m−2), totalaboveground drybiomass,drymatterweightof

grainpersquare meter andnitrogen contentmeasuredatmilk stageand maturity. End-of-season(i.e.ripeness-maturity) mea-surementsweretotalabovegrounddrybiomass(tDMha−1),grain yield(t DMha−1), singlegraindry mass(mg DMgrain−1), and grainnumber(grainm−2).Biomassharvestindexwascalculated asHI=100×(grainyield)/(abovegroundbiomass)(%).

DatafromtheIHSGEexperimentsusedinthisstudyincludes twospringwheatcultivars(Bacanora88andNesser)grown dur-ing the 1990–1991 and 1991–1992 winter cropping cycles at hot,irrigated,andlowlatitudesitesinMexico(CiudadObregon, 27.34◦N,109.92◦W,38ma.s.l.;andTlatizapan,19.69◦N,99.13◦W, 940m a.s.l.), Egypt (Aswan, 24.1◦N, 32.9◦E, 200m a.s.l.), India (Dharwar, 15.49◦N, 74.98◦E, 940m a.s.l.), Sudan (Wad Medani, 14.40◦N, 33.49◦E, 411m a.s.l.), Bangladesh (Dinajpur, 25.65◦N, 88.68◦E,29ma.s.l.),andBrazil(Londrina,23.34◦S,51.16◦W,540m a.s.l.)(Reynolds, 1993;Reynoldsetal.,1994a,b).Experimentsin Mexico included normal (December) and late (March) sowing dates.Bacanora88 hasmoderatevernalizationrequirementand lowphotoperiodsensitivityandNesserhaslowtonovernalization requirementandphotoperiodsensitivity.Thesevensites(outofthe original12locations)werechosentorepresentarangeof temper-atureasdetailedinAssengetal.(2015).Bacanora88andNesser werechosen(outoftheoriginal16cultivars)fortheirlow pho-toperiodsensitivityandlowvernalizationrequirements.Variables measuredintheexperiment includedplantnumberper square meter,anthesisandfinalabovegroundbiomass,finalgrainyield andyieldcomponents(numberofearpersquaremeter,numberof grainperear,andsinglegraindrymass).Theseexperimentaldata werenotpubliclyavailableandcouldthereforebeusedinablind modelevaluation.

2.2. Modelinter-comparisonandimprovementprotocols

Ofthe30modelsthatparticipatedintheoriginalstudyusingthe HSCdata(Assengetal.,2015),15modelsacceptedtoparticipatein thisnewstudy.Therewasnoexplicitcriterionofinclusion,sothis wouldbean“ensembleofopportunity”asdefinedintheclimate modelcommunity(TebaldiandKnutti,2007).Allofthemodels havebeendescribedinpublicationsandarecurrentlyinuse.For theevaluationdatasetmeasurements,abovegroundbiomassand grainyieldweresimulatedbyallthemodels.7outof15models didnotsimulatedsinglegraindrymassandgrainnumberbutused aharvestindexapproach.

Forbothexperiments,allmodelinggroupswereprovidedwith dailyweatherdata,cropmanagement,soil,andcultivar informa-tion.Qualitativeinformation onvernalization requirementsand daylengthresponseforeachcultivarwerealsoprovided.

TheHSCexperiment(calibrationdataset)wasusedtoimprove themodels.AllavailablemeasurementsfromtheHSCexperiment wereprovidedtomodelerstoimproveandrefinethe parameteri-zationandprocessesoftheirmodel.Theobjectivewastoimprove wheatmodelsforthesimulationoftheimpactofhigh tempera-tureandheatstressesoncropdevelopmentandgrowth.Modelling groupswereallowedtodecidehowtoimproveandimplementheat stressimpactintheirmodels.

TheIHSGEexperiment(evaluationdataset)wasusedas inde-pendent evaluation data set to test single models and model ensembleperformancesbeforeandafterimprovement.All mea-surementsoftheevaluationdatasetwerewithheldfrommodelers (blindtest)withtheexceptionofphenologyforalltreatmentsand

grainyieldforoneofthetreatments(oneyearatCiudadObregon, Mexico)whichwasusedtocalibrategenotypiccoefficients.

Theexperimentaldatausedinthisstudywerenotpreviously usedtodeveloporcalibrateanyofthe15modelsusedinthisstudy. ExceptforthetwoExpert-Nmodelswhichwereexecutedbythe samegroup,allmodelsweresimulatedbydifferentgroupswithout communicationbetweenthegroupsregardingthe parameteriza-tionoftheinitialconditionsorcultivarspecificparameters.Inmost casesthemodeldevelopersexecutedtheirownmodels.

2.3. Evaluationofmodelimprovementeffectsonsinglemodels andonmulti-modelensembleaccuracy

Weevaluatedtheeffectofmodelimprovementontwodifferent performancecharacteristics,accuracyanduncertainty,andonthree modelentities:(i)singlemodels(accuracyonly);(ii)multi-model ensemble(MME,theensembleof15 modelsin thisexperiment exercise);and(iii)MMEmedian(e-median).

Accuracywasmeasuredusingthemeansquarederror(MSE), therootmeansquarederror(RMSE),andtherootmeansquared relativeerror(RMSRE).

Formeasuringsinglemodelerrorinreproducingthe calibra-tionandtheevaluationdatasetweconcentratedontherootmean squaredrelativeerror(RMSRE).Thiserrorindicatorhasthe advan-tageofgivingmoreequalweighttoeachmeasurement,andit’s meaningfulwhencomparingverydifferentenvironmentslikelyto giveabroadrangeofresponses(Martreetal.,2015).RMSREwas calculatedas: RMSREm=100×









1 N N



i=1



Yi− ˆYm,i Yi



2 (1)

whereRMSREmistheRMSREofmodelm,iisthesite/year/sowing

datescombinations(treatment),Nis thetotal number of treat-ments,Yiistheobservedvariablefortreatmenti, ˆYm,iisthevariable

simulatedbymodelmfortreatmenti.Sincethisindicatorisvery sensitivetoerrorswhenmeasuredvaluesaresmall,RMSEwasused asadditionalsupportinginformationforabetterunderstandingof RMSREwhenneeded.RMSEwascalculatedas:

RMSEm=









1 N N



i=1



Yi− ˆYm,i

2 (2)

where,RMSEmistheRMSEofmodelm.

Theaccuracyofthepopulationof15modelsbeforeandafter improvementwasanalyzedusingthemeansquarederror(MSE) anditstwocomponentssquaredbiasandvariance,averagedacross treatments: MSEMME= 1 N 1 M N



i=1 M



m=1



Yi− ˆYm,i

2 = N1 N



i=1 varM( ˆYm,i)+ 1 N N



i=1



biasM( ˆYm,i,Yi)

2 (3)

where,MSEpmistheMSEofthepopulationofmodelsinthe

ensem-ble,Nisthenumberoftreatments,Misthetotalnumberofmodels intheensemble(i.e.15),varmandbiasMarethevarianceandthe

biasforthemodelpopulation,respectively.FromEq.(3)itis evi-dentthatwhilebiasisbasedonbothobservationsandsimulations, varianceonlytakesintoaccountsimulatedvalues.

(4)

2.4. EvaluationofmodelimprovementeffectsonMMEprediction uncertainty

To assess the MME prediction uncertainty we considered both thevariability inMME and thecomparison withhindcast (i.e.retrospectiveforecastsusingknowninputsandknownfield measurements) (Wallach et al., 2015) using the two available measurementdatasets.Inordertoevaluatetheprediction uncer-taintyof the MME beforeand after improvement we usedthe HSCcalibration-datasettosimulatemodelhindcastinrespectto observeddata,andtheIHSGEexperimentasthe“unknown”data setusedtosimulatemodelprediction tounknowndata andto evaluatethepredictiveskillsofthemodelsin theensemble.As ameasureofuncertaintyweusedthemeansquarederrorof pre-diction(MSEP)anditsdecompositioninpredictionsquaredbias (bias2

prediction)andpredictionvariance(varprediction).Accordingto

Wallachetal.(2016)theaveragesquarederroracrosstreatments of MME-mean calculated using the known data set (hindcast)

(MSEhindcaste-mean)canbeusedasareferenceestimateofthemodel

pop-ulationsquaredbiaswhencalculatingpredictionestimates.This correspondstotheaveragesquaredbiasofhindcastsascalculated inEq.(4):

bias2prediction=MSEhindcaste-mean

= 1 Nhindcast Nhindcast



i=1

Yihindcast− 1 M M



m=1 ˆ Ym,ihindcast

2 =bias2hindcast (4)

where,Nhindcastisthenumberoftreatmentsintheknowndataset,

Yihindcastistheobservedvariablefortreatmentioftheknowndata

set, ˆYhindcast

m,i isthehindcastofthesimulatedvariablefortreatment

ibythemodelm.Thepredictionvariancevarpredictionisthe

vari-anceofthevaluessimulatedbythepopulationofmodelsforthe unknowndatasetaveragedacrosstreatments:

varprediction= 1 Nprediction Nprediction



i=1 varM( ˆYiprediction) (5)

where,Npredictionisthenumberoftreatmentsintheunknowndata

set,Yipredictionisthesimulatedvariableforthetreatmentiofthe

unknowndataset.ThereforeanestimateofMSEPcanbecomposed as:

MSEP=bias2

prediction+varprediction (6)

2.5. EvaluationofmodelimprovementeffectsonMME-median

FollowingAssengetal.(2015)andMartreetal.(2015),weused themedianofthemodelsimulations(e-median)astheestimator oftheensemblemodelsimulations.Inordertoevaluatethe over-alle-medianaccuracywecalculatedthesamecriteriaasforthe individualmodels,namelyRMSRE(Eq(1)).

Toexplorehowthee-mediananditserror(RMSRE)variedwith thenumberofmodelsandwiththerandomselectionofmodelsin theensemble,weperformedabootstrapcalculation(i.e.random samplingwithreplacement)foreachvalueofM’(numberof mod-elsintheensemble)from1to15.For eachensembleofsizeM’ wedrew20×103bootstrapsamples(substantiallyhigherthanthe

3200samplesfoundbyMartreetal.(2015)asasufficient num-berofsamplesfor27models)ofM’modelswithreplacement,so thesamemodelmightberepresentedmorethanonceina sam-ple.Thevariationofe-medianacrossthebootstrapsamplesdue

torandommodelselectionwasestimatedwiththecoefficientof variation(CV): CV(ˆye-median,M)= 1 N N  i=1

100× sdB(ˆy M e−median,i) meanB(ˆyM  e−median,i)

(7)

where,CV(ˆye-median,M)istheestimateofthecoefficientof varia-tionofe-medianforthemodelensembleofsizeM’,sdB(ˆyM



e-median,i)

andmeanB arethestandarddeviationandthemeanofB

(num-berofbootstrapsamples)e-mediansofmodelensemblesofsizeM’ fortheithtreatment.AbenchmarkCVof13.5%,previously estab-lishedthroughameta-analysisoffieldtrials(Tayloretal.,1999)was usedtoevaluatetheminimumnumberofmodelsrequiredwithin aMME.

ThefinalestimateofRMSREfore-medianwascalculatedas:

RMSREM= 1 B B



b=1 100×









1 N N



i=1

yi− ˆybe−median,i yi

2 (8)

where,RMSREMistheRMSREofe-medianofthemodelensemble

ofM’size, ˆyb

e−median,iisthee-medianestimateinbootstrapsample

boftheithtreatment.

AllcalculationsandgraphsweremadeusingtheRstatistical softwareR3.1.3(RCoreTeam,2013)andthedevelopment envi-ronmentRStudio(RStudioTeam,2015).Bootstrapsamplingused theRfunctionsample.

3. Results

3.1. Individualmodelimprovements

The major draw backs in simulating the HSC experiment were related to the impact of the higher temperature range (Tmean>22◦C) on yield, biomass and phenology (Asseng et al.,

2015).Furthermoreitwasshownthatthefewmodelsthatalready includedheat stressroutinesaffectingcanopy senescencewere theonly onesabletoreproducethe impactofvery highmean seasonaltemperatures (Tmean≥29◦C)on grainyield and above

groundbiomass.Therefore,theprocessthatreceivedmost atten-tion was leaf senescence, followed by heat stress effects on processesrelatedtobiomassgrowthand/orphenological develop-ment,grainnumberand/orsize,leafdevelopment(Table1,Fig.1). Basedonexperimentalevidences(e.g.ParentandTardieu,2012; Porterand Gawith,1999), inseveralmodelslineartemperature responseswerereplacedbynon-linear(APSIM-Eand SiriusQual-ity)ortrapezoidal(APSIM-Wheat,GLAM-Wheat,Expert-N-SPASS, Expert-N-SUCROSS)responsefunctions.Thecardinaltemperatures forthese processeswerefixedusing valuesreportedin the lit-eratureor calibratedusing theHSC experimentaldataset.One model(APSIM-Nwheat)addedacanopytemperaturesub-routine. In additiontotheinclusion/modification of heat stressimpacts onphysiologicalprocesses, fivemodelsimprovedprocessesnot directlyrelatedtoheatstressusingtheHSCdatasetorother pub-lisheddatasets(Table1).Onemodel(GLAM-wheat)removedthe sub-routineforheatstresseffectongrainsetandpotentialharvest indexastheyobservednosubstantialimprovementanddecided nottoincreasethecomplexityoftheirmodel(Table1and Supple-mentaryMethods).

Inthecaseofheatstressimpactsonleafsenescence,asimilar approach,basedonAssengetal.(2011),wasadoptedinallmodels (Table1andSupplementaryMethods).Afactorforacceleratingleaf senescenceiscalculatedasalinearfunctionofairorcanopy tem-perature(dailymaximum,averageortri-hourlyaccordingtothe differentmodelimplementations)aboveathresholdtemperature value.Somemodelsincludedaplateautothesenescencefactor.

(5)

Table1

Outlineofindividualmodelimprovement.MoredetailsaregivenintheSupplementaryData.

Modelcode Modelname Reference Descriptionofmodelimprovements Introductionand/ormodificationof processrepresentation

Calibration AE APSIM-E (Chenetal.,2010;Keating

etal.,2003;Wangetal.,

2002;Zhaoetal.,2015)

Introductionofanonlinear temperatureresponsefunctionfor phenologicaldevelopmentand biomassgrowth.

Calibrationof14parametersrelatedto themodifiedtemperatureresponse functionsandtoradiationuse efficiencyandmaximumspecificleaf area.

AW APSIM-Wheat (Keatingetal.,2003) Modificationofthetemperature responsefunctionforthermaltime accumulationfromatriangulartoa trapezoidalfunction.

Calibrationofnineparametersrelated tothemodifiedtemperatureresponse functionforthermaltime

accumulation,canopysenescence, grainnumber,andgrainfillingrate. Modificationofheatstresseffecton

leafsenescencetoremove discontinuityaroundthethreshold temperature.

AN APSIM-Nwheat (Assengetal.,2004,1998;

Keatingetal.,2003)

Introductionofanempiricalmodelof canopytemperatureasafunctionof evapotranspirationanddailymeanair VPD(describedinWebberetal.,2015).

Calibrationofsevenparameters relatedtothenewcanopytemperature modelandthemodifiedleaf

senescenceheatstressresponse. Modificationofheatstresseffecton

leafsenescencetoremove discontinuityaroundthethreshold temperature.

FA FASSET (Berntsenetal.,2003;

Olesenetal.,2002)

Introductionofaheatstresseffecton leafsenescence.

Calibrationofsevenparametersrelated tothenewleafsenescenceresponse andtoLAI,DMallocationtoroots,N concentrationinstorageorgans. GL GLAM-Wheat (Challinoretal.,2004;Li

etal.,2010)

Introductionofatrapezoidal temperatureresponsefunctionforleaf growth.

Calibrationof26parametersrelated themodifiedornewtemperature responsefunctionsandtoLAI,HI, maximumpotentialleafgrowthand transpiration,transpirationefficiency, andVPDcalculation.

Modificationofthetemperature responsefunctionforphotosynthesis andtranspirationefficiencyfroma bi-linearfunctionwithnoreduction towardsthebasetemperaturetoa trapezoidalfunction.

Modificationofthetemperature responseofphenologicaldevelopment fromatrapezoidaltoatriangular function.

Modificationofthemagnitudeofthe responseofcanopysenescencetohigh temperature.

Removedheatstresseffectaround anthesisongrainsetandpotential harvestindex.

Modificationofthedefinitionof anthesis(frombeginningofflowering tomid-flowering).

HE HERMESS (Kersebaum,2007;

Kersebaumetal.,2011)

Correctionofanerrorinthecalculation ofthermaltimeaccumulation.

Calibrationofthermaltimefor phenologicaldevelopmentandoffive parametersrelatedtothecorrectionof thermaltimeaccumulation. Constantgrain-to-chaffdrymassratio

atmaturityreplacedbyafunction basedonthedurationofthe flowering-to-maturityperiod. Ndilutioncurvesformaximumand criticalNconcentrationwerefixedtoa constantthermaltimefromemergence tomaturity,nowitisscaledtothe varietalthermaltimefromemergence tomaturity.

Simulationofsoilmoistureand mineralNstartsatthebeginningofthe yearforequilibrationbasedongiven weatherconditions.

LP LPJmL (Beringeretal.,2011;

Bondeauetal.,2007;Fader

etal.,2010;Gertenetal.,

2004;Mülleretal.,2007;

Rostetal.,2008)

Introductionofaheatstresseffecton leafsenescence.

Calibrationoffiveparametersrelated tophenologicaldevelopment,the sensitivitytophotoperiodandLAI.

(6)

Table1(Continued)

Modelcode Modelname Reference Descriptionofmodelimprovements Introductionand/ormodificationof processrepresentation

Calibration

NP Expert-N-SPASS (Biernathetal.,2011;

Priesacketal.,2006;Wang

andEngel,2000)

Introductionofafunctiontocalculate hourlytemperature.

Calibrationofthreeparametersrelated toradiationuseefficiency,specificleaf drymassandgrainnumber. Modificationofthetemperature

responsefunctionsforphotosynthesis fromatriangulartoatrapezoidal function.

NS Expert-N-SUCROSS (Biernathetal.,2011;

Priesacketal.,2006)

Introductionofafunctiontocalculate hourlytemperature.

Calibrationofthreeparametersrelated toradiationuseefficiency,specificleaf drymassandgrainnumber. Modificationofthetemperature

responsefunctionsforphotosynthesis fromatriangulartoatrapezoidal function.

OL OLEARY (O’LearyandConnor,

1996a;O’LearyandConnor,

1996b;O’Learyetal.,1985)

Modificationofthetemperature responsefunctionsforphenological developmentandstemdevelopment fromalineartoatriangularorbi-linear withamaximumfunction.

Modificationoftheroutinesimulating transferofNtograinsfromgenericto cultivarspecific.

Introductionofadry-sowing emergencesubroutine.

Introductionofaneffectofelevation onthepsychometricconstantand radiationuseefficiency. SA SALUS (Bassoetal.,2010;

Senthilkumaretal.,2009)

Calibrationof35parametersrelatedto phyllochron,vernalization

requirement,sensitivityto photoperiod,LAI,cardinal temperaturesofthetemperature responsefunctionforradiationuse efficiency,leafexpansion,rootgrowth, grainfilling,grainnumber,grainN concentrationandDMpartitioning. SP SIMPLACE

<LINTUL2-CC-HEAT>

(Anguloetal.,2013) Introductionofaheatstresseffecton

leafsenescence.

Calibrationoffourparametersrelated toradiationuseefficiency,LAI,and criticalheatstressresponse. Reductionofyieldduetoheatstress

calculatedusingTmeaninsteadofTmax. Introductionofasub-routinefor post-anthesisbiomassre-translocation tograins.

S2 Sirius2010 (JamiesonandSemenov,

2000;Jamiesonetal.,

1998;Lawlessetal.,2005;

Stratonovitchand

Semenov,2015)

Introductionofaheatstresseffecton leafmaturationandsenescence.

Calibrationofsixparametersrelatedto thenewheatstressandfrost responses.

Introductionofaheatstressandfrost effectsongrainnumber

Introductionofaheatstresseffecton potentialgraindrymass.

SQ SiriusQuality (Ferriseetal.,2010;He

etal.,2012;Martreetal.,

2006)

Introductionofaheatstresseffecton leafmaturationandsenescence.

Calibrationof13parametersrelatedto heatstresseffectonleafmaturation andsenescence,thenon-linear temperatureresponsefunctionfor developmentandleafexpansnion, daylengthsensitivity,and vernalizationrequirement. Modificationofthetemperature

responsefunctionsforphenological developmentandleafexpansionfrom alineartoanon-linearfunction. WG WheatGrow (CaoandMoss,1997;Cao

etal.,2002;Huetal.,2004;

Lietal.,2002;Panetal.,

2007,2006)

Introductionofaheatstresseffecton phenologicaldevelopment.

Calibrationoffourparametersrelated totheheatstresseffecton

phenologicaldevelopmentandgrain fillingduration.

Introductionoffunctiontocalculate hourlytemperature.

Inthecaseofimprovementsrelatedtoheatstressimpacton phenologicaland/orgrowthprocesses,theimpactofheatstress was modeled by introducing a temperature response function whichincludedadecreasingphase(triangular,trapezoidal,or

non-linear)athightemperaturesand which substitutedfora linear responsefunctionwithorwithoutaplateau.Onlyinonemodel (OLEARY)alinearresponseforphenologicaldevelopmentwas sub-stitutedforalinearwithaplateauforsomephenologicalstages.In

(7)

Fig.1.Numberofmodelsthatincludedormodified(ifalreadyincluded)keyprocessesrelatedtoheatstressduringthemodelimprovementexercise.

theAPSIM-wheatmodelthetemperatureeffectonthephenological developmentwaspreviouslymodeledusingafunctionwithasingle optimumtemperature(triangularfunction)thatwasnowchanged toafunctionwitharangeofoptimumtemperatures(trapezoidal function).The crop modelsthat did not introduce sucha type of response forphenological developmentand biomassgrowth alreadyincludedthistypeofresponseforbothprocesses (APSIM-NWheat,SIMPLACE),oralreadyhadafunctionwithadecreasing phaseaboveanoptimumtemperatureforbiomassgrowthandkept alineartemperatureresponsefunctionforphenological develop-ment(HERMESS,LPJmL,Sirius2010),orkeptalinearapproachfor bothprocesses(FASSET).

3.2. Effectsofmodelimprovementonsinglemodelsaccuracy

Fig.2illustratestheeffectsofmodelimprovementonthe sim-ulationsofthreetreatmentsoftheHSCcalibrationdatasetwhose meangrowingseasonaltemperaturesweredifferent.Inmostcases, measuredin-seasonandend-of-seasonLAI,abovegroundbiomass, andgrainyieldwereintherangeofmodelsimulationsforboth the un-improved and the improved models. Nevertheless, the improvedmodelsshowed a lowerlevel of variation (measured throughthe10thto90thpercentilerangeofthe15model sim-ulations).Forgrainyieldandabovegroundbiomass,theimproved MMEwasmorepreciseathightemperaturesthantheunimproved MME (meangrowingseasontemperature of 22◦C and 27◦C in Fig.2).Mostunimprovedandimprovedmodelsunderestimated theimpactofhightemperatureonLAI,butthiswastruetoalower extentfortheimprovedcompared totheun-improvedmodels. Consideringthee-medianofthemodelensemble,thesimulations oftheimprovedMMEappearedsimilartotheun-improved pop-ulationat15◦Cbutmoreaccurateat22◦Cand27◦CforLAIand abovegroundbiomass,andforgrainyieldat27◦C.

Inordertoexploreifthepopulationof15modelsusedinthis studyhadskillssimilartothatofthe30modelsthathadpreviously beenusedtosimulatedthecalibrationdataset(Assengetal.,2015), wecomparedtheRMSREdistributionofthesetwopopulationsof modelsforthecalibrationdataset(Fig.3).TheRMSREdistribution foralmostallthevariableswassimilarforthe30modelsandthe 15unimprovedmodelsincludedinthisstudy.Therefore,wecould

reasonablyexcludeany“modelsampling”effectsontheresultsof thiswork.ComparisonofRMSREdistributionofthe15unimproved andimprovedmodelsforthecalibrationdatasetshoweda reduc-tioninthemedianvaluesforRMSREofmostofthevariables:53% fordaysfromsowingtomaturity,36%forabovegroundbiomass, 31%forgrainyield,18%forHI,32%forgrainnumber,12.4%for sin-glegraindrymass.However,RMSRErangeforHI,grainnumber, andsinglegraindrymassremainedalmostunchanged.

Fig.4 shows theeffect ofmodel improvement onthe accu-racy(asmeasuredbyRMSRE)ofeachmodelforgrainyieldand forthekeyvariablesleadingtofinalyieldforthecalibrationdata set.In general,modelswereimprovedfor almost allmeasured variables.Asexpected,modelsthathadlargeerrorsforaspecific variableweretheonesthatimprovedthemostforthatvariable. AllmodelshadlowerRMSREforsimulatingabovegroundbiomass andgrainyieldaftermodelimprovement.Theonlyvariablesfor whichmorethanonemodelworsenedaftermodelimprovements wereLAIandHI.Five models(APSIM-Nwheat,Expert-N—SPASS, Expert-N—SUCROSS, SALUS, and SIMPLACE<LINTUL2-CC-HEAT>) increasedtheerrorforLAIafterimprovements(Fig.4).

Twoofthesemodelswereamong theonesthatincludedor modifiedasub-routineforheatstressimpactonleafsenescence (APSIM-NwheatandSIMPLACE<LINTUL2-CC-HEAT>).Fourmodels hadhigherRMSREofHIafterimprovement(APSIM-Wheat, GLAM-Wheat, Expert-N− SUCROSS,and SiriusQuality), although they hadlowerRMSREforbothabovegroundbiomassandgrainyield aftermodelimprovement.Forboththecalibrationandevaluation datasets,modelimprovementdecreasedthevariation(measured throughthe10thto90thmodelensemblepercentilerange)ofmost simulatedvariablesathighmeanseasonaltemperatures(Fig.5). Forthecalibrationdatasetthereductionofthevariabilitybetween modelsandtheirconvergenceisanexpectedresultasalltheteams used thesame datasettoimprove and recalibrate theirmodel. For grainyield,an increase inprecisionwasobserved for tem-perature>24◦Cforboth thecalibrationandtheevaluationdata set:grainyieldvariationdecreasedby4%and21%consideringthe wholetemperaturerangeofthecalibrationandtheevaluationdata sets,respectively,andby39%and26%consideringonlymean sea-sonaltemperatures>24◦C.Fortheevaluationdataset,consistent reductionoftherangeofvariationamongmodelswasalsoobserved

(8)

A

B

C

D

E

F

G

H

I

Fig.2. Simulatedandmeasuredwheatgrowthdynamicsforthecalibrationdataset.(A–C)leafareaindex(LAI),(D–F)totalabovegroundbiomass,and(G–I)grainyieldversus daysaftersowingformeangrowingseasontemperatures15◦C(A,D,andG),22C(B,E,andH)and27C(C,F,andI).Blackdottedlinesanddarkgreyareasaree-median (MMEmedian)andthe10thto90thpercentilerangeofthe15original(unimproved)models,respectively.Solidredlinesandlightgreyareasaree-medianandthe10thto 90thpercentilerangeofthe15improvedmodels,respectively.Areasaregreywhenimprovedandunimprovedrangesoverlap.Bluesymbolsaremeasuredmean±1s.d.for n=3independentreplicates(forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

forHI(20%),grainnumber(71%),andsinglegraindrymass(44%) (Fig.5).

3.3. EffectsofindividualmodelimprovementonMMEaccuracy andpredictionskills

For both the calibration and evaluation data sets, model improvementsdecreased MSE ofmodels forgrainyield (Fig.6, panelA),phenology (Fig.6,panelsBand C),andabove ground biomass(Fig.6,panelD).Thisreductionwasmainlyduetoa reduc-tioninMMEvariance.Consideringthecalibrationdataset(Fig.6, panelA),MSEofgrainyielddecreasedonaverageby29%,equally duetodecreaseinsquaredbias(−33%)andvariance(−27%). Con-sideringtheevaluationdataset,MSEofgrainyieldwasreduced by37%, due toa 49% reduction in variance, while thesquared biasdidnotincreasedsignificantly(Fig.6,panelA).MSEofabove groundbiomasswasreducedby44%duetoa54%reductionin vari-ance,whilethesquaredbiasdidnotchangesignificantly(Fig.6, panelD).Analysisofthepredictionskillsofthemodelpopulation showedthatthelevelofpredictionerror(MSEP)whensimulating the“unknown”datasetwasreducedafterimprovementby47% (Fig.6,panelA).AstheMSEPisthesumofthesquaredbiasfor thecalibrationdatasetandthevariancefortheevaluationdataset

(Eq.(6)),changesinbiasandvarianceofMSEPfollowedthesame reductionpatterns.

3.4. EffectofindividualmodelimprovementonMMEe-median skill

TheRMSREofe-medianwasreducedby38%forgrainyieldand by46%forabovegroundbiomass,inthecalibrationdataset,and by2%forgrainyieldand11%forabovegroundbiomassinthe eval-uationdataset(Fig.3).Therelationshipbetweenthenumberof modelsinanensembleandtheCVandRMSREofe-median estima-tionofgrainyieldandabovegroundbiomasswasanalyzedthrough abootstrapapproachtocreatealargenumberofrandom ensem-blesof1–15models.Independentlyofthenumberofmodelsin theensembles,fortheevaluationdatasettheCVofe-medianwas about41%lowerforimprovedmodelscomparedwithunimproved models(Fig.7,panelAandB).

Therefore,modelimprovementdecreasedvariationofe-median inarangebetween15%forM’=1and7%forM’=15foraboveground biomassandbetween14%atM’=1,and9%forM’=15for grain yield.Asaconsequence,whilewiththeunimprovedmodelsthe benchmarkCV%of13.5%(Tayloretal.,1999)wasnotachievedfor grainyieldevenwiththemaximummodelensemblesize,withthe improvedmodelsthisthresholdwasreachedwitheightmodelsin

(9)

A

B

C

D

E

F

G

H

Fig.3. Effectofmodelimprovementonrootmeansquaredrelativeerror(RMSRE)distributionfordaysfromsowingtoanthesis(A),daysfromanthesistomaturity(B),leaf areaindex(LAI)(C),harvestindex(HI)(D),grainnumber(E),singlegraindrymass(F),finaltotalabovegroundbiomass(G),finalgrainyield(H),forthecalibrationdataset. RMSREwascalculatedforthe30modelsincludedinapreviousstudy(AgMIP-Wheat)(Assengetal.,2015)andthe15unimprovedandimprovedmodelsincludedinthe modelimprovementstudy.TheleftandtherightsideoftheboxarethefirstandthirdRMSREquartiles.ThelineinsidetheboxistheRMSREsecondquartileormedianof individualmodelerrors.TheendsofthewhiskersindicatetheRMSRE10thand90thpercentilerespectively.Theemptypointsaretheoutliers.Theredcrossesindicatethe e-medianRMSRE(forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

theensemble.Modelimprovementsreducede-medianRMSREof grainyieldinarangebetween12%atM’=1,and2%atM’=15for grainyieldfortheevaluationdataset(Fig.8).

4. Discussion

For thefirsttime, using two uniqueexperimentalfield data setswithalargerangeoftemperature,weimprovedthe predic-tiveskillsofaMMEof15wheatmodels.Asaresultweincreased MME accuracy whilereducing model ensembleuncertainty. As aconsequence,thenumberofrequiredmodelsforMMEimpact assessmentsonyieldtoachieveobservedlevelsoffield experimen-talvariationwashalved.Thisisasignificantstepforwardforcrop modellingandfutureclimateimpactstudiesasuntilnowveryfew modelshave explicitlyconsideredheatstressimpactsonwheat developmentand growth(Assenget al., 2011;Moriondoet al., 2010).

4.1. Modelimprovements

Modelimprovementsincreasedtheaccuracyofsinglemodelsin reproducingheatstressimpactonwheatcrops.Asaconsequence,

theaccuracyofthemodelsandofthee-medianinsimulatingthe impactofhightemperaturesandheatstressincreasedandthe vari-anceamongmodelsinthepopulationwasreduced.

As we focused on the effects of model improvements on a MMEof15modelsandonthepossibleconsequencesforfuture MMEimpactassessmentsstudies,wedidnotanalyzeeachmodel improvement in detail. In this exercise, the concept of “model improvement”wasimplementedasanimprovementofthe appli-cability of models across diverse environments and climates includingclimateextremes.Eachcropmodelaimedtoimprove how high temperature effects were captured by incorporating and/or improving a range of different processes using a high-quality data set. The process descriptions in the models were mostly updated usingnewinformation from theliterature,e.g. a new approach to heat stress, or they accounted of a harm-fuleffectofhightemperaturesforthefirsttime.Eachteamwas leftfreetodecidehowtoimplementheatstressintheirmodel. Thischoicewasmadeconsideringthediversityof implementa-tion of key physiological processes, and/or the diversity in the levelofempiricism/mechanismintheirapproaches(see supple-mentaryinformationinAssengetal.,2015,2013).Inmostcases, beingprimarilydevelopedtosimulate“standard”climate

(10)

condi-A

B

C

D

E

F

G

H

Fig.4.Log2differenceofRMSREforimprovedandunimprovedmodelsversusRMSREofunimprovedmodelsfordaysfromsowingtoanthesis(A),daysfromanthesisto maturity(B),leafareaindex(LAI)(C),harvestindex(HI)(D),grainnumber(E),singlegraindrymass(F),finaltotalabovegroundbiomass(G),finalgrainyield(H),forthe calibrationdataset.Apositivedifferenceofthelog2RMSRE’sindicateanimprovementinmodelperformance.TheextentofmodelimprovementintermsofRMSREdoubles foreachunitoflog2RMSREdifferencebetweentheun-improvedandtheimprovedpopulationofmodels.

tions,modelshadtoimprovehowhightemperatureeffectswere capturedbyincludingormodifyingsomekeybiologicalprocesses involvedincropheatstressresponse.Allthemodelsimprovedtheir skillsinsimulatingmostofthetestedvariables.However,in sev-eralmodelsHIsimulationwasnotimprovedandinthreemodels (APSIM-Wheat,GLAM-Wheat,Expert-N-SUCROSS)itwasslightly worsened,showingthatgrainyieldandabovegroundbiomassdid notimproveproportionallytoeachother.AsobservedbyChallinor etal.(2014)thismightindicatesomelevelofcompensationerror duringthecalibrationphasedespitetheimprovementofbothyield andbiomass.Furthermore,model improvementwasfocusedon heatstress,andmostoftheimprovementwasobservedformean growingseasontemperature>24◦Cwhichisalsotherangewhere mostofthedisagreementwasobservedbeforeimprovement.

Sevenmodelsincludedasub-routineforsimulatingthe accel-erationof leafsenescenceabove atemperature threshold.Heat stresswasreportedtoenhanceleafsenescencewithaconsequent reductionin thetotal amountofinterceptedlight, reduction of theaccumulationofassimilates,andshorteningofthegrain fill-ingperiod (Chauhan et al., 2010; Wardlawand Moncur, 1995; Wardlaw,2002;Xuetal.,1995).

Mostbiological processesrespondexponentiallyto tempera-tureuntilanoptimumand thentheydecline (Dellet al.,2011;

ParentandTardieu,2012).Thedecliningphaseofatemperature functionhasbecomeparticularlyimportantwhenconsidering cli-matechangeimpacts(SchlenkerandRoberts,2009).Fivemodels modifiedtheirtemperaturesub-routinesbyincludingthis declin-ingphasewithincreasingtemperatures,and3modelsthatalready includedadecliningphaseusedtheHSCcalibrationdatasetto cali-bratetheimplementedfunctionortochangetheirshape(e.g.from trapezoidaltonon-linear).Regardingcardinaltemperaturesused for describing thetemperature responseof phenological devel-opmentand biomass growth(i.e. theminimum, optimum, and maximumtemperatures),therewasnoclearaccordanceamong models,withtheexceptionoftheoptimumtemperaturefor radi-ationuseefficiency(∼20◦C) andtheminimumtemperaturefor

bothphenologicaldevelopmentandbiomassgrowth(∼0◦C)(Wang

etal.,unpublished).Somemodelscalibratedtheoptimumandthe maximumtemperaturesusingthecalibrationdatasetandthebest matching values obtainedthrough calibrationmighthave been influencedbythespecificitiesofeachmodel(Eitzingeretal.,2012). Threemodelsaddedasub-routineforaccountingforheatstress impactongrainnumberand/orsize.Elevatedtemperaturesbefore anthesisacceleratedevelopmentofthespikeanddecreasegrain number(SainiandAspinall, 1982)andpotentialfinal grainsize (Ferriseetal.,2010).Temperaturesabove31◦C aroundanthesis

(11)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Fig.5. Simulatedandmeasureddaysfromsowingtoanthesis(AandB),daysfromanthesistomaturity(CandD),leafareaindex(LAI)(EandF),harvestindex(HI)(Gand H),grainnumber(IandJ),singlegraindrymass(KandL),finaltotalabovegroundbiomass(MandN),finalgrainyield(OandP),versusmeangrowingseasontemperature forthecalibration(A,C,E,G,I,KM,O)andevaluation(B,D,F,H,J,L,N,P)datasets.Blackdottedlinesanddarkgreyareasaree-median(ensemblemedian)andthe10thto 90thpercentilerangeofthe15original(unimproved)models,respectively.Solidredlinesandlightgreyareasaree-medianandthe10thto90thpercentilerangeofthe15 improvedmodels,respectively.Symbolsaremeasuredmean±1s.d.forn=3independentreplicates.NotethatforLAI,therewerenoobservationsfortheevaluationdata set(forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

were reported toreduce ear fertility and grainset and conse-quentlygrainnumber(Alghabarietal.,2014;Ferrisetal.,1998), andtemperaturesabove35◦Catthebeginningofgrainfillingwere reportedtoreducepotentialfinalgrainsize(HawkerandJenner, 1993;Keelingetal.,1994;Sainietal.,1984,1983).

Twomodelsconsideredheatstressimpactonleafdevelopment andexpansiongrowth,whichwasreportedtoslowdownunder heatstress(KempandBlacklow,1982).Somemodelsimproved theperformancesbyincludingormodifyingcanopytemperature routines.

However,modelling ofsuchtemperature responsesare cur-rentlylimitedbytheavailabilityofexperimentaldatasetswhere theseresponsescanbequantified.Furthermodelingand experi-mentalworkarealsoneededtoreachagreementamongmodels regarding the cardinal temperature of key physiological pro-cessesdeterminingwheatdevelopmentandgrowth.Furthermore, improvedmodelversionsshouldbefurthertestedthrough sensi-tivityanalysisinordertobetterunderstandtheimpactofnewand revisedprocessesandadditionalparametersinmodelstructures onsimulatedvariables.

4.2. Modelimprovementeffectsontheaccuracyandpredictive skillsofMME

Afterimprovement,thevariationrangeoftheMMEwasreduced athightemperaturesintheevaluationdataset.Thereductionof thevariationbetweenthemodelsathightemperaturesdoesnot eliminatethevalueofusingMMEasmodelstructuresremainstill differentanduncertaintywillcontinuetobepartofimpact assess-ment.Grainyieldpredictiveskill(quantifiedinthisstudybyMSE)of theMMEwasdoubled,andafterimprovementitwascomparable tothatofhindcasts,suggestingthattheimprovedmodel predic-tionsrelatedtotheimpactofheatstresscanbeconsideredreliable andconsistentinrelationtotheobservederror.

MME accuracy for grain yield and above ground biomass wasalso doubledafter improvement. Theunimproved and the improvedMMEhadsimilarsquaredbias,indicatingthatthemain sourceofvariationintheconsideredMMEwasduetodifferences betweenmodels.Theseresultssuggestthatthecurrentlevelofbias mightbeanintrinsicpropertyofcurrentsimulationsorofthe con-sideredMMEoralsopossiblylinkedtootheruncertaintyfactors

(12)

Unimproved Improved 0 1 2 3 4 5

MSE and MSEP

for g rain yield ([t DM ha −1 ] 2) Calibration

A

Unimproved Improved Evaluation Unimproved Improved Prediction 0 10 20 30 40 50 60 70

Unimproved Improved

MSE for Sowing to Anthesis

B

MSE for S o wing to Anthesis (da ys) 2 0 10 20 30 40 50

Unimproved Improved

MSE for Anthesis to Maturity

C

MSE

for Anthesis to Matu

rity (d a ys) 2 0 5 10 15 20 25 30

Unimproved Improved

MSE for Above ground biomass

D

MSE for ab ov e ground biomass ([t DM ha −1 ] 2)

Fig.6. Meansquarederror(MSE)decompositionofgrainyieldsimulatedbythe15unimprovedandimprovedmodelsforthecalibrationandevaluation(comparisonwith hindcast)datasets,andthepredictiondataset(“unknown”dataset)(panelA).MSEdecompositionfordaysfromsowingtoanthesis(panelB),anthesistomaturity(panel C)andfinaltotalabovegroundbiomass(panelD)simulatedbythe15unimprovedandimprovedmodelsfortheevaluationdataset.InpanelA,thepredictiondatasetisthe sameastheevaluationdatasetbutisusedasan“unknown”datasettobepredicted.MSEwasdecomposedintosquaredbias(grey)andvariance(white).Dataaremean±1 s.e.for15(calibration)and14(evaluationandprediction)site/year/sowingdatescombinations.

thatarestillnotconsideredexplicitly.Duetothesimilarityofthe improvedandunimprovedMMEsquaredbiases,theresultsrelated totheanalysisofthepredictiveskillsoftheMMEweresimilarto theevaluationresults.Theagreementbetweentheevaluationand thepredictionresultsisanimportantresultandisrelatedtothe usefulnessofcropmodelsinexploringtheconsequencesonclimate change.Afundamentalquestionincropmodelimpactassessments isthequalityassessmentofestimatesofuncertainty(Wallachetal., 2015).Forthefirsttime,thequalityofaMMEwasmeasured,and itshowedthatatthecurrentstateofcropmodeldevelopment, especiallyafterimprovement,predictionuncertaintiesand hind-casterrorsareatthesamelevel.Therefore,givenacertainlevelof squaredbiasmeasuredwithhindcastandappliedtopredictions,we canassumethatpredictionswiththesemodelsarereliable.Since inthisworkthelevelofpredictionuncertaintywasmeasuredusing thesquaredbiasforadatasetthatwasalsousedforcalibration,we suggestthatforfuturepredictionuncertainty assessmentsdone withthisMME,thesquaredbiasoftheimprovedmodels calcu-latedfortheevaluationdatasetsisusedasthereferenceprediction squaredbias.

4.3. Modelimprovementeffectsone-medianuncertainty

TwofundamentalquestionsinMMEuncertaintyarewhatisthe uncertaintyoftheMMEpredictorandhowdoesthequalityofthe uncertaintyestimatesvarywiththenumberofmodels(Wallach etal.,2015).

Asexpected,theCVandtheRMSREofe-mediandecreasedwith thenumberofmodels.OnaveragetheunimprovedversionofMME wasnotabletoreachthebenchmarkofCV≤13.5%forgrainyield (Tayloretal.,1999):evenwitharandommodelpopulationof15

modelstheaverageCVwas17%.Onthecontrary,theimproved MMEreachedCV≤13.5%with8modelsintheensembleandat this modelensemble sizetheRMSREof e-medianwasreduced by16%.MMEcanbeapowerfultoolfor climateimpact assess-mentsastheytakeadvantageofthepresenceofdifferentmodels intheensemble(Martreetal.,2015),buttheyarecostlyto exe-cute.ExecutionofMMEimplypublicavailabilityofcropmodels and/ortheinterestofmodelinggroups inparticipatingin coor-dinatedsimulationexercises,theiravailabilityoffundingand/or computationalresourcestodotherequestedsimulations(Tebaldi andKnutti,2007).Cropmodelsaredevelopedusingdifferent soft-warelanguagesand/orimplementationswhich makestheiruse bythirdpartiesdifficult.Amodelframeworkthatisabletohost multiplecropmodelsmostprobablywillovercomethese limita-tionsinthefuture(Bergezetal.,2014;Davidetal.,2013;Donatelli etal.,2014;Holzworthetal.,2015Holzworthetal.,2015),butthe numberofcropmodelsincludedintheseplatformsisstilllimited and,evenwhenavailable,executingseveralcropmodelsrequiresat leastsomeknowledgeaboutthespecificsofeachmodelinorderto correctlyinterpretresults.Thereforethereductionoftherequired numberofmodelsinanensembleisafundamentalresultkey con-clusionofthisstudythatmakesmulti-modelimpactassessments morerealisticpracticalandlesscostlytobeexecuted.

UntilnowtheconstitutionofcropMMEshasbeenbasedonthe “ensembleofopportunity”approachwithoutanapriori specifi-cationthatdefinesthecharacteristicsofamodelthat shouldor shoudnotbepartofanensemble(SolazzoandGalmarini,2015). Inmostcases,theonlyrequirementforparticipationhasbeenthat theremustbeapublisheddescriptionofthemodel.However,one couldenvisageamorepro-activechoiceofmodels.Forexample, Solazzoand Galmarini(2015)proposedscreening modelstobe

(13)

0 20 40 60 80 Coefficient of va riation of e−median of g rain yield (%)

A

Unimproved models Improved models 0 2 4 6 8 10 12

B

Coefficient of va riation of e−median of S o wing to Anthesis (%) 0 10 20 30 40 50 60 70

C

1 3 5 7 9 11 13 15 Coefficient of va riation of e−median of ab ov e ground biomass (%) Number of models

Fig.7. Coefficientofvariationofmulti-modelensemblee-medianforfinalgrain yield(panelA),daysfromsowingtomaturity(panelB)andfinaltotalaboveground biomass(PanelC),versusnumberofmodelsinanensemble.Valueswerecalculated basedon20,000bootstrapsamplesof1–15original(unimproved)(bluecircles) andimproved(redtriangles)modelsfortheindependentevaluationdataset.The horizontalblackdashedlineinpanelAindicatesthemeancoefficientofvariationof GYcalculatedfromameta-analysisofagronomicfieldtrials(Tayloretal.,1999).For readability,resultsforunimprovedandimprovedmodelsareshownforoddand evennumberofmodels,respectively.Symbolsanderrorbarsindicatemeanand ±s.d.ofthe20,000samplee-medianvalues,respectively(forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthisarticle.)

includedinaMMEinordertoreduceredundancy.Theypropose doingthisinthreesteps:i)determinationtowhatextentthe vari-abilitypresentintheobservationsisreproducedbytheMME,ii) determinationof theminimumnumber ofmodelsnecessaryto representtheobserved variabilityiii)identificationofthe mod-elstobeincludedinareduced MMEtobeusedforsubsequent analysis.Analternativeapproachtoexcludingsomemodelswould

Fig.8.Rootmeansquaredrelativeerror(RMSRE)ofmulti-modelensemble e-medianforfinalgrainyield(GY)versusnumberofmodelsintheensemblefor original,unimprovedmodels(bluecircles)andimprovedmodels(redtriangles)for theevaluationfielddataset.Valuesaremean±1s.d.for20,000bootstrapsamples. Forreadability,resultsforunimprovedandimprovedmodelsareshownforoddand evennumberofmodels,respectively(forinterpretationofthereferencestocolour inthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

betodifferentiallyweightthedifferentmodelsinaMMEinorder toobtainaweightedaverageprediction.Intheclimatemodeling communityweightingmethodsbasedonmodelperformancehave beenreportedtoimproveperformanceofaMMEpredictor(Tebaldi andKnutti,2007).However,weightingbasedonfitofhindcastsis difficult,becauseitrequiresachoiceofwhichoutputvariablesto considerandhowtocombinetheminanoverallcriterion.Another openquestionisrelatedtothequantificationoftheglobal uncer-taintyinimpactassessments.Herewefocusedourattentionon theuncertaintyrelatedtomodelsimulationsandMMEassuminga fixed(non-varietal)parametersetforeachmodel.Furthermorewe didnotincludeuncertaintyrelatedtoweather,soil,and manage-mentinputs.Inthecaseofclimatechangeimpactassessmentsthe uncertaintyrelatedtoweatherinputsmayhaveahigher impor-tance.

5. Conclusions

Followingtheexampleoftheclimatesciencecommunity,the cropmodelcommunityhasrecentlyproposedtheuseofMMEas avalidapproachtoanalyzeimpactassessmentuncertaintiesfor currentandfutureclimateconditions.However,differentlyfrom climatemodels,the performance ofcropmodels canbe evalu-atedagainstcontrolledfieldexperimentsfromenvironmentsthat alreadyexperiencehigherthannormalgrowingseason tempera-turescreatingconditionsthatmightbecomecommoninthefuture. Usingauniquesetofexperimentsfortestingtheimpactofheat stressonwheatcrops,wedemonstratedthatcropmodel improve-mentscanincreasetheaccuracyofsimulations,increasepredictive skillsofMME’s,reduceMMEuncertainty,andreducethenumber ofmodelsneededforreliableimpactassessments.

Authorcontributions

AM,PM,SA,andFE,Conceivedanddesignedresearch.AM,PM, andDWanalyzedthesimulationresults.AMandPMwrotethe manuscript.SA,FW,DW,EW,CM,RPM,ACR,andMASrevisedthe manuscript.AM,PM,SA,FE,CM,RPR,MAS,EW,BTK,CB,BB,DC, AJC,JD,BD,EER,SG,KCK,AKK,BL,GJO,JEO,EP,PS,TS,PJT,KW,ZZ, andYZperformedsimulations,improvedindividualmodelsand

(14)

discussedtheresults.PDA,BAK,MJO,MPR,AR,GWW,andJWW providedexperimentaldata.

Acknowledgements

AMhasreceivedthesupportoftheEUintheframeworkofthe Marie-CurieFP7COFUNDPeopleProgramme,throughtheawardof anAgreenSkillsfellowshipundergrantagreementno. PCOFUND-GA-2010-267196. PM and DW acknowledge support from the FACCEJPIMACSURproject(031A103B)throughthemetaprogram AdaptationofAgricultureandForeststoClimateChange(AAFCC) oftheFrenchNationalInstituteforAgriculturalResearch(INRA). SAandDCreceivedfinancialsupportfromtheInternationalFood PolicyResearchInstitute(IFPRI)andtheInternationalMaizeand WheatImprovementCenter(CIMMYT).FEreceivedsupportfrom theFACCEMACSURproject(031A103B)fundedthroughthe Ger-manFederalMinistryofEducationandResearch(2812ERA115)and EERwasfundedthroughtheGermanFederalMinistryofEconomic CooperationandDevelopment(Project:PARI).EWwasfundedby thebyCSIROandtheChineseAcademyofSciencesthroughthe project‘Advancingcropyieldwhilereducingtheuseofwaterand nitrogen’.CMreceivedfinancialsupportfromtheKULUNDAproject (01LL0905L)andtheMACMITproject(01LN1317A)fundedthrough theGermanFederalMinistryofEducationandResearch(BMBF). RPRreceivedfinancialsupportfromFACCEMACSURprojectfunded throughtheFinnishMinistryofAgricultureandForestry.MPRand PDAreceivedfundingfromtheCGIARResearchProgramonClimate Change,Agriculture,and FoodSecurity(CCAFS).CB wasfunded throughtheHelmholtzproject‘REKLIM-RegionalClimateChange: Causes and Effects’ Topic 9: ‘Climate Change and Air Quality’. KCKandCNwerefundedbytheFACCEMACSURprojectthrough theGermanFederalOffice forAgricultureand Food(BLE).GO’L wasfundedthroughtheAustralianGrainsResearchand Develop-mentCorporationandtheDepartmentofEnvironmentandPrimary IndustriesVictoria,Australia.JEOwerefundedthroughtheFACCE MACSUR project by the Danish Strategic Research Innovation Foundation.ZZreceivedscholarshipfromtheChinaScholarship CouncilthroughtheCSIROandChineseMinistryofEducationPhD ResearchProgram.RothamstedResearchissupportedviathe20:20 WheatProgrammebytheUKBiotechnologyandBiologicalSciences ResearchCouncil.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.fcr.2016.05.001.

References

Alexandratos,N.,Bruinsma,J.,2012.WorldAgricultureTowards2030/2050:The

2012Revision.FAO,Rome.

Alghabari,F.,Lukac,M.,Jones,H.E.,Gooding,M.J.,2014.EffectofRhtallelesonthe toleranceofwheatgrainsettohightemperatureanddroughtstressduring bootingandanthesis.J.Agron.CropSci.200,36–45,http://dx.doi.org/10.1111/

jac.12038.

Angulo,C.,Rötter,R.,Lock,R.,Enders,A.,Fronzek,S.,Ewert,F.,2013.Implicationof cropmodelcalibrationstrategiesforassessingregionalimpactsofclimate changeinEurope.Agric.For.Meteorol.170,32–46,http://dx.doi.org/10.1016/j.

agrformet.2012.11.017.

Asseng,S.,Keating,B.A.,Fillery,I.R.P.,Gregory,P.J.,Bowden,J.W.,Turner,N.C., Palta,J.A.,Abrecht,D.G.,1998.PerformanceoftheAPSIM-wheatmodelin

WesternAustralia.FieldCropsRes.57,163–179.

Asseng,S.,Jamieson,P.,Kimball,B.,Pinter,P.,Sayre,K.,Bowden,J.,Howden,S., 2004.Simulatedwheatgrowthaffectedbyrisingtemperature,increasedwater deficitandelevatedatmosphericCO2.FieldCropsRes.85,85–102,http://dx.

doi.org/10.1016/S0378-4290(03)00154-0.

Asseng,S.,Foster,I.,Turner,N.C.,2011.Theimpactoftemperaturevariabilityon wheatyields.Glob.ChangeBiol.17,997–1012,http://dx.doi.org/10.1111/j.

1365-2486.2010.02262.x.

Asseng,S.,Ewert,F.,Rosenzweig,C.,Jones,J.W.,Hatfield,J.L.,Ruane,A.C.,Boote, K.J.,Thornburn,P.J.,Rötter,R.P.,Cammarano,D.,Brisson,N.,Basso,B.,Martre,

P.,Aggarwal,P.K.,Angulo,C.,Bertuzzi,P.,Biernath,C.,Challinor,A.J.,Doltra,J., Gayler,S.,Goldberg,R.,Grant,R.,Heng,L.,Hooker,J.,Hunt,L.A.,Ingwersen,J., Izaurralde,R.C.,Kersebaum,K.C.,Müller,C.,NareshKumar,S.,Nendel,C., O’Leary,G.,Olesen,J.E.,Osborne,T.M.,Palosuo,T.,Priesack,E.,Ripoche,D., Semenov,M.A.,Shcherbak,I.,Steduto,P.,Stöckle,S.,Stratonovitch,P.,Streck, T.,Supit,I.,Tao,F.,Travasso,M.,Waha,K.,Wallach,D.,White,J.W.,Williams, J.W.,Wolf,J.,2013.Uncertaintyinsimulatingwheatyieldsunderclimate change.Nat.Clim.Change,1–6,http://dx.doi.org/10.1038/ncliamte1916. Asseng,S.,Ewert,F.,Martre,P.,Rötter,R.P.,Lobell,D.B.,Cammarano,D.,Kimball,

B.A.,Ottman,M.J.,Wall,G.W.,White,J.W.,Reynolds,M.P.,Alderman,P.D., Prasad,P.V.V.,Aggarwal,P.K.,Anothai,J.,Basso,B.,Biernath,C.,Challinor,A.J., DeSanctis,G.,Doltra,J.,Fereres,E.,Garcia-Vila,M.,Gayler,S.,Hoogenboom,G., Hunt,L.A.,Izaurralde,R.C.,Jabloun,M.,Jones,C.D.,Kersebaum,K.C.,Koehler, A.-K.,Müller,C.,NareshKumar,S.,Nendel,C.,O’Leary,G.,Olesen,J.E.,Palosuo, T.,Priesack,E.,EyshiRezaei,E.,Ruane,A.C.,Semenov,M.A.,Shcherbak,I., Stöckle,C.,Stratonovitch,P.,Streck,T.,Supit,I.,Tao,F.,Thorburn,P.J.,Waha,K., Wang,E.,Wallach,D.,Wolf,J.,Zhao,Z.,Zhu,Y.,2015.Risingtemperatures reduceglobalwheatproduction.Nat.Clim.Change5,143–147,http://dx.doi.

org/10.1038/nclimate2470.

Basso,B.,Cammarano,D.,Troccoli,A.,Chen,D.,Ritchie,J.T.,2010.Long-termwheat responsetonitrogeninarainfedMediterraneanenvironment:fielddataand simulationanalysis.Eur.J.Agron.33,132–138,http://dx.doi.org/10.1016/j.eja.

2010.04.004.

Bassu,S.,Brisson,N.,Durand,J.-L.,Boote,K.,Lizaso,J.,Jones,J.W.,Rosenzweig,C., Ruane,A.C.,Adam,M.,Baron,C.,Basso,B.,Biernath,C.,Boogaard,H.,Conijn,S., Corbeels,M.,Deryng,D.,DeSanctis,G.,Gayler,S.,Grassini,P.,Hatfield,J.,Hoek, S.,Izaurralde,C.,Jongschaap,R.,Kemanian,A.R.,Kersebaum,K.C.,Kim,S.-H., Kumar,N.S.,Makowski,D.,Müller,C.,Nendel,C.,Priesack,E.,Pravia,M.V.,Sau, F.,Shcherbak,I.,Tao,F.,Teixeira,E.,Timlin,D.,Waha,K.,2014.Howdovarious maizecropmodelsvaryintheirresponsestoclimatechangefactors?Glob. ChangeBiol.20,2301–2320,http://dx.doi.org/10.1111/gcb.12520.

Bergez,J.E.,Raynal,H.,Launay,M.,Beaudoin,N.,Casellas,E.,Caubel,J.,Chabrier,P., Coucheney,E.,Dury,J.,GarciadeCortazar-Atauri,I.,Justes,E.,Mary,B., Ripoche,D.,Ruget,F.,2014.EvolutionoftheSTICScropmodeltotacklenew environmentalissues:newformalismsandintegrationinthemodellingand simulationplatformRECORD.Environ.Modell.Softw.62,370–384,http://dx.

doi.org/10.1016/j.envsoft.2014.07.010.

Beringer,T.,Lucht,W.,Schaphoff,S.,2011.Bioenergyproductionpotentialofglobal biomassplantationsunderenvironmentalandagriculturalconstraints.GCB Bioenergy3,299–312,http://dx.doi.org/10.1111/j.1757-1707.2010.01088.x. Berntsen,J.,Petersen,B.M.,Jacobsen,B.H.,Olesen,J.E.,Hutchings,N.J.,2003.

Evaluatingnitrogentaxationscenariosusingthedynamicwholefarm simulationmodelFASSET.Agric.Syst.76,817–839,http://dx.doi.org/10.1016/

S0308-521X(02)00111-7.

Biernath,C.,Gayler,S.,Bittner,S.,Klein,C.,Högy,P.,Fangmeier,A.,Priesack,E., 2011.Evaluatingtheabilityoffourcropmodelstopredictdifferent environmentalimpactsonspringwheatgrowninopen-topchambers.Eur.J. Agron.35,71–82,http://dx.doi.org/10.1016/j.eja.2011.04.001.

Bondeau,A.,Smith,P.C.,Zaehle,S.,Schaphoff,S.,Lucht,W.,Cramer,W.,Gerten,D., Lotze-campen,H.,Müller,C.,Reichstein,M.,Smith,B.,2007.Modellingtherole ofagricultureforthe20thcenturyglobalterrestrialcarbonbalance.Glob. ChangeBiol.13,679–706,http://dx.doi.org/10.1111/j.1365-2486.2006.01305.

x.

Burton,I.,Lim,B.,2005.Achievingadequateadaptationinagriculture.Clim. Change70,191–200,http://dx.doi.org/10.1007/s10584-005-5942-z. Byjesh,K.,Kumar,S.N.,Aggarwal,P.K.,2010.Simulatingimpacts,potential

adaptationandvulnerabilityofmaizetoclimatechangeinIndia.Mitig.Adapt. Strateg.Glob.Change15,413–431,

http://dx.doi.org/10.1007/s11027-010-9224-3.

Cao,W.,Moss,D.N.,1997.Modellingphasicdevelopmentinwheat:aconceptual integrationofphysiologicalcomponents.J.Agric.Sci.129,163–172,http://dx.

doi.org/10.1017/S0021859697004668.

Cao,W.,Liu,T.,Luo,W.,Wang,S.,Pan,J.,Guo,W.,2002.Simulatingorgangrowthin wheatbasedontheorgan-weightfractionconcept.PlantProd.Sci.,http://dx.

doi.org/10.1626/pps.5.248.

Challinor,A.J.,Wheeler,T.R.,Craufurd,P.Q.,Slingo,J.M.,Grimes,D.I.F.,2004.Design andoptimisationofalarge-areaprocess-basedmodelforannualcrops.Agric. For.Meteorol.124,99–120,http://dx.doi.org/10.1016/j.agrformet.2004.01.002. Challinor,A.,Martre,P.,Asseng,S.,Thornton,P.,Ewert,F.,2014.Makingthemostof climateimpactsensembles.Nat.Clim.Change4,77–80,http://dx.doi.org/10.

1038/nclimate2117.

Chauhan,S.,Srivalli,S.,Nautiyal,A.R.,Khanna-Chopra,R.,2010.Wheatcultivars differinginheattoleranceshowadifferentialresponsetomonocarpic senescenceunderhigh-temperaturestressandtheinvolvementofserine proteases.Photosynthetica47,536–547,

http://dx.doi.org/10.1007/s11099-009-0079-3.

Chen,C.,Wang,E.,Yu,Q.,2010.Modelingwheatandmaizeproductivityasaffected byclimatevariationandirrigationsupplyinNorthChinaPlain.Agron.J.102, 1037,http://dx.doi.org/10.2134/agronj2009.0505.

David,O.,Ascough,J.C.,Lloyd,W.,Green,T.R.,Rojas,K.W.,Leavesley,G.H.,Ahuja, L.R.,2013.Asoftwareengineeringperspectiveonenvironmentalmodeling frameworkdesign:theobjectmodelingsystem.Environ.Modell.Softw.39, 201–213,http://dx.doi.org/10.1016/j.envsoft.2012.03.006.

Dell,A.I.,Pawar,S.,Savage,V.M.,2011.Systematicvariationinthetemperature dependenceofphysiologicalandecologicaltraits.Proc.Natl.Acad.Sci.U.S.A. 108,10591–10596,http://dx.doi.org/10.1073/pnas.1015178108.

Figure

Fig. 1. Number of models that included or modified (if already included) key processes related to heat stress during the model improvement exercise.
Fig. 2. Simulated and measured wheat growth dynamics for the calibration data set. (A–C) leaf area index (LAI), (D–F) total above ground biomass, and (G–I) grain yield versus days after sowing for mean growing season temperatures 15 ◦ C (A, D, and G), 22 ◦
Fig. 3. Effect of model improvement on root mean squared relative error (RMSRE) distribution for days from sowing to anthesis (A), days from anthesis to maturity (B), leaf area index (LAI) (C), harvest index (HI) (D), grain number (E), single grain dry mas
Fig. 4. Log 2 difference of RMSRE for improved and unimproved models versus RMSRE of unimproved models for days from sowing to anthesis (A), days from anthesis to maturity (B), leaf area index (LAI) (C), harvest index (HI) (D), grain number (E), single gra
+4

Références

Documents relatifs

When the model was driven by local meteorological observations, and local vegetation and soil texture observations, errors in ETR estimations were caused to a

In the first part of this work, the shoot growth module and grain yield of the STICS crop model were calibrated and validated by using field data which was collected from

This figure includes research funded through the Department, the Biotechnology Process Engineering Center, the Energy Laboratory, the Harvard/MIT Division of Health

- Peat soil occupation increases Climate Change by 22% and Land Use impact by 84% - Improving palm oil mill effluent treatment reduces impacts by 1.49%

Three integrated resources, the Plant Trait Ontology (TO), the Crop Ontology (CO) and the GrainGenes 1 database provide researchers and plant breeders interconnected tools

Soil nitrogen mineralisation simulated by crop models across different environments and the consequences for model improvement..

Recent improvements in models include the simulation of canopy temperature and range from empirical (EMP) to complex iterative models solving an energy balance correcting

Then the robustness of this improved model will be analyzed under both aspects: (i) the estimation of the relevant parameters using the observations from the bamboo fiberboard and