• Aucun résultat trouvé

Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality

N/A
N/A
Protected

Academic year: 2021

Partager "Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality"

Copied!
13
0
0

Texte intégral

(1)

To link to this article : DOI :

10.1016/j.cherd.2017.08.017

URL :

http://dx.doi.org/10.1016/j.cherd.2017.08.017

To cite this version :

Snisarenko, Dmytro and Pavlenko, Denys and Stamatialis, Dimitrios and Aimar,

Pierre and Causserand, Christel and Bacchin, Patrice Insight into the transport

mechanism of solute removed in dialysis by a membrane with double

functionality. (2017) Chemical Engineering Research and Design, vol. 126. pp.

97-108. ISSN 02638762

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 18602

(2)

Insight

into

the

transport

mechanism

of

solute

removed

in

dialysis

by

a

membrane

with

double

functionality

D.

Snisarenko

a

,

D.

Pavlenko

b

,

D.

Stamatialis

b

,

P.

Aimar

a

,

C.

Causserand

a,∗

,

P.

Bacchin

a

aLaboratoiredeGénieChimique,UniversitédeToulouse,CNRS,INPT,UPS,Toulouse,France

bBioartificialOrgans,DepartmentofBiomaterialsScienceandTechnology,MIRAInstitute,FacultyofScienceand

Technology,UniversityofTwente,7500AEEnschede,TheNetherlands

Keywords:

Hemodialysis Mathematicalmodel Double-layermembrane Bloodtoxinsremoval

a

b

s

t

r

a

c

t

Thepresentstudyaimsatsheddinglightonthetransportmechanismsinvolvedina func-tionalizedmembranedesignedforimprovinghemodialysis.Thismembraneisprepared byembeddingabsorptivemicroparticleswithinitsporousstructure.Tounderstandthe transportmechanismthroughthemembraneandmakesuggestionsforitsoptimization,a mathematicalmodelcouplingconvection,diffusionandadsorptionisdevelopedand vali-datedbycomparisonofexperimentalandtheoreticalresults.Infact,themodelprovidesa descriptionoftheconcentrationprofilefromthedonor(feed)compartmentacrossthe sev-erallayerswithdifferentpropertiestotheacceptor(dialysate)compartment.Inaddition, themodelallowstopredicttheinfluenceofvariousparameterssuchasmolecule diffu-sivity,membranethickness,presenceofconvection,contentofadsorptiveparticlesonthe fluxintensificationacrossthemembrane.Comparisonwithexperimentalmeasurements demonstratesthatthemodelisabletodescribethetransmembranemassfluxvariationover timeasafunctionofhydrodynamicconditionsandmembrane/modulegeometric param-eters.Themodelalsoillustrateshowtheproposeddouble-layermembraneconceptoffers significantbenefitsintermsoftoxinremovalincomparisontoconventionaldialysis.Asso, themainachievementofthedevelopedmodelisthatitmayserveastoolforthefurther improvementoffunctionalizedmembraneintermsoftoxinremovalandoptimizationof processconditions.

1. Introduction

Hemodialysisisalife-sustainingtreatmentthatpatientsundergowhen theirkidneysmalfunction.Eventhoughthistechniqueisconstantly beingimprovedformorethanfourdecadesitisstilloneofthemajor healthcareproblemswithhighmortalityandmorbidityofthepatients. Highmortalityratesareusuallyattributedtoincompleteremovalofthe bloodtoxinsduringthedialysistreatment(Dobreetal.,2013;Meyer

etal.,2011;Vanholderetal.,2015).Thetreatmentprovidesadequate

removalofonlythesmallwatersolublemolecules,suchasureaor

Correspondingauthor.

E-mailaddress:caussera@chimie.ups-tlse.fr(C.Causserand).

creatinine.However,largersolutes,referredtoasmiddlemoleculesand theprotein-boundtoxins,haveinadequateclearanceevenafterthe developmentofmorepermeablehigh-fluxhemodialyzers(Elootetal.,

2012;Luoetal.,2009).

Asthisextracorporealtreatmentisprimarydrivenbydiffusion, theuseofhighvolumesofpuredialysateliquidisnecessaryto maxi-mizetheconcentrationgradientsacrossthemembrane(Waltheretal., 2006).Largevolumesofhigh-qualitydialysatesolutionmakesuchan approachnotonlyexpensive,butalsochallengingforcountrieswith scarcewaterresources.Besides,itwasdemonstratedinvariousstudies

http://dx.doi.org/10.1016/j.cherd.2017.08.017

(3)

Nomenclature

a Specificsurfaceareaoftheadsorbent(m2per

m3ofmixedmatrixmembrane)

c Concentration(molm−3)

d Diameter(m)

D Diffusioncoefficient(m2s−1)

div Divergence(–)

j Molarfluxdensity(molm−2s−1)

J Convectiveflowthroughthemembrane(ms−1)

k Heterogenicadsorptionconstant(ms−1)

K Pseudomasstransferconductance(ms−1)

l Lengthofthefiber(m)

m Mass(kg)

M Molecularweight(gmol−1)

N Numberoffibers(–)

Pe Pecletnumber(–)

q Quantityofadsorbedspecie(mgpermgof mem-brane)

r Rateofadsorption(molm−3s−1)

Re Reynoldsnumber(–)

s Sinkterm(molm−3s−1)

S Membranesurfacearea(m2)

Sc Schmidtnumber(–)

Sh Sherwoodnumber(–)

t Time(s)

V Volumeoffluid(m3)

Greekletters

ı Thicknessofthedomain(m) 1 DeterminantdefinedinEq.(5)(–)

f Thielemodulus(–)

Subscripts

0 Initialtimepoint

a Aftertheadsorptivelayer

ads Adsorption

b Beforetheadsorptivelayer

conv Convection d Dialysate diff Diffusion e External f Feed h Hydraulic

in Attheinletofparticulardomain

l Lumenofthemembrane

max Maximal

out Attheoutletofparticulardomain

s Shellsideofthemodule

t Timedifferentfrom0

(Barretoetal.,2009;Buschetal.,2010;Liabeufetal.,2011;Rajetal.,2000)

thatpoorremovalofsomeuremictoxins(i.e.b-2-microglobulin),leads tootherlong-termhemodialysisrelatedcomplications.Thus,thereis anurgentneedofnewimprovementofdialysisinordertoovercome highlighteddrawbacks.

Anovelspecificapproachtomaintainthebeneficialhighgradients acrossthedialysismembranealongwithfacilitatedtransportof ure-micsoluteswasdiscussedbyMeyeretal.(2007).There,additionof thesorbenttothedialysatesolutionresultedinsignificantincrease ofremovalratesofvariousprotein-boundtoxinsevenwithouthigh dialysateflowrates.Suchresultsdemonstratedthegreatopportunities ofcombiningthebenefitsofadsorptionandfiltration.Morerecently,

someoftheauthorsofthisworkdevelopedandprovedtheconceptof thedoublelayermixedmatrixmembranes(Pavlenkoetal.,2016;Tijink

etal.,2013,2012).Thesemembranesconsistoftwolayers:(1)amixed

matrixlayer,whereactivatedcarbonparticlesareincorporatedinside aporouspolymermatrix;(2)aparticle-freeselectivelayerproviding hemocompatibilityandselectivity.Suchdesignmakesitpossibleto gainthebenefitsoftheadsorptionanddiffusioninonestep.In partic-ular,membranesinbothflatandhollowfiberdoublelayergeometries showedanexcellentremovalofsmallandprotein-boundtoxinsfrom humanplasmagivinghighpromisefortheirfurtherdevelopmentfor dialyticapplications.

However,thecontributionofthemixedmatrixlayertotheremoval of the uremic toxins, as well as the influence of the membrane characteristicsandprocessconditions needtobequantifiedonan experimentalandon atheoreticalpoint ofview.Itisforexample important toknow howto optimize thetransferthroughamixed matrixmembrane.Totacklethisquestion,inthiswork,wedeveloped amodelwithvariousparametersandtheirphysicalrelationships,in ordertodescribetheoverallperformanceofthemembranetowards removalofsmallandmiddle-sizeduremictoxins.Theobjectiveofthis modelistoofferananalyticalandnon-numericalproblemresolution andtogivetheopportunitytooptimizethemembranepropertiesand processconditions.Theupcomingsectionsareorganizedinthe follow-ingmanner:first,theselectedassumptionsalongwithmathematical derivationofrequiredequationsaredescribedinordertoformulate themodel.Secondly,thefabricationandcharacterizationof function-alizeddouble-layermembranesispresented.Then,thepredictionof solute concentrationprofilesacrossthemembranewithuseofthe modelisdemonstrated.Finally,thedevelopedmodelisvalidatedby thecomparisonwiththeexperimentalresults.

2.

Model

development

A modelispresentedtodescribethecouplingoftransport phenomena(advection,diffusionandadsorption)by describ-ingthemixedmatrixmembranesbycompositelayers(Section

2.1).Thisonedimensionmodelallowsdeterminingthe con-centrationprofileandthemassfluxacrossthemembraneand thentheefficiencyimprovementduetotheadsorbent(Section

2.2).InalastSection2.3,thismodelforthetransferthrough themembraneiscombinedwiththemassfluxbalanceson thebloodanddialysatesideinordertodepicttheclearance variationalongdialysis.

2.1. Massbalanceinthelayerscomposingthemixed matrixmembrane

Thegeometryofthesystemwasdictatedbythenovelconcept ofbloodfiltration,whichemploysthemembranes functional-izedwithadsorptiveparticles(Tijinketal.,2012).Initsway through the membrane, atoxin present in the blood (feed stream)firstpassesthroughtheparticle-freelayer(PFL)and thenthroughthemixedmatrixlayer,whereitcanadsorbon thedispersedadsorptiveparticlesasdepictedinFig.1.The effectoftheflowparalleltothemembraneinthefeed(blood) anddialysatesidearemodelledwithboundarylayers thick-ness. Atthe end, afour-layers system (Fig. 1)describe the mixedmatrixmembrane.

Themodelofsolutetransportthroughthissystemrelies onfollowingassumptions:

1) Superficialresistancesareaccountedthroughanaveraged boundarylayerthicknessalongtheYaxis(Fig.1);

2) Steady state for the transfer is considered through the membrane;

(4)

Fig.1–Theschematicrepresentationofthesystemgeometry(dotsinthefeedrepresentthetoxinmoleculespresentinthe bloodstream).1—feedsideboundarylayer,2—particle-freemembrane,3—mixedmatrixmembrane,4—dialysate boundarylayer.

3) Cartesiancoordinatesareusedtodescribeaplanar mem-branesorhollowfiberswhentheboundarylayerthickness aresmallcomparedtothefiberlumen;

4) Fluidsinthebloodanddialysatecompartmentsare New-tonian;

5) Adsorptiveparticles are consideredtobeuniformly dis-persedinsidethepolymericmatrix;

6) Adsorptionisconsideredasfirstorderheterogeneous reac-tion. Dealing with the adsorption mechanism, such a kineticconditioncancorrespondtothesystemwherethe adsorptivecapacityislargecomparedtotheamounttobe adsorbed.

7) Thetransferinsidetheadsorptiveparticlesisnot diffusion-limited.Theparticlesaresmallenoughtoavoida diffusion-controlledadsorptioninsidetheparticles.

8) Thesoluteisconsideredsmallenoughforitsrejectionby themembranecanbeconsideredtobezero.Hence,the par-titioncoefficientisthentakenequaltoone.Inthecaseof futureapplicationsinwhichthesolutewouldnotbesmall comparedtotheporesize,themodelcouldbeeasily mod-ifiedtointegrateapartitioncoefficientbetweenthebulk andthemembraneinordertotakeintoaccounttheeffect ofporeontheselectivity.

Themasstransportofsoluteacrossthemembraneis con-ventionallydescribedbythe genericcontinuityequation in theformofEq.(1):

∂c

∂t+div (j) =±s (1)

wheresisthesinktermwhichrepresentsheretheadsorption ofthepermeatingsolute.

Asthemodelisbeingdevelopedforthesteadystate con-dition,thetimederivativeofthesoluteconcentrationisnil here.Besides,analyzingthegeometryofthemodelonemay distinguishtwotypesofregionsdependingonthe possible toxinremovalmechanisms:oneswithconvectionand diffu-siononly(parts1, 2and 4inFig. 1), andone layerwhere, inadditiontothesetwomechanisms,adsorptionalsotakes place(part3inFig.1).AtsteadystateandforCartesian coor-dinates,thetotalmolarflux,j,intheregionwithoutadsorbent

Fig.2–Schematicrepresentationofformulatedsystem withthekeyparametersforthedifferentlayersrepresented inFig.1.

(s=0)isconstant(Eq.(1))andhasadiffusiveandanadvective contributions(Eq.(2)):

j=−Ddc

dx+Jc (2)

wherecisthelocalsoluteconcentrationgradient,xisthe dis-tancealongthedirectionnormaltothemembranesurface,D

isdiffusioncoefficient,andJisconvectiveflowthroughthe membrane.

Ifassumingagivenconcentrationattheinletandthe out-let, theintegrationofEq.(2)givesthemassfluxacrossthe regionsofthesystemwithoutadsorptiveparticles.

j=J



c2−c1e Jı D



1−eJıD (3)

wherec2andc1standfortheconcentrationsattheoutletand

(5)

TheapplicationofEq.(1)totheMMM layerresultsina differentialequation(Eq.(4)),whichapartfromdiffusiveand convective terms,also accountsfor the presenceof solute adsorption: Dd 2c dx2−J dc dx−akc=0 (4)

where a stands for specific surface area of adsorbent in m2perm3 ofmixedmatrix membraneandkisheterogenic

adsorption constant. The Eq.(4) is integrated through the MMMlayerbyconsideringasboundaryconditionsfixed con-centration,c2andc3attheinletandtheoutletofthelayers

respectively (Fig. 2). Thedetails ofthe integrationare pre-sentedintheSupplementaryinformation1.ItresultsinEq.

(5),whichdescribesthesoluteconcentrationatanydepth(x) insidetheMMMlayer:

c=c3 e

!

Pe3 2

!

x ı3−1



sinh

!

x1 ı3



sinh (1) −c2 ePe32 ı3xsinh

!

1

!

x ı3−1



sinh (1) (5) where 1=

p

Pe2 3+4ϕ2 2 ; Pe3= Jı3 D3; ϕ=

q

ak

D3ı3.Pe3 is the Peclet

number(ratioofadvectionoverdiffusion)intheMMMlayer (part3inFig.1)andϕistheThielemodulusrepresentingthe ratioofthereactiononthediffusionrateinsidetheMMMlayer. ThemolarfluxbeforetheMMMlayer(jb),andafter(ja)are

determinedbywritingthemolarfluxEq.(2)attheinletx=0 andtheoutletx=ı3boundariesrespectively:

jb=c2



D31cosh (1) ı3sinh (1) +D3Pe3 2ı3



−c3D3e −Pe3 2 1 ı3sinh (1) (6) ja=c2 D3e Pe3 2 1 ı3sinh (1) −c3



D31cosh (1) ı3sinh (1) −D3Pe3 2ı3



(7) Finally, the solute molar flux density before this layer is greater thanthe oneafter, jb>ja; thedifferencebeing

rela-tivetotheadsorptionrateofthepermeatingspeciesinside theMMM.Summarizingtheaforementionedmodel formula-tion,theschematicdescriptionoftheentiresystemwithits keyparameters(interfaceconcentrationsandfluxes)involved ispresentedinFig.2.

2.2. Globalmassfluxacrossthemixedmatrix membrane

Themodelisestablishedbyconsideringthecontinuityofthe molarfluxbeforeandaftertheMMMlayer.Thefollowing sys-temoffiveequationswithtwounknownmolarfluxdensities

jbandja,andthreeunknownconcentrationsattheinterfaces

ofdomainsc1,c2andc3hastobesolved:

jb=cfK1a−c1K1b; jb=c1K2a−c2K2b; jb=c2K3a−c3K3b; ja=c2K3c−c3K3d; ja=c3K4a−cdK4b; (8)

Theexpressionsforeachpseudomasstransferconductance (Ki,j)aredeterminedfromthewritingofthedifferentialmolar

balancespresentedintheprevioussection.Theexpressions fortheseconductancesaregivenintheAppendixA.

The solution for the concentration of the permeating speciesontheinterfacesadjacenttotheadsorptivelayerc2

andc3aregivenbelow:

c2= K1aK2a(K4a+K3d) cf+K3bK4d(K2a+K1b) cd (K3a(K2a+K1b) +K1bK2b) (K4a+K3d) −K3b(K2a+K1b) K3c (9) c3= K1aK2aK3ccf+(K3a(K2a+K1b) +K1bK2b) K4dcd (K3a(K2a+K1b) +K1bK2b) (K4a+K3d) −K3cK3b(K2a+K1b) (10)

CombiningtheselasttwoexpressionswithEq.(6)andEq.(7), enablesdeterminingthemolarfluxuphillanddownhillthe MMMlayer.

Thepropertiesofthelayers(solutediffusioncoefficients andthickness)andtheoperatingconditions(rateofconvective flow,adsorptionconstantandsoluteconcentrationonboth sidesofamembrane)providethepossibilitytoanalyzethe transferthroughthesystemataparticulartimeofthedialysis process.

Furthermore,themodelenablesanalyzingtheimpactof the adsorptive particles on the local solute concentration insidetheMMM.Thetransferefficiencycanbecomparedwith the pure diffusion casefor different scenariossuchas: (a) absenceofconvection(soluteremovaloccursonlyby diffu-sionandadsorption);(b)absenceofadsorption(presenceof diffusionandconvection),and(c)absenceofbothconvection andadsorption.Thebenefitofthefunctionalizedmembrane comparedtoaconventionalsinglelayermembraneofsame thicknesscanbedefinedthroughasolutetransport enhance-mentfactor(STEF):

STEF= jb jdiff

(11)

Inpractice,STEFisdefinedasaratioofmolarfluxdensity (jb)obtainedinoneoftheaforementionedscenariostothe

molarfluxdensityobtainedwhenonlydiffusivetransportis involved(jdiff).Thediffusivecaseisusedasareferenceof

clas-sicaldialysisandthusSTEFdemonstratestheintensification ofthesoluteremovalduetothecontributionofconvection or/andadsorption.

Ingeneral,membranefoulingphenomenaduetoprotein adhesiononthemembrane,aswellas,otherphenomenasuch asbloodcoagulationandthrombusinthemembranemodule canalsoplayaroleonthesolutetransferwhenworkingin realconditionswithblood.Suchphenomenawouldinducean additionalsuperficialmasstransferresistancethatcouldbe accountedforinanimprovedversionofthemodel.TheMMM arespecificallydesignedtominimisethesephenomena.The particlefreemembranelayerwhichisindirectcontactwith blood,ismadebyPES/PVPpolymerblend,alsousedinthe developmentofthecommercialdialysismembranesandhas verygoodbloodcompatibility.Infact,ourrecentstudyshowed thattheMMMcanachievesuperiorremovalofproteinbound toxinsfromhumanplasmacomparedtocommercialdialysers withoutfoulingphenomena(Pavlenkoetal.,2016)

(6)

Table1–Spinningconditionsofthefiberpreparation.

Membrane1 Membrane2 Innerlayerpumpingflow

(mL/min)

0.4 0.9 Outerlayerpumpingflow

(mL/min)

1.6 3.2 Borepumpingflow(mL/min) 2.8 2.7 Borecomposition Demiwater 5wt%PVPin

ultrapure water Airgap(cm) 10 – Pullingspeed(m/min) 3.5 7 ContentofPVPinthedope

solutionforselectivelayer (wt%)

7 10

2.3. Clearanceanddialysismodelling

Themodelpresentedintheprevioussectionhelpsto deter-mine the mass flux for given conditions of concentration acrossthemembrane.Thismassfluxdefinestheclearance foragiventimeofthedialysis.Inordertodepictthewhole dialysisprocess,themassflux(Eqs.(6),(8)and(10))hastobe solvedtogetherwithmassbalancesonthefeedcompartment andonthedialysatecompartment.Theglobal(Eqs.(12)and

(13))andthepartialmassbalance(Eqs.(14)and(15))forthe feedandthedialysatesideare:

dVf dt =−JS (12) dVd dt =JS (13) d

!

cfVf



dt =−jbS (14) d (cdVd) dt =jaS (15)

wherecfandcdstandforthesoluteconcentrationinthefeed

anddialysate,Sisthefiltrationsurfacearea,Vf andVd are

volumesoffeedanddialysate.

If consideringthat the transient characteristic time for themassfluxestablishmentisverysmall comparedtothe order ofmagnitudeofthe dialysis time, themodel can be solvedforpseudosteadystateconditions(consideringa suc-cessionofsteadystateforthe transfer).Theintegrationof Eqs.(12)–(15)combinedwiththemassfluxgiveninthe previ-oussectionenablesthedeterminationofthevariationofthe soluteconcentrationinthebloodandthedialysateandthen theclearancekinetics.

3.

Validation

experiments

3.1. Membranefabricationandcharacterization

Doublelayermixedmatrixmembraneswereprepared accord-ingtoamultistepprocedure.Fortheselectivelayer,apolymer solution was prepared by dissolving 15% polyethersulfone (PES,UltrasonE6020,BASF,Germany) and polyvinylpyrroli-done(PVP,K90,Fluka,Germany)ofdifferentquantity(details in Table 1) in ultra-pure N-methylpyrrolidone (NMP, Acros Organics,Belgium).Adsorptivelayerwasbasedonasolution containing14%PESand1.4%PVPdissolvedinNMP.Activated

Table2–Spinneretspecifications.

Membrane1 Membrane2 Innerdiameterneedle(mm) 0.16 0.26 Outerdiameterneedle(mm) 0.26 0.46 Innerdiameterfirstorifice(mm) 0.46 0.66 Outerdiameterfirstorifice(mm) 0.66 0.96 Innerdiametersecondorifice(mm) 0.86 1.66

Table3–Uremictoxins.

Type Specificproperties Mainrepresentatives Unboundsmall <500Da Urea,creatinine Unboundmiddle 500Da–60kDa Leptin,endothelin,

b2-microglobulin

Proteinbound Capableofprotein binding

Indoxylsulfate,p-cresol

Table4–Characteristicsofb2-microglobulinand a-lactalbumin.

Protein Molecularweight,kDa pI b2-Microglobulin 11.8 5.7

a-Lactalbumin 14.2 4.5

carbon(AC)withaveragediameterof27mmwasadded gradu-allytothepolymersolutiontoobtainafinalconcentrationof 60%byweight.Bothsolutionsweredegassedfor48hbefore thespinning.

Twodifferentspinningconditionswereutilizedaimingto obtainmembranesofdifferenttransportproperties.Thefirst batchofmembranes(furtherdenoted asMembrane1) was formed via immersion precipitation method at the condi-tionssummarizedinTable1.Thesecondbatchofmembranes (hereondenotedasMembrane2)wasfabricatedaccordingto theproceduredescribedbyTijinketal.(2013)withthe condi-tions,whicharealsopresentedinTable1.

Table2describesthespecificationofusedspinnerets. The membranes were cleaned by ultra-pure water to removetheremainingsolvent.Thefiberswerethendriedat 37◦Cfor2handsubsequentlywerefracturedinliquid

nitro-gen.Thesamplesweredriedundervacuumat30◦Candgold

sputteredusingaBalzersUnionSCD040sputtercoater (Oer-likonBalzers,Balzers,Liechtenstein). Finally, sampleswere imaged usingaJEOL JSM-5600LVScanningElectron Micro-scope(JEOL,Tokyo,Japan).

Dryfiberswerecutintopiecesof15cmeachandthenglued intomodules(innerdiameterof4mm)of3fiberseach,and 10cminlength.Clean-waterfluxwasthenmeasuredforeach modulewithuseoftheset-up(Fig.3fromPavlenkoetal.,2016) describedindetailinthefollowingsection.Forthis,modules wereinitiallypre-pressurizedat2barfor1handthentested attransmembranepressuresof0.5,1.0,1.5and2.0bar,with ultrapurewater.Themassofcollectedpermeatewas moni-toredcontinuously.

3.2. Adsorptionkineticsinstaticmode

Atthisstage,theknowledgeoftheadsorptivecapacityofthe carbonparticlesisanimportantissue.Experimentswere con-ductedtodeterminethekineticsofadsorptionofcreatinine and a-lactalbumin onto the membrane. These two solutes havebeenchosenasmodelstoillustratethepotentialitiesand thelimitationofmixedmatrixmembranesintheremovalof unboundsmallandmiddleuremictoxins(Table3).

(7)

Fig.3–Schematicrepresentationoftheappliedset-up(fromPavlenkoetal.,2016).

Creatinine was selected as a model of unbound small toxins group when a-lactabuminwas selected as a model compound for unbound middle-sized toxins such as b2

-microglobulin. Similarities between the molecular weight andtheIsoelectricpointofbothproteinsjustifythischoice (Table4).

Forthepurposeofkineticsofadsorptionstudy,fivepieces ofhollow-fibermembranesof5cmeachwereplacedin25mL of0.1g/Lsolutionofcreatinineora-lactalbumininphosphate buffersolution(PBS).Thesolutionwasstirredtoavoid trans-portlimitationsbetweensoluteandsurfaceofadsorptivelayer ofthemembrane.Thedecayofsoluteconcentrationwithtime wasmonitoredbysamplingof0.5mL/sampleevery3minfor furtheranalysisbyUV-spectroscopy.Thetimingofsample col-lection wasadjustedso astolimit thetotal withdrawalof initial volumeat10%.A lineardecrease ofthe solute con-centrationintheinitial stageoftheprocess wasobserved. Theinitialslope ofthe concentrationdecreaseprovides an informationontherateofadsorptionwhichmaybeusedin thecalculationoftheproductoftheadsorptionconstantand specificsurfaceareaofadsorbent(ak).

3.3. Experimentalstudyoftheclearanceofsmalland middlesizedsolutes

Theexperimentalanalysisoftheclearanceofsoluteswiththe dual-layermembraneswasconductedwithuseoftheset-up (ConvergenceB.V.,Enschede,TheNetherlands)presentedon

Fig.3.

Briefly, the experimental set-up consists of2 peristaltic pumps, 4pressure detectors,2 back-pressure valvesand 2 reservoirsforthemodelsolutions(Pavlenkoetal.,2016).All thepartsoftheset-upareconnectedviaPTFEtubingsto mem-branemodulewhichhasinletsandoutletsforthefeedand dialysatesolutionsthatarepumpedincounter-current con-figuration.Theflowratesofthefeedanddialysatesolutions arecontroledbytheperistalticpumps,whileconstantTMPis generatedbytheback-pressurevalves.Pressureinthesystem ismonitoredby4pressuredetectorswhicharelocatednear themembranemodule’sinletsandoutlets.Compartmentsfor themodulesolutionsarepositionedonthebalancestocontrol themassofthesystemovertime.

Forthevalidationexperiment,PBS-based0.1g/Lsolutions ofcreatinine(Sigma–Aldrich,France)asamodelmoleculefor the small uremic toxin; and a-lactalbumin (Sigma–Aldrich, France)asamodelcompoundforthemiddle-sizedmolecule wereprepared,andwerefurtherusedasfeedsolutions.The puresolutionofPBSwasusedasthedialysate.

Validation experiments were conducted using 50mL of thefeedanddialysatesolutions.Moreover,wefollowedthe convention that the flow rate of the dialysate has to be twiceashigh astheflowrateofthefeed stream(Henrich, 2009).Assuch,thefeedflowratewassetas5mL/min,while the dialysateflowwasequalto10mL/min.Inaddition, the feed solution wasflown insidethe hollowfiber membrane lumen,whilethedialysatewaspumpedthroughtheshellside ofthemodule.For experimentsindiffusivemode (conven-tionaldialysis),thetransmembranepressure(TMP)waskept around0bar,meaningthatthetoxinremovaldrivingforcewas generatedonlybythedifferenceofitsconcentrationacross themembrane.Incontrary,anothersetofexperimentswas conductedwithutilizationofbothdiffusionandconvection (hemodiafiltrationmode).TheretheTMPwassetat0.17baror 0.5barindifferentexperimentsinordertoinducethe convec-tivetransportthroughthemembrane.Thesepressureregimes werechoseninorderto,ononehand,avoidthenecessityto addmorefeedtothesystemduringtheexperiment,andon theotherhand,togenerateaconvectiveflowwitha notice-able impacton the overallsolute removal.Throughout the experiment,theweightofthefeedanddialysatesolutionswas continuouslymonitored.Thedecreaseofthefeed(increaseof thedialysate)masswasconsideredtobeduetothepresence ofconvection.Samplesof1mLweretakenfromboth compart-mentsatthesametimeandtheconcentrationofcreatinine and a-lactalbumin wasmeasured byUV-spectroscopy (Var-ian,Cary300ScanUV–visibleSpectrophotometer)at25◦Cina

10mmquartzcuvetteat230nmand280nm,respectively.The increaseinsoluteconcentrationinthedialysatewasascribed tothediffusivetransport,incaseoftheexperimentconducted in diffusive mode (conventional dialysis) or to a combina-tionofdiffusionandconvectionforexperimentsperformed in hemodiafiltrationmode. In parallel, based on mismatch betweentheamountofsolutedisappearedfromthefeedside and foundinthedialysatethe quantityofsoluteadsorbed

(8)

Fig.4–SEMimagesofthedual-layerMMM(Membrane2:-a-and-b-;Membrane1:-c-,-d-and-e-). insidethe membrane was defined. Finally, the total solute

removalwasconsideredtobethesumofdiffusive/convective and adsorptive removals. Each validation experiment was conductedthreetimes.Aftertheexperiments,themodules weredriedinairandtheeffectivesurfaceareaofmembrane insidethemodulewasmeasured.

4.

Results

and

discussion

4.1. Membranefabricationandcharacterization

Fig.4demonstratesthestructureandthemorphologyofthe membranes.

Fig.4comparestheimagesoftheMembrane2(Fig.4a,b) andMembrane1(Fig.4c–e)discussedinthisstudy.Forboth membranes,onecandistinguishtheinnerparticle-freeregion witha denserskin layeron the lumen sideand the outer particle-loaded (MMM)layer. In both cases, the two layers are well attached, the MMM layerismore porous and the particle-freeinnerselectivelayer,mainlydeterminestothe

Table5–Geometricaldimensionsofthefabricated fibers.

Membrane1 Membrane2 Thicknessoftheinnerlayer,mm 21 49

ThicknessofMMM,mm 47 111 Lumendiameter,mm 450 669 Externaldiameterofthefiber,mm 586 984

masstransport resistanceofthe entiremembrane. Forthe Membrane 1, the particle freeinner hasa denseskin (see

Fig. 4-e-) andarather fingerlikepore morphologytowards theMMMlayer.FortheMembrane2,theinnerparticlefree layerhasoverallspongelikemorphologyandislessdense(see

Fig.4-b-).Forbothmembranes1and2,SEMimagessuggest that theactivatedcarbonparticles are quiteuniformly dis-tributedinsidethepolymericmatrix.Ingeneral,Membrane 1ismuchthinnerthanMembrane2.Thedimensionsofthe fibersaresummarizedinTable5.Thesevalueswerefurther

(9)

Table6–Valuesofreactionkineticparameter,ak,for varioussystems“Membrane-solute”.

Membrane1 Membrane2 Creatinine 0.152s−1 0.082s−1

a-Lactalbumin –a 0.011s−1 a Wasnotdetermined,becauseMembrane1wasimpermeablefor

a-lactalbumin.

usedforsimulationsbasedonthemasstransfermodel,which hasbeendescribedhereabove.

ThecleanwaterfluxtestsrevealedthattheMembrane1 issignificantlylesspermeable thanM2:2.5±1.1L/m2/h/bar

vs58.4±9.3L/m2/h/bar(Tijinketal.,2013)respectively,

con-sistent with the SEM observations. The integrity of the membranes was notaffected duringthe water permeance testing, meaning that the fabricated membranes possess sufficientmechanicalstrengthforthedialysisand hemodi-afiltrationexperiments.

The productof heterogeneous adsorption constant and specific surface area of activated carbon (ak) is refered to as a reaction kinetic parameter hereafter, for both mem-branetypeswasdeterminedwithrespecttocreatinineand a-lactalbumin(Table6).

AccordingtoTable6, thereactionkineticparameter,ak, parameter forthe adsorptionofcreatinine is almost twice higherforMembrane1thanforMembrane2.Sincethe mem-brane material and the adsorptive particles are the same forbothmembranes,thedifferenceinadsorptiveproperties betweenthesemembranesmay beattributedtothe differ-ent accessibility ofactivatedcarbon particles embeddedin thepolymermatrix.Inparallel,thecomparisonofadsorptive propertiesofMembrane2withrespecttocreatinineand a-lactalbumindemonstratesthat theadsorptionofthe latter issignificantly lower than the former (only 0.011s−1). This

maybeattributedtoeitheradifferenceinsteric hindrance or connected to the different affinity of activated carbon particlesforcreatinineanda-lactalbumin.Finally,various per-meationtrialswithMembrane1revealedthatitiscompletely impermeablefora-lactalbumin;therefore,theexperimental estimationof“ak”forthiscasewasnotperformed.

4.2. Doublelayermembranetransfermodeling

ToperformthemodellingofthetransferthroughtheMMM, the boundary layer thicknesses (ı) have to be estimated. Sincethe validationofthe model wasperformed withthe hollow-fibermembranes placedinthe module,twosets of hydrodynamiccorrelations,forlumenandshellsides,were used.Theflowratesoffeedanddialysatestreamsweretaken from thefiltration theset-up utilizedduringthe validation experiments.Theestimationoftheconditionsinthelumen

sidewasdoneusingtwofollowingcorrelations(Yangetal., 2013): Shl=2.66Re0.25l Sc0.33l



d hl l



0.33 ;ıl= dhl Shl (16)

whilethequantificationofthehydrodynamicconditionsin theshellsidewasdonebyapplyinganothersetofequations (Yangetal.,2013): Shs=1.25Re0.93s Sc0.33s



dhs l



0.93 ; dhs =

!

d2 s−Nd2e



(ds+Nde) ; ıs= dhs Shs (17)

wheredhstandsforthehydraulicdiameter,Nisthenumber

offibers,de and ds are the externaldiameter ofthe

mem-brane and of the module (shell) respectively. The selected correlationsareassumedtobeapplicable,astheywere devel-opedforhollowfibermodulesoperatedinlaminarconditions (R<2000),whileinourexperimentsRe intheshelland the lumensidewasbelow100.

Thevalidationexperimentswereconductedusingfeedand dialysateflowratesof5mL/minand10mL/min,respectively. Sincealowconcentrationofsolutewasusedforthe prepa-ration of all feed solutions and the purephosphate buffer wasusedasthedialysate,theviscosityanddensityofboth solutions were assumed to beequalto the ones ofwater: 10−3Pasand 1000kg/m3 respectivelyfor the calculationof

theboundarylayerthicknesses.Basedontheaforementioned hydrodynamiccorrelations,thethicknessesoftheboundary layersinthelumenandshellsidesweredetermined(Table7). Theboundary layerthickness inthe creatinine removal experiments differsincaseofMembrane1and Membrane 2. This difference is ascribed to the difference in mem-brane dimensions (see Section 4.1). Similarly, due to the differencebetweentheouterdiametersofbothmembranes, the boundary layerthickness on the shell side was found smallerforMembrane1.Similarconclusionsarefoundforthe a-lactalbuminremovalexperiments.Thelumenboundary lay-erswerefoundtobe17.9mmand23.8mm,whiletheshellside boundarylayersare87.1mmand124mmforMembrane1and Membrane2,respectively.

AccordingtodatapresentedbyShawetal.(2009)the diffu-sioncoefficientofcreatinine inwater atroomtemperature is 9×10−10m2/s,whileKim et al. (2013) used the valueof

5.31×10−10m2/s.Therefore,hereweusedtheaveragevalue

of7×10−10m2/s.Tothebestofourknowledge,thediffusion

coefficientofa-lactalbuminwasnotreportedintheliterature. Thus withuse ofEinsteinequation and moleculeeffective radius reported by Fu et al. (2005) it was calculated to be equalto1.07×10−10m2/s.Finally, forthe sakeofsimplicity

weassumedthatthesolutediffusioncoefficientisthesame intheallregionsofthesystem.

Table7–Boundarylayerthicknessesinthevalidationexperiments.

Membrane1 Membrane2 Experimentwith

creatinine

Lumenboundarylayer,mm 30.7 45.3 Shellsideboundarylayer,mm 197 245 Experimentwith

a-lactalbumin

Lumenboundarylayer,mm 17.9 23.8 Shellsideboundarylayer,mm 87.1 124

(10)

Fig.5–Soluteconcentrationprofilesacrossthemembranedependingontheremovalmechanismsinvolved.(BBLstandsfor bloodboundarylayer,PFL—particlefreelayer,MMM—mixedmatrixmembrane)(ImageA—diffusionvs

diffusion+adsorpsion;imageB—diffusion+convectionvsdiffusion+convection+adsorption).

Table8–Inputparametersappliedtoproducecreatinine concentrationprofileacrossMembrane2.

Nameofinputparameter Value Bloodboundarylayerthickness 5×10−5m

Particle-freelayerthickness 4.9×10−5m

MMMthickness 1.11×10−4m

akparameter 0.082s−1

Solutediffusioncoefficient 7×10−10m2/s

Thicknessofdialysateboundarylayer 2.3×10−4m

Convectiveflowratethroughthemembrane 1.1×10−6m/sa

Soluteconcentrationinthebloodside 0.885mol/m3

Sievingcoefficient 1

a Experimentallymeasuredaverageconvectiveflowrateoverthe

filtrationprocess.

Theparametersusedforoursimulationshavebeen gath-eredinTable8.Inprinciple,theseparametersrepresentthe filtrationofcreatininethroughtheMembrane2.

The predicted solute concentration profiles across the membranewithandwithoutadsorptionhavebeenplottedin

Fig.5,intheabsenceofsoluteinthedialysatestream. According to Fig. 5the presence ofadsorptive particles favorsthereductionofsoluteconcentrationinsidethe mem-brane.Themolarfluxofsolutethroughthemembraneisthen moreimportant:onecannoteasteeperconcentrationprofile inthebloodboundarylayer(BBL).Thiseffectisattributedto theadsorptionofafractionofthepermeatingspeciesbythe particlespresent inthe MMMthatisacceleratingthe mass transfer.Quantitativeexpressionofsuchphenomenaisgiven bythesolutetransferenhancementfactor(STEF)parameter providedbythemodel(Table9).

FromTable9onemayconcludethatfortheselectedset ofinputparameters,theadditionofconvectiveflowtosolely diffusion-drivensoluteremovalresultsina1.39timesgreater

Fig.6–Soluteconcentrationprofileacrossthemembrane andfeedboundarylayeratvariousratesofconvective flows.

removalrate,whileadsorptionprovidesaSTEFof2.21. More-over, the combination ofall threeremoval mechanisms is characterized byaSTEFof2.58,meaningthatcomparedto apurediffusivetransfer,thecompletesystemallowstogain morethan2.5timesaflowofsoluteoutofthefeed(blood).

Inparallel,theconcentrationinsidethemembraneaswell as the molarfluxacross the membrane dependon hydro-dynamics on the feed side. Fig. 6 shows the influence of convectionflowrate(Pecletnumber)onthesystem,where dif-fusion,convectionandadsorptionareemployedinthesolute removalfromthefeedstream.

As it can be seen in Fig. 6, at lower values of Pe the solute concentration in the MMM is significantly different fromtheoneinthebulk.However,atPe>1,whenconvection becomes dominant over diffusion, the solute is more

effi-Table9–Solutetransferaccelerationforvarioussystemconditions.

Soluteremovalmechanismsinvolved Molarfluxdensity,ja Solutetransfer

enhancementfactor Diffusion 1.41×10−6molm−2s−1 1a

Diffusionandadsorption 3.12×10−6molm−2s−1 2.21

Diffusionandconvection 1.95×10−6molm−2s−1 1.39

Diffusion,convection,andadsorption 3.63×10−6molm−2s−1 2.58 a Takenasreference.

(11)

Fig.7–Resultsofvalidationexperiment1vstheoretical prediction(continuouslinesarepredictedevolutionof soluteremoval,whiledotsrepresenttheexperimental results).

cientlytransferredtowardstheadsorptivelayer,andthebulk andmembraneconcentrationsareclosetoeachother.Inorder tokeepaPelargerthan1,theconvectiveflowof1.4×10−5m/s

orgreaterhastobegenerated.Ontheotherhand,an exces-siveconvectionrateleadstothereducedimpactofadsorption onthesoluteremoval.Therefore,athighPeonedoesnottake advantageofthepresenceoftheadsorptivecapacityofthe membrane.

4.3. Experimentalresultsvsmodelling

Afirstexperimentwasconductedinthediffusivemodewith useofcreatininesolutionandMembrane1.Theexperimental resultsarecomparedtothemodelinFig.7.

AccordingtoFig.7thediffusivecurveisideallypredicting theremovalofcreatininebydiffusion.Bothexperimentaland theoreticalresultsdemonstratethatduringafour-hour exper-imentatgivenconditions,onemayachievediffusiveremoval of0.6mgofcreatinineinourconditions.Theslightdeviation ofdiffusivecurvefromlinearityisaresultofdecreaseinsolute concentrationinthefeedandincreaseinthedialysate,which leadstothereductionofthedrivingforceacrossthe mem-brane.Incontrary,theadsorptioncurvefitstheexperimental dataonlyintheearlystageoftheprocess.Thisobservation may beexplainedbythe saturationofadsorptiveparticles, whichsuggeststhepresenceoflimitingmembraneadsorption capacity.Inourexperimentthiseffectstartstobenoticeable afterhalfanhourofexperimentandultimately reachinga membraneadsorptivecapacityof0.34mgor,moreprecisely, 26.27mg ofcreatinine per 1mgof membrane. Therefore, a modificationofthemodelwiththenewfittedinput parame-ter“Membranelimitingadsorptioncapacity”(MLAC)wasdone aimingtoaccountfortheactivatedcarbonparticlessaturation (Fig.8).Inordertointroducethisparameterinthemodel,the followingconditionswereapplied:

(

q<qmax, r=akc q≥qmax, r=0

(18)

Henceuntiltheamountofadsorbedspecies(q)isinferior tothemaximal capacity(qmax),the adsorptionmechanism

isactiveand ishappeningaccording tothepreviously dis-cussedassumptions.Oncethemaximalmembranecapacity

Fig.8–Resultsofvalidationexperiment1vstheoretical predictionaccountingsaturationoftheadsorbent.

hasbeenreached,theadsorptionisnolongerpossibleand therefore,theadsorptiveremovalmechanismisswitchedoff bythemodel.TheresultofMLACapplicationforthe experi-ment1ispresentedinFig.8.

According toFig. 8,the removalofcreatinine reaches a plateau. Thiscould beduetosaturationofparticles and/or limitationsinaccessibilityofthecarbonadsorptionsitesby thesoluteunderdiffusiveconditions.Infact,ourrecentwork hasshowedthatunderconvectiveconditionstheadsorption andremovalcansignificantlyincrease(Tijinketal.,2013)

Theinsertionofthelimitingadsorptioncapacity parame-terenablesaratherprecisepredictionoftheoutcomeofthe experimentalcreatinineremoval.Finally,theanalysisshowed thattheadsorptiveparticlesinthemembraneenhance the transfer ofcreatinine by 93% within the first 45min. Such observationprovidesthenumericaljustificationofthe benefi-cialuseofdual-layermembraneswithincorporatedparticles ofactivatedcarbon.

Avalidationexperimentwithuseofcreatininesolutionand Membrane1wasalsoconductedinhemodiafiltrationmode (applying TMP).However,duetotightstructureofthe skin-layerintheparticlefreemembranetheconvectionwaslimited evenathighpressures,thereforetheconvectivetermhada negligible contributionto masstransfer duringthe experi-ment.Consequently,theresultofthisexperimentwasalmost identicaltotheonewithdiffusivetransportonly(resultsnot shown).

In addition, due to poor permeability of a-lactalbumin throughMembrane1anditspoordiffusivitythrough Mem-brane 2 during the diffusive experiment, no noticeable concentrationreductioninthefeedsidewasobserved. There-fore,theresultsofthesetrialsarealsonotpresentedinthis paperaswell.

Inordertoevaluatethevalidityofthemodelwithrespect tomiddlesizedsolutes,asecondexperimentwasconducted withMembrane2anda-lactalbuminatTMPof0.5bar, result-ing intheconvectiveflow of3.38×10−6m/s.Theresultsof

thesecondexperimentandtheircomparisonwiththemodel predictionsmodelareshowninFig.9.

AsshowninFig.9,theexperimentalandcomputeddata forthediffusive+convectiveremovalofa-lactalbuminarein verygoodagreement.Thankstoasignificantconvectionrate, theremovalof2mgofa-lactalbuminwasachievedwithinfour hoursinourexperimentalconditions.Inaddition,the adsorp-tiveremovalof0.47mgwasobservedafterhalfanhour,and didnotchangethroughouttheremainingtime.This

(12)

observa-Fig.9–Resultsofvalidationexperiment2vstheoretical prediction.

tionindicatesthat,alikethefirstexperiment,thesaturationof adsorptiveparticleswasachievedwithintheearlystageofthe process.Thefastsaturationmaybeattributedtothepresence ofconvection,whichenabledfacilitatedtransportofprotein towardstheactivatedcarbonparticles.Thishypothesiswas supported bythe analysis, which demonstrated that since convectionismuchfasterthandiffusionofa-lactalbumin,it provided8.4timessolutetransportenhancementinthe begin-ning ofthe process.Inthe sametime, thepresenceofthe adsorptivelayerresultedin71%ofproteinremoval facilita-tion.Finally,the cumulativeeffectofMMMandconvection enabled 9.4timesgreater soluteremoval rateatthe initial momentoftheexperiment(t=0)thanonemayexpectfrom solelydiffusion-basedprocessgiventheexperimental condi-tionsusedinthepresentresearch.

Sinceduringexperiment2thesaturationoftheMMMwas achieved,wemodifiedthemodelwiththe“Membranelimiting adsorptioncapacity”parameterasbefore.Basedonthe exper-imentalresulttheinputvalueof8.1mgofa-lactalbuminper mgofmembranewastaken.Inaddition,thecontentof acti-vatedcarboninsideMembrane2waspreviouslyreportedto be53%(Tijinketal.,2012).Therefore,theMLACvaluemaybe alsopresentedas15.2mgofa-lactalbuminpermgofactivated carboninsidethemembrane.Thisvalueisclosetothe exper-imentallymeasuredadsorptivecapacityofactivatedcarbon powderof15.9mgofa-lactalbuminpermgofactivatedcarbon. The comparison between validation experiment 2 and modifiedmodelisshowninFig.10.

AccordingtoFig.10,thesaturationoftheadsorbentwas reachedafter30minofexperiment,andtheremainingtime, a-lactalbuminwasremovedfromthefeedmainlybyconvection andpartiallybydiffusion.

ThusthemodelrevealsthattheMMMlayerisefficientin theearlystagesoftheprocess,significantlyincreasingtherate ofremoval.Beyondthatpoint,correspondingtothesaturation oftheadsorbents,therateofremovalisruledbythediffusion andconvectionasforaclassicalhemodiafiltrationprocess.

ObtainedMLACvalueforMembrane2maybeviewedfrom a different perspective. The module consisting of 3 fibers of10cmeachand lumendiameterof669mm(Table5) pro-videdthetotalfiltrationarea of0.567×10−3m2,allowedan

adsorptiveremovalof0.47mgofa-lactalbumin.Considering thecommonhemodialyserwithaneffectivesurfaceareaof 1.5m2,theproportionalscale-upofourmodulewouldresult

in 1242mg removal of a-lactalbumin, which significantly

Fig.10–Resultsofvalidationexperiment2vstheoretical predictionaccountingsaturationoftheadsorbent.

exceedsthedesiredb2-microglobulinremovalof350–700mg

persession(basedonthriceweeklytreatment)(Druekeand Massy, 2009). As such, even without further optimization (reduction oflumendiameter, tuningofsieving properties, selectionofproperoperatingconditionsetc),thismembrane maybeeffectivelyusedfortheremovalmiddle-sizeduremic toxins.

5.

Conclusion

Theconceptofdoublelayermembranesaimingthe improve-mentofremovalofbloodtoxinsisapromisingadvancement ofdialysistreatment.Inthepresentstudy,wepresentedthe model whichallowsmorein-depthanalysisofinterplayof threesoluteremovalmechanisms:diffusion,convection,and adsorption.Themodeldemonstrated thesolute concentra-tionprofileacrossthemembraneandquantifiedthetransfer improvementinducedbytheadsorptionlayerinsidethe mem-brane. The model was validated via comparison of model predictionswithoutcomeofexperimental testingof home-madedoublelayermixedmatrixmembranes.Thedeveloped model provides an accurate agreement with diffusive and convectiveremovalsobtainedexperimentallyforbothsmall andmiddlesizeduremictoxins.Moreover,evenarather sim-plistic approachinthe modelling ofadsorptive removalof toxins(first-orderreaction)providesapossibilitytoevaluate theamountofadsorbedspeciesattheearlystagesof treat-mentprocess.Thedevelopedmodelmaybefurtherapplied intheoptimizationofdoublelayermembranepropertiesand theprocessconditions.

Acknowledgements

Authors would liketo acknowledge theMarie Skłodowska-Curiefoundation(ProjectBIOART:grantno.316690, EU-FP7-PEOPLE-ITN-2012)forthefinancialsupportofthisproject.

The authors are grateful to Ilaria Geremia (Bioartificial organsgroup,departmentofBiomaterialsscienceand tech-nology,UniversityofTwente)forprovidingtheSEMimagesof theduallayerMembrane1.

(13)

Appendix

A.

Thecompleteexpressionsforpseudomasstransfer conduc-tances(Ki,j),whichareusedinSection2.2,havethefollowing

form: K1a= JePe1 ePe1−1 (A.1) K1b= J ePe1−1; (A.2) K2a= JePe2 ePe2−1; (A.3) K2b= J ePe2−1; (A.4) K3a= D3

p

Pe23+4ϕ2cosh(

p

Pe2 3+4ϕ2 2 ) 2ı3sinh

 p

Pe2 3+4ϕ2 2



+ D3Pe3 2ı3 ; (A.5) K3b= D3e− Pe3 2

p

Pe2 3+4ϕ2 2ı3sinh

 p

Pe2 3+4ϕ2 2



; (A.6) K3c= D3e Pe3 2

p

Pe2 3+4ϕ2 2ı3sinh

 p

Pe2 3+4ϕ2 2



(A.7) K3d= D3

p

Pe23+4ϕ2cosh(

p

Pe2 3+4ϕ2 2 )) 2ı3sinh

 p

Pe23+4ϕ2 2



− D3Pe3 2ı3 (A.8) K4a= Je Pe4 ePe4−1; (A.9) K4b= J ePe4−1 (A.10)

Appendix

B.

Supplementary

data

Supplementary data associated with this

arti-cle can be found, in the online version, at

http://dx.doi.org/10.1016/j.cherd.2017.08.017.

References

Barreto,F.C.,Barreto,D.V.,Liabeuf,S.,Meert,N.,Glorieux,G., Temmar,M.,Choukroun,G.,Vanholder,R.,Massy,Z.A.,2009.

Serumindoxylsulfateisassociatedwithvasculardiseaseand mortalityinchronickidneydiseasepatients.Clin.J.Am.Soc. Nephrol.4,1551–1558.

Busch,M.,Franke,S.,Ruster,C.,Wolf,G.,2010.Advanced glycationend-productsandthekidney.Eur.J.Clin.Invest.40, 742–755.

Dobre,M.,Meyer,T.W.,Hostetter,T.H.,2013.Searchingforuremic toxins.Clin.J.Am.Soc.Nephrol.8,322–327.

Drueke,T.B.,Massy,Z.A.,2009.Beta2-microglobulin.Semin.Dial. 22,378–380.

Eloot,S.,VanBiesen,W.,Vanholder,R.,2012.Asadbutforgotten truth:thestoryofslow-movingsolutesinfasthemodialysis. Semin.Dial.25,505–509.

Fu,B.M.,Adamson,R.H.,Curry,F.R.,2005.Determinationof microvesselpermeabilityandtissuediffusioncoefficientof solutesbylaserscanningconfocalmicroscopy.J.Biomech. Eng.127,270–278.

Henrich,W.L.,2009.PrinciplesandPracticeofDialysis,fourthed. LippincottWilliams&Wilkins.

Kim,J.C.,Cruz,D.,Garzotto,F.,Kaushik,M.,Teixeria,C.,Baldwin, M.,Baldwin,I.,Nalesso,F.,Kim,J.H.,Kang,E.,Kim,H.C., Ronco,C.,2013.Effectsofdialysateflowconfigurationsin continuousrenalreplacementtherapyonsoluteremoval: computationalmodeling.BloodPurif.35,106–111.

Liabeuf,S.,Drüeke,T.B.,Massy,Z.A.,2011.Protein-bounduremic toxins:newinsightfromclinicalstudies.Toxins3,911–919.

Luo,F.J.,Patel,K.P.,Marquez,I.O.,Plummer,N.S.,Hostetter,T.H., Meyer,T.W.,2009.Effectofincreasingdialyzermasstransfer areacoefficientanddialysateflowonclearanceof

protein-boundsolutes:apilotcrossovertrial.Am.J.Kidney Dis.53,1042–1049.

Meyer,T.W.,Peattie,J.W.,Miller,J.D.,Dinh,D.C.,Recht,N.S., Walther,J.L.,Hostetter,T.H.,2007.Increasingtheclearanceof protein-boundsolutesbyadditionofasorbenttothe dialysate.J.Am.Soc.Nephrol.18,868–874.

Meyer,T.W.,Sirich,T.L.,Hostetter,T.H.,2011.Dialysiscannotbe dosed.Semin.Dial.24,471–479.

Pavlenko,D.,vanGeffen,E.,vanSteenbergen,M.J.,Glorieux,G., Vanholder,R.,Gerritsen,K.G.F.,Stamatialis,D.,2016.New low-fluxmixedmatrixmembranesthatoffersuperiorremoval ofprotein-boundtoxinsfromhumanplasma.Sci.Rep.6,1–9.

Raj,D.S.,Choudhury,D.,Welbourne,T.C.,Levi,M.,2000.

Advancedglycationendproducts:aNephrologist’s perspective.Am.J.KidneyDis.35,365–380.

Shaw,R.A.,Rigatto,C.,Reslerova,M.,Ying,S.L.,Man,A.,Schattka, B.,Battrell,C.F.,Matthewson,J.,Mansfield,C.,2009.Toward point-of-carediagnosticmetabolicfingerprinting:

quantificationofplasmacreatininebyinfraredspectroscopy ofmicrofluidic-preprocessedsamples.Analyst134,1224–1231.

Tijink,M.S.,Wester,M.,Glorieux,G.,Gerritsen,K.G.,Sun,J., Swart,P.C.,Borneman,Z.,Wessling,M.,Vanholder,R.,Joles, J.A.,Stamatialis,D.,2013.Mixedmatrixhollowfiber

membranesforremovalofprotein-boundtoxinsfromhuman plasma.Biomaterials34,7819–7828.

Tijink,M.S.,Wester,M.,Sun,J.,Saris,A.,Bolhuis-Versteeg,L.A., Saiful,S.,Joles,J.A.,Borneman,Z.,Wessling,M.,Stamatialis, D.F.,2012.Anovelapproachforbloodpurification:

mixed-matrixmembranescombiningdiffusionand adsorptioninonestep.ActaBiomater.8,2279–2287.

Vanholder,R.,Glorieux,G.,Eloot,S.,2015.Onceuponatimein dialysis:thelastdaysofKt/V?KidneyInt.88,460–465.

Walther,J.L.,Bartlett,D.W.,Chew,W.,Robertson,C.R.,Hostetter, T.H.,Meyer,T.W.,2006.Downloadablecomputermodelsfor renalreplacementtherapy.KidneyInt.69,1056–1063.

Yang,X.,Wang,R.,Fane,A.G.,Tang,C.Y.,Wenten,I.G.,2013.

Membranemoduledesignanddynamicshear-induced techniquestoenhanceliquidseparationbyhollowfiber modules:areview.Desalin.WaterTreat.51,3604–3627.

Figure

Fig. 2 – Schematic representation of formulated system with the key parameters for the different layers represented in Fig
Table 1 – Spinning conditions of the fiber preparation. Membrane 1 Membrane 2 Inner layer pumping flow
Fig. 3 – Schematic representation of the applied set-up (from Pavlenko et al., 2016).
Fig. 4 – SEM images of the dual-layer MMM (Membrane 2: -a- and -b-; Membrane 1: -c-, -d- and -e-).
+5

Références

Documents relatifs

Il inter- vient pour les médicaments contre le cancer dont le remboursement a été refusé par le système de santé publique britannique en raison d’un prix trop élevé ou

In other words: Despite the fact that all market segments SH,…,BL as well as the aggregate Market MKT exhibit significant positive returns, there remains a significant

Reed KE, Westphale EM, Larson DM, Wang HZ, Veenstra RD, Beyer EC (1993) Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein..

L’épreuve de convenance, à ne pas confondre avec l’essai préalable, et rendue obligatoire par le fascicule 65A du CCTG permet de vérifier, après passation du marché,

In this way, the definition of the direct kinematic model of the SCARA robot requires the identification of 4 parameters, for each rotational joint, which describe the

Among the reforms adopted by the MIT Aeronautics and Astronautics department to con- verge toward the Conceive, Design, Implement and Operate initiative (CDIO) was

We use our 3D model to calculate the thermal structure of WASP-43b assuming different chemical composition (ther- mochemical equilibrium and disequilibrium) and cloudy..

longues papilles adanales, des lobes dépourvus de soies margi- nales autour de la région spiraculaire et le dernier segment abdo- minal sans touffes de soies.. La