• Aucun résultat trouvé

Relationships between in vitro lymphoproliferative responses and levels of contaminants in blood of free-ranging adult harbour seals (Phoca vitulina) from the North Sea

N/A
N/A
Protected

Academic year: 2021

Partager "Relationships between in vitro lymphoproliferative responses and levels of contaminants in blood of free-ranging adult harbour seals (Phoca vitulina) from the North Sea"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Aquatic

Toxicology

j o ur na l h o me p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a q u a t o x

Relationships

between

in

vitro

lymphoproliferative

responses

and

levels

of

contaminants

in

blood

of

free-ranging

adult

harbour

seals

(Phoca

vitulina)

from

the

North

Sea

Aurélie

Dupont

a

,

Ursula

Siebert

b

,

Adrian

Covaci

c,d

,

Liesbeth

Weijs

c,d

,

Gauthier

Eppe

e

,

Cathy

Debier

f

,

Marie-Claire

De

Pauw-Gillet

g

,

Krishna

Das

a,∗

aLaboratoryofOceanologyMARECenter,UniversityofLiège,B6c,alléedelachimie3,B-4000Liège(Sart-Tilman),Belgium

bInstituteforTerrestrialandAquaticWildlifeResearch,UniversityofVeterinaryMedicineHannover,Foundation,Werftstrasse6,25761Buesum,Germany cToxicologicalCentre,UniversityofAntwerp,Universiteitsplein1,2610Wilrijk,Belgium

dSystemicPhysiological&EcotoxicologicalResearch(SPHERE),DepartmentofBiology,UniversityofAntwerp,Groenenborgerlaan171,2020Antwerp,

Belgium

eCenterforAnalyticalResearchandTechnology(CART),InorganicAnalyticalChemistry,UniversityofLiège,B6c,alléedelachimie3,B-4000Liège

(Sart-Tilman),Belgium

fUnitofNutritionBiochemistry,CatholicUniversityofLeuven,PlaceCroixduSud2/8,1348Louvain-la-Neuve,Belgium gMammalianCellCultureLaboratory(GIGA-R),UniversityofLiège,B6c,alléedelachimie3,B-4000Liège(Sart-Tilman),Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received22January2013

Receivedinrevisedform18August2013 Accepted24August2013 Keywords: Phocavitulina Blood Contaminant Invitro Lymphoproliferation Immuneparameters

a

b

s

t

r

a

c

t

Invitrocultureofperipheralbloodleucocytes(PBLs)iscurrentlyusedintoxicologicalstudiesofmarine mammals.However,bloodcellsofwildindividualsareexposedinvivotoenvironmentalcontaminants beforebeingisolatedandexposedtocontaminantsinvitro.Theaimofthis studywastohighlight potentialrelationshipsbetweenbloodcontaminantlevelsandinvitroperipheralbloodlymphocyte proliferationinfree-rangingadultharbourseals(Phocavitulina)fromtheNorthSea.Bloodsamples of18individualswereanalyzedfortraceelements(Fe,Zn,Se,Cu,Hg,Pb,Cd)andpersistentorganic contaminantsandmetabolites(PCBs,HO-PCBs,PBDEs,2-MeO-BDE68and6-MeO-BDE47,DDXs, hexachlorobenzene,oxychlordane,trans-nonachlor,pentachlorophenolandtribromoanisole).Thesame sampleswereusedtodeterminethehaematologyprofiles,cellnumbersandviability,aswellasthe invitroConA-inducedlymphocyteproliferationexpressedasastimulationindex(SI).Correlationtests (Bravais-Pearson)andPrincipalComponentAnalysiswithmultipleregressionrevealednostatistically significantrelationshipbetweenthelymphocyteSIandthecontaminantsstudied.However,thenumber oflymphocytespermillilitreofwholebloodappearedtobenegativelycorrelatedtopentachlorophenol (r=−0.63,p=0.005).Inadultharbourseals,theinterindividualvariationsofinvitrolymphocyte pro-liferationdidnotappeartobedirectlylinkedtopollutantlevelspresentintheblood,anditislikely thatotherfactorssuchasage,lifehistory,orphysiologicalparametershaveaninfluence.Inageneral manner,experimentswithinvitroimmunecellculturesofwildmarinemammalsshouldbedesignedso astominimizeconfoundingfactorsinwhichcasetheyremainavaluabletooltostudypollutanteffects invitro.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

During these last decades, large-scale mortalities of marine mammals have been increasingly documented (Greenland and Limpus,2007;Osingaetal.,2012).Epizooticsand mass strand-ingeventshaveimpactednumerouscetaceanandpinnipedspecies (Colegroveetal.,2005;deSwartetal.,1995a;Duignanetal.,1995;

∗ Correspondingauthor.Tel.:+32043663321;fax:+32043665147. E-mailaddresses:Krishna.das@ulg.ac.be,Aurelie.Dupont@gmail.com(K.Das).

GreenlandandLimpus,2007;Hannietal.,1997;Lipscombetal., 1996;Roganetal.,1997).In1988and2002,twomajorepizootics due tothephocinedistemper virus(PDV) affectedtheharbour seal(Phocavitulinavitulina)populationinhabitingtheNorthSea (Härkönenetal.,2006;Mülleretal.,2004).Thepopulationofthe WaddenSeasituatedalongtheeastandsouth-eastcoastsofthe North Sea,suffered lossesuptoapproximately57% and47% in 1988and 2002,respectively(Dietzetal.,1989;Härkönenetal., 2006).Asaconsequence,thesemassdie-offshaveinitiated numer-ous pathological and toxicological studies(Das et al.,2008; de Swartetal.,1996;Rossetal.,1996b;Siebert etal.,2007,2012)

0166-445X/$–seefrontmatter © 2013 Elsevier B.V. All rights reserved.

(2)

thatnotablydiscussedtheimpactofenvironmentalpollutantson marine mammal health. Indeed, sealsare exposed to a variety ofanthropogeniccontaminantsmainlythroughtheirdiet.Astop predators,theyareparticularlyatriskforbioaccumulating contam-inantsthatbiomagnifyupthetrophicfoodchain(DeGuiseetal., 2003).Infact,thechemicalcompoundsknowntobioaccumulate in harbourseal tissuesare toxictrace elementsincluding mer-cury(Hg)(Dasetal.,2003)andpersistentorganicpollutants(POPs) suchasorganohalogenatedcompounds(polychlorinatedbiphenyls –PCBs),thedichlorodiphenyltrichloroethanes(DDTs), polybromi-nated diphenyl ethers (PBDEs), hexachlorobenzene (HCB) and chlordanes(O’SheaandTanabe,2003;Reijnders,1980).

Evidencesuggeststhatvariousimmunotoxiccontaminants(e.g. PCBsandmetabolites)mighthavecontributedatleastpartlytothe severityandextentoftheepizootics(Ross,2002).Pollutantsmay indeedhavetoxic effectsonperipheralblood leucocytes(PBLs), including lymphocytes, monocytes and granulocytes, thereby diminishingdefenses against invadingpathogens (Lahvis et al., 1995;Levinetal.,2007;Mosetal.,2006;Nakatsuruetal.,1985). Exposuretopollutantswashypothesizedtobenotablyrelatedto thehighlevelsofparasiticorbacterialinfectionsobservedinseals founddeadorkilledduetosevereillnessbeforeandafterthe2002 epizootic(Siebertetal.,2007).

Bloodsamplingofmarinemammalsisconsideredasa conve-nientand minimallyinvasivemethod,relevantfor theanalyses ofpollutantsandbiomarkers(Habranetal.,2011,2013;Vanden Bergheetal.,2012),andforinvitroassays(Rossetal.,2003a).Invitro culturesofPBLsareindeedroutinelyusedtoassesstherelationship betweenenvironmentalcontaminantsandimmunealterationsin free-rangingmarinemammals(Cámara Pellissóetal.,2008; De Guiseetal.,1998;Kakuschkeetal.,2008;Levinetal.,2005,2007). Organic and inorganic pollutants were analyzed recently in harboursealsfromtheNorth Searevealinghighconcentrations comparedtootherspeciesorlocations(Dasetal.,2008;Habran etal.,2013;VandenBergheetal.,2012;Weijsetal.,2009a,b,c). PCBsoftenexceedthethresholdvaluesof20ngPCBs/gwetweight forsealblood(Weijsetal.,2009a)andof17␮gPCBs/glipidweight for marinemammalblubber (Jepsonet al.,2005; Siebert etal., 2012;Weijsetal.,2009b)abovewhichdeleteriouseffectsmightbe observed(Kannanetal.,2000).Nothresholdhasbeendocumented forothercompoundssuchaspesticides,brominatedcompounds or toxic metals in this species, but deleterious effects of POPs and metallic traceelementson theimmune systemhave been documentedinbothinvivoandinvitroexposuresinlaboratory animalsandwildlife(CámaraPellissóetal.,2008;Dufresneetal., 2010;KakuschkeandPrange,2007;Kakuschkeetal.,2005;Luebke etal.,1997;Rossetal.,1996c).Associationshavebeenestablished betweenenvironmentalcontaminantsandimmunotoxicityin free-rangingsealpopulations(Dasetal.,2008;deSwartetal.,1996; Dufresneetal.,2010;Rossetal.,1996a,b,c;vanLoverenetal.,2000) asdemonstratedforinstancebysignificantimpairmentofnatural killercellactivityandspecificT-lymphocyteresponsesinvitro(Ross etal.,1996b).Nevertheless,thecurrentknowledgeofthosecellular effectsremainsfragmentary.Moreover,theinfluencethattheblood contaminantspresentinfree-rangingharboursealsmayhaveonin vitroimmuneresponsesoncePBLsareisolatedandculturedin con-trolledconditionsisunknown.Thispointishighlyrelevantwhen cellviabilityandproliferationareevaluatedintheframeworkof invitroexposuretocontaminants.

The present study aims to highlight potential relationships betweenbloodpollutantlevelsandinvitroimmuneresponsesof free-rangingadultharboursealfromtheNorthSea.Wedetermined theinvitromitogen-inducedlymphocyteproliferationandabroad rangeofblood parametersincludinghaematologyprofiles, lym-phocytenumbersandviability,essentialelementconcentrationsas wellasnon-essentialelement,persistentorganicpollutant(POP)

and naturally-produced methoxylatedpolybrominated diphenyl ether(MeO-PBDE)levels.

2. Materialandmethods

2.1. Bloodsamplecollectionandconservation

Bloodsamples were collectedfrom18 free-ranging harbour sealscaughtonsandbanksoftheGermanpartoftheWaddenSea: 3 fromKolumbus Loch(geographical coordinates54◦23 N and 8◦35E)inApril(spring)2010;and15onLorenzenplate(54◦25N and8◦38E)inSeptember(autumn)2010andApril(spring)2011 (Fig.1).Sealswerecapturedinseinenetsatinter-tidalhaul-out sites.Theyweretransferredtoindividualtubenetsandrestrained manuallyfor clinicalexamination.Sex,lengthandweight were determined beforebloodsamplings (Table1).Collection proce-duresweredesignedtopreservesampleintegrityandminimize samplecontaminationduringprocessingandhandling.All sam-pledanimalswereconsideredolderthan3years(adults)basedon lengthandweight(Weijsetal.,2009b).Duringthesampling proce-dure,theanimalswerecontinuouslyundercareoftwoexperienced veterinarians.Allindividualswerereleasedatthesiteofcapture aftercompletingtheinvestigations.Themaximumdetentiontime, betweenthetransferofallanimalsintubenetsandthereleaseof thelastone,wasonehour.Allanimalsappearedhealthyby vet-erinarycheck.Theywereinnormalnutritionalstatusandshowed nosignofdisease.Thefieldstudieswerecarriedoutunderthe rel-evantpermitsoftheNationalParkOfficeSchleswig-Holsteinand theanimalexperimentpermit(AZ312-72241.121-19).

Blood was drawn from the extradural venous sinus into sterile evacuated blood collection tubes using a 20ml syringe anda1.2mm×100mmneedle(Carromco,Hamburg-Norderstedt, Germany).BloodwastransferredintoserumtubesS-Monovette®

forPOPanalysisandin7.5mlS-Monovette® tubes treatedwith

Lithium-Heparin (LH) for trace metal analysis (Sarstedt, Essen, Belgium).SerumforPOPanalysiswasisolatedbycentrifugation at 1500×g for20minat 21◦C (Multifuge 3S-R, Kendro, Ham-burg,Germany).Wholeblood(2ml)andserumsamples(2ml)were storedat−20◦Cuntilanalysis.

Bloodsamplingswerealsousedtotesttheinvitrolymphocyte proliferation.Blood(15–30ml)wascollectedinCellPreparation TubeswithSodiumHeparin(CPTTM,BD Vacutainer®,Plymouth,

UK)thatweregentlyinverted10timesandstoreduprightatroom temperatureuntilfurtherprocessing,withinmaximum5hofblood collection.Additionalbloodsamplesweretakentodeterminethe clinicalbloodchemistryandhaematologyprofiles,andotherhealth parametersaspartofanongoinghealthmonitoring.

2.2. Haematologicalprofiles

Thehaematologyprofiles(whitebloodcells[WBC],redblood cells[RBC],haemoglobin[HGB],hematocrit[HCT],platelets[PLT]) weredeterminedforallwholebloodsamples(beforePBLisolation) usingascilVetabchaematologyanalyzer(scilAnimalCare Com-panyGmbH,D-68519Viernheim,Germany)whichwascalibrated forsealblood(Hasselmeieretal.,2008).

2.3. PBLisolationandconservation

PBLswereisolatedaccordingtotheprincipleofdensitygradient centrifugationonFicollHypaqueTM(density:1.077g/ml)contained

inCPTTM(BDVacutainer®), usingamodifiedprotocoldescribed

bydeSwartetal.(1993).ThebloodsamplescontainedinCPTTM

(BDVacutainer®)werecentrifugedat1800×gfor30minatroom

(3)

Fig.1. ThesamplingsitesLorenzenplateandKolumbusLocharesandbanksoftheWaddenSeaoffshoreofGermany.Theyaremarkedbystars().

by 10 gentle inversions to improve cell viabilityduring trans-portationatroomtemperature,asadvisedbythemanufacturer (BDBeneluxN.V.,Erembodegem,Belgium).TheFicollHypaqueTM

densityfluidcontainedin CPTubesTM (BDVacutainer®)is

origi-nallyusedtoseparateperipheralbloodmononuclearcells(PBMCs, includinglymphocytesandmonocytes)andplasmafrom granu-locytesanderythrocytes.However,flowcytometryscatterplots of cell suspensions indicated that all leucocyte subpopulations (i.e.,lymphocytes,monocytesandgranulocytes)werepresent(see point2.4,Fig.2).Aftertransportationtothecellculture labora-torywithin18h,thePBLswerepipettedintoseparatedvesselsand washed3timesinphosphatebufferedsaline(PBS,sterilefiltered, BioWhittaker®,Lonza,Verviers,Belgium).Cellsweresuspendedin

RPMI1640medium(BioWhittaker®,Lonza,Verviers,Belgium)

sup-plementedwith10%foetalcalfserum(Gibco®,Invitrogen,Paisley,

UK),0.33%l-alanyl-l-glutamine(GlutaMAXTM,Gibco®,Invitrogen,

Paisley,UK),1%non-essentialamino-acids(BioWhittaker,Lonza, Verviers,Belgium),1%Napyruvate(BioWhittaker,Lonza,Verviers, Belgium)and 1%penicillin-streptomycin (100IUand 100␮g/ml, BioWhittaker, Lonza, Verviers, Belgium). This complete culture mediumwasfurtherreferredtoasculturemedium.Theviability

andnumberofcellsweredeterminedwithaNucleocounter®

NC-100TM(Chemometec,Allerød,Denmark).TheNucleoCounter®isan

integratedfluorescencemicroscopedesignedtodetectsignalsfrom thefluorescentdye,propidiumiodide(PI)boundtoDNAofcells withcompromisedcellmembranes.Thecellviabilityofsamples wasdeterminedusingthetotalcellcount(followingatreatment renderingallthecellnucleisusceptibletostaining)andthecount ofnon-viablecells(ChemoMetecA/S,2013).Aftercounting,cells werecentrifuged,andthepelletwasresuspendedinadetermined volumeofculturemediumaddedwith10%DMSO(dimethyl sulfox-ide,Sigma–AldrichChemieGmbH,Steinheim,Germany)at4◦Cto adjusttheirconcentrationto10×106viablecells/ml.Thecell

sus-pensionwastransferredintocryovials(1ml/vial)andplacedinto afreezingcontainer(MrFrosty, Nalgene)at−80◦Cduring24h,

beforebeingtransferredinliquidnitrogen. 2.4. PBLinvitrocultures

PBLcryovialswerequicklythawedandtransferredinto50ml Falcontubescontaining40mlofcompleteculturemedium pre-warmedat37◦C.Theywerecentrifugedat300×gduring10min,

Table1

Harbourseal(Phocavitulina)information(n=18;7females(F)and11males(M)).

Samplingperiod Harboursealnumber Gender Length(cm) Weight(kg)

April2010 1 F 163 73.5 2 F 168 92 3 F 170 96 September2010 4 F 150 54.5 5 F 158 61 6 M 160 66.5 7 M 160 63.5 8 M 166 67.5 9 F 167 79 10 M 170 63.5 April2011 11 M 148 35 12 M 149 43 13 M 160 52.5 14 M 162 45 15 M 163 85.5 16 M 170 45 17 F 170 82.5 18 M 179 102.5

(4)

Fig.2.Flowcytometryscatterplotofcellpopulationsobtainedafterwholeblood centrifugationinCPTTM.Foursubpopulationsweregatedbasedonforwardscatter

(FSC–size)andsidescatter(SSC–internalcomplexity)characteristics.ThegateA mostlikelyincludeslymphocytes.GatesBandCprobablyincludemonocytesand neutrophils,respectively.GateDpredominantlyincludesearlyapoptoticanddead cells,andthesquareintheleftcornerincludescelldebris.

thesupernatantwasdiscardedandthecellpelletwasresuspended

inwarmculturemedium.Monocyteswerepartiallydepletedby

plastic adherenceintissue cultureflasks (VentedCap,Sarstedt,

Newton, NC, USA) incubated during 1h at 37◦C in a

humidi-fiedatmosphereenrichedwith5%CO2.Thecellsuspensionwas

harvested,thelivingcells werecountedwitha nucleocounter©

(Chemometec, Allerød, Denmark) and the concentration was

adjustedto1×106 cells/ml(finalconcentration).Cellswerealso

co-stainedwithpropidiumiodide(PI)andAnnexinV-fluorescein

isothiocyanate(FITC)conjugate accordingtothemanufacturer’s

instructions(AnnexinV:FITCApoptosisDetectionKitI,BD,

Erem-bodegem,Belgium)and analyzedbyflowcytometryinorderto

determinetheproportionsofviable,earlyapoptoticanddeadcells

(inlateapoptosisandnecrosis).TheAnnexinVassaywasusedto

detectphospatidylserinetranslocationonthemembranesurface

ofcellsundergoingapoptosis(Vermesetal.,1995).Cellswere

dis-playedasscatterplotsbasedontheirsizes,estimatedbyforward scatter(FSC),andinternalcomplexity(granulosity),estimatedby sidescatter(SSC).TheanalysiswasconductedwithaFACSCantoTM

II(BD,Erembodegem,Belgium)flowcytometer.Thelightsource usedwasanair-cooledlasertunedto488nm.FITC-fluorescence (FL1)wascollectedthrougha502nmlongpass(LP)filterandthen througha530/30nmbandpassfilter,andPIfluorescencethrough a585/42nmLP filter(FL2),andthrough655and670nmLP fil-ters(680nm, FL3). Five-parameter (FSC-A, SSC-A,FL1,FL2, and FL3)dataofminimum50,000eventswerecollectedandanalyzed foreach sampleusingFACSDivasoftware version6.1.2.Scatter plotsobtainedbyflowcytometryshowedthatallleucocyte sub-populations(i.e.,lymphocytes,monocytesandgranulocytes)were present,andthatcellsuspensionswerecomposedof lymphocyte-enrichedleucocytes(Fig.2).AllcellswereanalyzedforAV-FITC and PI labelling.In alllikelihood, the gate A included lympho-cytes (mostlybut not exclusively) astheyare characterizedby smallsizesandlowcomplexitycomparedtotheotherleucocyte types(Fig.2).However,theexactpositionandquantificationof leucocytesubpopulationsinscatterplotswasnotpossibleasno specificorsuitablemarkerwasavailableforharboursealatthetime

ofexperiment.Monocyteandneutrophil(mostabundanttypeof granulocyte)gateswerethushypotheticallydrawn(gatesBandCin Fig.2)basedonsizesandcomplexitycharacteristicsaswellason lit-eraturedata(Pilletetal.,2002;Zharinovetal.,2006).Thepresence ofmonocytes(despitedepletion)andgranulocyteswasconfirmed bymicroscopyanalysisofcellsstainedwithGiemsa(Modified Solu-tion,FlukaChemika,Sigma–Aldrich,Steinheim,Germany)(datanot shown).Lymphocyte-enrichedleucocyteswerefurtherreferredto asPBLs.

ProliferationtoConcanavalinA(ConA,Sigma–AldrichChemie GmbH,Steinheim,Germany),aT-cell-specificmitogeninharbour seals(deSwartetal.,1993),wasassessedbyculturingPBLsina flatbottom96-wellplate(transparent,Sarstedt,Newton,NC,USA) at2×105cellsin200␮lculturemediumperwellwithan

opti-malconcentrationof5␮g/mlConAinanincubatorat37◦Cunder humidifiedatmosphereenrichedwith5%CO2.ControlPBLswere

culturedinmediumaloneandeachcultureconditionwasin trip-licate.Theactivelyproliferatinglymphocyteswereassayedwith bromodeoxyuridine(BrdU)incorporationintonewlysynthesized DNA(BrdUProliferationAssay,Calbiochem®,Overijse,Belgium).

TwotypesofcontrolswereusedfortheBrdUtests:blanks (cul-turemediumalone)andbackgroundcontrols(cellswithoutBrdU). Eachcultureconditionwasintriplicate.BrdUlabelwasaddedto wellsofthemicrotiterplateforthelast24hofculture.After72h ofincubation,cellswerefixed,permeabilisedandtheDNA dena-turedtoenableantibody(Ab)bindingtotheincorporatedBrdU. Detectoranti-BrdUmonoclonalAbwaspipettedintothewellsand allowedtoincubatefor1h,duringwhichtimeitbindstoany incor-poratedBrdU.UnboundAbwasthenwashedawayandhorseradish peroxidase-conjugatedgoatanti-mousewasaddedtobindtothe detectorAb.Thehorseradishperoxidasecatalyzedtheconversion ofthesubstratetoablueproduct,whichisthenconvertedto yel-lowaftertheadditionofthesolutionwhichstopsthereaction.The intensityofthecolouredreactionproduct,whichisproportional totheamountofincorporatedBrdUinthecells,wasquantifiedby measuringtheabsorbance(opticaldensity,OD)ineachwellusing aspectrophotometricplatereader(PowerWaveX,Bio-Tek Instru-ments,Inc.,Winooski,VT,USA)atdualwavelengthof450–540nm. Thesignalsofproliferatingcellsweresignificantlyhigherthanthe correspondingblanksandbackgroundcontrols.ForeachwellOD, theaverageblankabsorbancewassubtracted.Lymphocyte prolif-erationwasexpressedasastimulationindex(SI),calculatedasthe ratiooftheproliferationofmitogen-inducedstimulatedcells to thatofcellsculturedwithoutmitogen(Levinetal.,2005). SI=ODODofcorrespondingofstimulatedcellscontrol

In addition, toconfirm thepresence of lymphoblastsin stimu-latedconditionsandthelackofcytotoxicityincontrolwells,the correspondingcellsuspensionswerestainedwithPIandAnnexin V(AnnexinV:FITCApoptosisDetectionKitI,BD,Erembodegem, Belgium)andanalyzedbyflowcytometryasdescribedabove. 2.5. Chemicalanalysis

2.5.1. Traceelements

Afterbeinglyophilized,approximately200mgofhomogenized wholebloodpowderweredigestedinTeflonjarwithconcentrated HNO3,H2O2andultrapurewater(Milli-Q®ultrapurewaterfortrace

elementanalysis,Millipore,Billerica,MA,USA)inamicrowaveoven (20minbetween0and600W,ETHOS,Milestones).Aftercooling, samplesweredilutedto50mlwithMilli-Qwaterinavolumetric flask.ThetraceelementsCd,Fe,Ni,Cu,Se,Pb,andZnwereanalyzed byInductively CoupledPlasma-MassSpectrometry(ICPMS,Elan DRCII,PerkinElmer,Shelton,USA).Totalmercury(T-Hg)was deter-minedbyatomicabsorptionspectrophotometrywiththeDirect

(5)

MercuryAnalyzer(DMA80,Milestones,Sorisole,Italy). Concentra-tionsareexpressedin␮g/gdryweight(dw).Concurrentanalyses ofasetofcertifiedreferencematerials(CRM)andofprocedural blankswererepeatedthroughouteachsettoensuremethod’s accu-racyandprecision.ThecontrolmaterialsusedwereSeronormTM

Human,TraceElementWholeBloodLevel-3(SEROAS,Billingstad, Norway)and DOLT-3,DogfishLiverCertifiedReferenceMaterial forTrace Elements(National Research Council Canada,Ontario, Canada).Thehandlingandpreparationprocedureswereidentical forallsamplesandreferencematerialsanalyzed.

2.5.2. Organiccontaminants

Inallserumsamples,29PCBs(PCBs),18HO-PCBs(HO-PCBs), 7 PBDEs (PBDEs), 2 MeO-PBDEs (2-MeO-BDE68 and 6-MeO-BDE47), DDXs (o,p-DDT, p,p-DDT and metabolites o,p-DDD, p,p-DDDandp,p-DDE),hexachlorobenzene(HCB),oxychlordane (OxC),trans-nonachlor(TN),pentachlorophenol(PCP)and 2,4,6-tribromoanisole(TBA)weretargeted.Moreprecisely,investigated PCBswereIUPACnumbers(#)28,52,74,87,95,99,101,105,110, 118,128,138,146,149,153,156,170,171,172,174,177,180,183, 187,194,199,196/203,206,209.TargetedHO-PCBcongenerswere 3HO-CBs(#118,138,153and180),4HO-CBs(#79,107,120,127, 130,146,162,163,172,177,187,193and208)anddi-4HO-CB202. AnalyzedPBDEswereIUPAC#28,47,99,100,153,154and183.

Themethodforserumanalysiswasslightlyadaptedfromthe methodsdescribedpreviously(Weijsetal.,2009a).Avolumeof serum(1.5ml)wasspikedwithinternalstandards(PCB143,BDE 77and4-HO-CB159),diluted1:1withMilli-Qwater,mixedwith formicacid,sonicatedfor20minandextractedusingsolid-phase extraction(SPE)cartridges(6ml/500mgOasisHLB,Waters). Elu-tionwasdoneby10mlofMeOH:dichloromethane(DCM,1:1).After evaporationtoneardryness,theanalyteswerereconstitutedin 500␮lhexane:DCM(1:1)andfractionatedonsilicaSPEcartridges (3ml/500mg,Varian)toppedwith200mgacidsilica(44%,w/w).A firstfractioncontainingPCBsandPBDEswaselutedwith5ml hex-ane,whilethephenoliccompoundswereelutedinasecondfraction with6mlDCM(1:1,v/v).Bothfractionswereevaporatedto dry-ness.Thefirstfractionwasreconstitutedin100␮liso-octane,while thesecondfractionwasderivatizedfor30minwithdiazomethane toformMeO-PCBsandMeO-PBDEsafterwhichitwasevaporated todrynessandreconstitutedin75␮liso-octane.

FortheanalysisofPBDEsandMeO-derivatives,aGC-MS oper-ating in electron capture negativeionization (ECNI) modewas equippedwitha30m×0.25mm×0.25␮mDB-5capillarycolumn (J&WScientific,Folsom, CA,USA).TheMS wasused intheSIM modewithtwo ionsmonitoredfor each MeO-PCB congener in specificwindows,whileionsm/z=79and81weremonitoredfor MeO-PBDEs and for PBDEs during the entire run. For the PCB and organochlorine pesticides(OCP) analysis,a GC–MS operat-inginelectronimpactionization(EI)modewasequippedwitha 25m×0.22mm×0.25␮m HT-8capillary column(SGE). TheMS wasusedintheSIMmodewithtwoionsmonitoredforeachPCB homologuegrouporindividualOCPinspecificwindows. Multi-levelcalibrationcurves(r2>0.999)inthelinearresponseinterval

ofthedetectorwerecreatedforthequantification.Quality con-trol(QC)wasperformedbyregularanalysesofproceduralblanks, by random injection of standards, spiked samples and solvent blanks.TheQCschemeisalsoassessedthroughregular participa-tiontointerlaboratorycomparisonexercisesorganizedbyAMAP (POPsinhumanserum).Obtainedvaluesweredeviatingwith<20% fromconsensusvalues.Foranalytesdetectedinproceduralblanks, themeanproceduralblankvaluewasusedforsubtraction.After blanksubtraction,thelimitofquantification(LOQ) wassetat3 timesthe standard deviation ofthe procedural blank.For ana-lytesnotdetectedinproceduralblanks(HO-PCBsandMeO-PBDEs), LOQswerecalculatedforasignal-to-noiseratio=10.Resultswere

expressedona perserum volumebasis asthe lipidfractionof serumiscomposedofmorepolarlipidswhencomparedto subcu-taneousfatorotherorgans(Hendersonetal.,1994),andcontains non-polarlipids(i.e.hexane-extractablefat)atlowerlevels(Debier etal.,2003).ExpressingPOPconcentrationsinserumonalipid weightbasis (i.e.hexane-extractablefat)wouldthus leadtoan overestimation(Debieretal.,2003).

2.6. Dataanalysis

StatisticalanalysiswasperformedusingStatistica9.1.(StatSoft, Maisons-Alfort,France).Eachcultureconditionwasintriplicatefor eachindividual.Opticaldensityvalues(BrdUtest)andcellcounts wereaveragedforeachindividual,givingonemeanvalueper cul-turecondition.Coefficientsofvariations(CV)werecalculatedasthe ratioofthestandarddeviation(SD)tothemean.Comparisonsof theODmeansofcontrolandstimulatedPBLsafterthe72hof incu-bationwasassessedbytheWilcoxontestforpairedsamples.The normalityofalldatadistributionwasassessedbyvisual inspec-tionand using theShapiro–Wilk test. All dataincluded length, weight,haematologyvalues,cellnumbersandviability,SI,essential and non-essential element levels,and persistent organic pollu-tant(POP)andnaturallyproducedmethoxylatedpolybrominated diphenylether(MeO-PBDE)levels.Allvalueswerelog-transformed (log10)toachievenormaldistributions.Comparisonsofthemeans

oflymphocytestimulationindexesbetweensexes,locations, sea-sonsand yearsofsamplingwereperformedusingtheStudent’s t test (two-tailed),respecting thenormalityof distributionand equality of variances (Bartlett, p>0.05). When variances were unequal,theSatterthwaite’sapproximatettestwasused.Thelevel ofstatisticalsignificancewasdefinedatp<0.05.Whennormalityof distributioncouldnotbeachieveddespitethelog-transformation, thenon-parametricMann–WhitneyUtestwasused.Assample sizesweresmall (n<20 for each group), theobtainedUvalues werecomparedtorespectivecriticalUvalues(AppalachianState University,2013).

Forchemicalelementmeasurements,eachvaluebelowLOQwas replacedwithavalueofLOQ/2andusedinthestatisticaltests.

Intheothertestsperformed(correlationtests,Principal Com-ponentAnalysisandregressions),pollutantswithmorethan50%of values<LOQweresuppressedasmostoftheirvalueswereidentical (LOQ/2),thuspresentingalowvariability.Afterlog-transformation, noneof theconsidered distributions differed significantlyfrom normalityasshownbytheShapiro–Wilktests(allW>0.897and p>0.05).Correlationtests(Bravais-Pearson)wereusedto investi-gatepotentialrelationshipsbetweeninvitrolymphoproliferative responsesand peripheralbloodcontaminant andtraceelement concentrations two-by-two. Then, a more global approach was foreseen,consideringpollutantsascombinedcompoundsasthey canactasamixturewithsynergicandantagonisticbehaviours.A PrincipalComponentAnalysis(PCA)wasrealizedinordertoreduce thenumberoforiginalpollutantvariables.Then,thetwofirstfactor scoresrevealedbythePCAwereusedinamultipleregressiontest astheindependentvariables,withSIandlymphocytenumbersas dependantvariables.

3. Results

3.1. Levelsoftraceelementsinwholeblood

Traceelementlevelswereallabovethedetectionlimitexcept thatforCd,forwhichsevensealssampledin2011exhibitednon detectableconcentrations(Table2).AgeneralLOQmeanvaluewas calculatedforallindividuals,andwhensomeindividualspresented concentrations below theirown LOQ, theirnumber wasadded

(6)

Table2

Medians,ranges(minima–maxima),andmeans±standarderrors(SE)oftraceelementsexpressedin␮g/gdwandin␮g/l(*exceptFe,inmg/l)ofwholeblood(n=18).

Concentrations(␮g/gdw) Concentrations(␮g/l)

Median Range Mean±SE Median Range Mean±SE

Fe 2682 2500–2822 2658±20 744* 647–1139* 772±33* Zn 11.5 9.8–13.2 11.4±0.2 3167 2956–4318 3276±88 Se 3.4 2.1–6.8 3.6±0.2 976 544–1884 1020±69 Cu 2.7 2.3–3.4 2.8±0.1 757 595–1088 801±36 Hg 1.1 0.7–1.5 1.1±0.1 305 167–661 322±26 Pb 0.032 <0.028–0.043 0029±0.003(9) 8.9 <8.3–16.9 8.6±1.0 Cd <0.006 <0.002–0.026 <0.006±0.001(12) <1.8 <0.6–8.5 <1.8±0.5

betweenparentheses.Forexample,Cdpresented12valuesbelow

itsLOQ,ofwhich7belowitsLOD.Theessentialtraceelements

exhibitedminorvariationsinconcentrationlevels,withrelative

standarddeviation(RSD)valueslowerthan20%forFe,Cu,andZn,

and28%forSe.TheirRSDexpressedgreaterinterindividual

varia-tionswith32%forT-Hg,55%forPband142%forCd.Themedian

Se/T-Hgmolarratiowas7.9(min.–max.=4.7–17.6).

Nosignificantdifferenceofmedians(Mann–WhitneyUtest)

was observed between genders, seasons of sampling

(spring-autumn) except for Cd and Fe (p<0.05), years of sampling

(2010–2011)exceptforCd(p<0.01),andplacesofsampling(KL-LP)

exceptforZn(p<0.01).

3.2. LevelsofPOPsinserum

Table3summarizesPCBs,HO-PCBs,DDXs,PCP,PBDEs, TBA,TN,OxCandHCBserumconcentrations(pg/ml).The contam-inantsfoundatthehighestconcentrationswerePCBs,constituting 86%ofthemeantotalPOPs,followedbytheirhydroxylated metabo-litesHO-CBs,andtotalDDT(DDXs)ofwhichthecontributionof p,p-DDEwasupto93%.ThePCBprofileof the18 animalswas CB153>CB138>CB187>CB146>CB99.TheHO-PCBprofilewas 4-HO-CB107>162>146>187.The4-HO-CB107,oneofthe low-estchlorinatedcompounds,indeedaccountedfor49%ofthesum inaverage(min.24–max.58%).Itsmedianconcentrationwastwo timeshigherthanthatof4-HO-CB162andtentimesthatof 4-HO-CB187.SomeHO-PCBs(3-HO-CB118,4-HO-CB127and3-HO-CB 180)werenotfoundinanysample,while4-HO-CB79and4-HO-CB 193weredetectedinlessthan25%ofallsamples.Themeanratio HO-PCBs/PCBsequalled0.10andtherewasagoodcorrelation betweenthetwogroupsofpollutants(r2=0.76).

For PBDEs,BDE 47 was thepredominantcongener followed byBDE 100.Trans-nonachlor and oxychlordanelevelsappeared variableamong individuals.Among extremevalues, 6 individu-alspresentedconcentrationsbeloworjustabovetheLOQ,and3 animalssampledinSeptember2010presentedconcentrations10 timeshigherthantheLOQ.HCBwas<LOQinmorethan65%ofthe samplesanalyzed.o,p-DDT,o,p-DDD,4-diHO-CB202,6-MeO-BDE 47and2-MeO-BDE68werebelowLOQforallindividuals.One individual(harboursealno.7–Table1)displayedhigherpollutant

Table3

Medians,ranges(minima–maxima),andmeans±standarderrors(SE)oforganic pollutantsmeasuredinserumofharbourseals,expressedinpg/ml(n=18).

Median(pg/ml) Range(pg/ml) Mean±SE(pg/ml)

PCBs 28,863 7498–102,819 34,315±6051 HO-PCBs 2326 1269–4129 2398±212 DDXs 2234 649–6377 2739±430 PCP 134 62–293 155±16 PBDEs 94 46–249 125±18 TBA 79 33–166 84±9 TN 65 13–245 92±18 OxC 48 <10–262 79±19 HCB <20 <20–35 <20±3

loadsthantheotherindividuals.ItsPCBsconcentrationwason

average5.5timeshigherthantheoneoftheotheranimals,while

itsPBDEslevelwasonaverage3timeshigherthanintheothers.

NostatisticaldifferenceofPOPmedians(Mann–WhitneyUtest)

wasobservedbetweenmalesandfemales forPCB28

(trichloro-biphenyl), tetraCBs, pentaCBs, octaCBs, PCB 206 and 209

(nona-anddeca-CB,respectively),HCB,HO-CBandPCP(p>0.05).

On the contrary, hexaCBs (p=0.030), heptaCBs (p=0.046),

PCBs (p=0.046), OxC, TN, DDXs, BDEs and TBA had

p-values<0.05.

Nostatisticallysignificantdifferencewasobservedbetweenthe

seasonand yearofsampling,exceptfor PCP(p<0.01)and HCB

(p<0.05).

3.3. Haematologicalprofiles

Medianvalueswerecalculatedtakingtheseasonofsampling

intoaccountassomehaematologicalvaluesvarywithit(Table4;

Hasselmeieretal.,2008).Indeed,theMann–WhitneyUtestshowed thatthenumbersoflymphocytes,monocytes,RBCandHCTwere significantlydifferentbetweenthetwoseasonsconsidered(U<16, p<0.05).Themedianvaluesforspringwere7900neutrophilsper blood millilitre(min. 6400–max.10,500), 1600lymphocytes/ml (min.900–max.2300)and500monocytes/ml(min.300–max.900). Inautumn,themedianvalueswere6800neutrophilsperblood ml(min.4400–max.9400),3000lymphocytes/ml(min.2500–max. 5400)and200monocytes/ml(min.100–max.200).

This distinction between seasons was helpfulto adequately evaluatethehealthparameterslinkedtohaematologicalprofile, ascomparedtoliteraturedata(Hasselmeieretal.,2008).

3.4. PBLinvitrocultures

ThelymphocyteproliferationresponsestoinvitroConA stim-ulationwerecharacterized for18 harbour sealsfromthesame populationafter72hofincubation.Theviabilityofcellsisolatedby densitygradientcentrifugationwasalwaysabove96.7%(median 98.9%)afterthawing.After72hofincubation,lymphocyte prolif-erationinpresenceofConAwasdemonstratedbytheBrdUtest analysis.TheflowcytometryAV-PIlabellingtestsshowedthatthe majorityofthelymphocyteswereoutoftheapoptoticandnecrotic pathwaysbeforeandaftertheincubationperiods.

Asregardsthestimulationindex,nocorrelationbetweenthe latterandbodylengthorweightwasdetected(p>0.05).Alldata werepooledastherewasnosignificantdifferenceinstimulation indexesbetweengenders,seasons,yearsandplacesofsamplings. Despiteastronginterindividualvariability,lymphocytesofall indi-vidualsshowedstrongstimulationresponses,withmeanvalues reachingatleast3timestheoneobtainedforthecorresponding control(Fig.3).Opticaldensityvalueswerefoundtobe0.09±0.01 (mean±SE;median:0.07,min.–max.:0.01–0.24)inunstimulated control,comparedtoConA-stimulatedconditionswhichaverage valuewas0.9±0.08(mean±SE;median:0.9,min.–max.:0.3–1.5).

(7)

Table4

Medians,ranges(minima–maxima),andmeans±standarderrors(SE)ofbloodcellparametersofharbourseals(n=18)basedontheseasonofsampling(spring=April, autumn=September).RBC=redbloodcells;HGB=haemoglobin;HCT=haematocrit;PLT=platelets.

Bloodcellparameters Spring(n=11) Autumn(n=7)

Median Range Mean±SE Median Range Mean±SE

Lymphocytes(G/l)** 1.6 0.9–2.3 1.6±0.04 3.0 2.5–5.4 3.5±0.2 Monocytes(G/l)** 0.5 0.3–0.9 0.6±0.02 0.2 0.1–0.2 0.2±0.01 Neutrophils(G/l) 7.9 6.4–10.5 8.3±0.13 6.8 4.4–9.4 6.8±0.2 RBC(million/mm3)* 5.0 4.6–5.3 5.0±0.02 4.5 4.3–5.1 4.6±0.04 HGB(g/dl) 20.9 17.4–24.8 21.1±0.2 19.4 19.0–21.6 20.2±0.2 HCT(%)** 59.2 55.6–64.3 59.5±0.2 51.9 50.8–57.8 53.9±0.5 PLT(thousand/mm3) 358 324–437 372±4 420 334–476 416±6

* Significantdifference:U<16,andp<0.05. ** Significantdifference:U<10,andp<0.01.

Fig.3.Stimulationindex(SI)meanvaluesoftriplicateswithcoefficientof varia-tionbarsfortheBrdUproliferationassayofharbourseallymphocytesafter72hof incubation(n=18).

3.5. Relationshipsbetweenlymphocyteparametersand contaminantlevels

Analyses ofin vitro lymphocyteSI suggested nostatistically significantcorrelationwiththedifferenttraceelements,organic contaminantspeciesandsums studied(p>0.05,e.g.,correlation coefficientofSIandPCBs=0.14,p=0.58).Ontheotherhand,the numberoflymphocytespermlofwholebloodappearednegatively correlatedtoPCB209(r=−0.51,p=0.03),4-HO-CB208(r=−0.53, p=0.02)andPCP(r=−0.63,p=0.005).

Tofurtherinvestigatethoserelationships,aPCAbasedonthe correlationmatrixwasrealizedwiththemetallicpollutantT-Hg andallsumsofPOP,exceptPbandHCBforwhichatleast50%of valueswere<LOQ,andwerenotnormallydistributedevenafter log-transformation.Thecorrelation-basedPCArevealedtwo prin-cipalcomponentsexplaining81.0%ofthetotalvariance.Thetwo firstcomponentloadsaresummarizedin Table5.Thevariables

Table5

PollutantloadsforthetwofirstcomponentsofthePCA.

Component1 Component2 T-Hg(log) −0.49 −0.71 PCBs(log) 0.94 −0.13 OxC(log) 0.94 −0.04 TN(log) 0.97 0.07 DDXs(log) 0.97 0.03 PBDEs(log) 0.97 −0.02 HO-PCBs(log) 0.86 −0.46 PCP(log) 0.30 −0.50 TBA(log) 0.41 0.68

Varianceexplained(cumulative) 64.7% 81.0%

Fig.4.PC1andPC2loadingplot.Theninepollutantvectorsoflog-transformed concentrationsrepresenttheBravais-Pearsoncorrelationswiththefirstandsecond principalcomponents.

PCBs, OxC,TN, DDXs,PBDE andHO-PCBs loaded

princi-pallyinPC1(allloadingspositiveandatleast0.86),whereasTBA

loadedmostlyonPC2(loading=0.68).T-HgloadedmostlyonPC2

butpresentedanegativevalue.Theloadingplot(Fig.4)highlighted

distinctivefeaturesofHg-TandTBAcomparedtotheotherPOPs ofwhichbloodlevelswerecorrelatedwithoneanother,indicating multipleexposure.

Multipleregressionsofthetwoprincipalcomponentswiththe lymphocyte stimulation indexand number of lymphocytesper mlofwholebloodrevealedasignificantpositivecorrelationonly betweenPC2andlymphocytenumbers(Table6,p-value<0.05).

Acorrelationtestwasalsoperformedgroupingthe3dioxin-like PCBcongeners(IUPAC#105,118,156)andthe26non-dioxin-like PCBcongeners(IUPAC#28,52,74,87,95,99,101,110,128,138, 146,149,153,170,171,172,174,177,180,183,187,194,196/203, 199,209)together.Nosignificantcorrelationwasfoundbetween theSIandoneofthosetwogroups(p=0.98and0.58,respectively), evenwhenconsideringmalesandfemalesseparately.

Table6

Multipleregressionresultsfortherelationshipbetweenthetwofirstprincipal com-ponentsofthePCAandthelymphocytestimulationindex(SI),andnumberof lymphocytesperbloodmillilitre(×106/ml).

t-Value p-Value SI(log) Component1 0.64 0.53 Component2 −0.84 0.41 Lymphocytenumber (log) Component1 0.69 0.50 Component2 4.43 0.00

(8)

3.6. Relationshipsbetweenbodyweightandcontaminantlevels

ThebodyweightwassignificantlycorrelatedtoPCB99

repre-senting65%ofpentaCB(r=−0.48,p=0.044),hexaCB,heptaCB,

octaCB, PCB 206 (nonaCB) and 209 (decaCB), and PCBs

(r=−0.57, p=0.015), DDXs (r=−0.53, p=0.025), BDE 100 and

HO-PCBs(r=0.5,p=0.04).Bodyweightwasnotsignificantly

cor-relatedtotheSI(p<0.05).

4. Discussion

During theselastdecades, theharboursealpopulationfrom

the North Sea hasbeen depleted by two epizootics caused by

phocinedistempervirus(Härkönenetal.,2006;Mülleretal.,2004).

Severalstudieshavethereforeinvestigatedthehealthand pres-enceofcontaminantsinharboursealsfromthisarea(Reijnders, 1980,1981;Siebertetal.,2012;Weijsetal.,2009b,c). Concomi-tantdevelopmentofhealthmonitoringprogrammesandinvitro assayscircumventedthelackofexperimentaldataabout contam-inantexposureand broughtinformationonpotentialeffects,as wellasonbiochemicalpathwaysoftoxiccompounds(deSwart etal.,1995b,c;Ross,2002;Rossetal.,2003a,b;Vosetal.,2003). Theuseofinvitroperipheralbloodleucocytesoffersawiderange ofapplicationsbutonedrawbackisthatthesecellshavealready beenexposedtoamixtureoforganicandinorganiccontaminants inthebloodofmarinemammals.Indeed,harboursealsofthe Wad-denSeadisplayedhighbloodlevelsofcontaminantsinthepresent study(PCBs,HO-PCBs,DDXsandT-Hg)(Tables2and3). Con-centrationsoforganiccontaminants(PCBs,HO-PCBsDDXs, PBDEs,MeO-PBDEs)andtraceelements(Hg,Cd,Pb,Zn,Cu,Fe) analyzedinthebloodofthese18harboursealsarefromthesame orderofmagnitudethanthosefoundinthelastfewyearsin individ-ualsfromthesamesealpopulation(Dasetal.,2008;Grieseletal., 2006,2008;Kakuschkeetal.,2008;Weijsetal.,2009a).Theprofile ofPCBs(CB153>CB138>CB187>CB146>CB99)analyzedinthe serumwassimilartothatdescribedpreviouslyforharbourseals collectedbetween2006and2008inthesamegeographicalarea (Weijsetal.,2009a),andforgreysealsfromtheNorthSeawhere PCB153and138werethemaincontributors(VandenBergheetal., 2012).

Bloodsamplesprovideawindowintoananimal’scomplex net-workofimmunefunction(DeGuise,2002).Haematologyprofiles ofthe18sealswerecomparabletoapreviousstudyonfree-ranging andcaptiveharboursealsfromtheWaddenSea(Hasselmeieretal., 2008).However,thelymphocytenumbersinautumnwerehigher comparedtothedatagivenbyHasselmeieretal.(2008),butstay intherangegivenforspring.Oneindividual(harbourseal num-ber4–Pv4)presentedamuchhigherautumnconcentrationwith 5400lymphocytes/ml.In allanimals ofthis study,the erythro-cytehaematologyprofilewasgenerallymorehomogeneousthan theleucocyteprofile,whichis moreinfluencedbyphysiological changes(e.g.,bacterialorviraldiseases,stress)(Hasselmeieretal., 2008).Thelifehistoriesoftheseindividualsareunknownasthey arelivinginthewildbutitisknownfrompathological investiga-tionsthatthosefree-ranginganimalshavemildinfectiousdiseases, whichexplainsthevariabilityobservedinbloodleucocyteprofiles (Siebertetal.,2007).

Lymphoproliferativeresponse,asaspecificT-cellresponse,can alsogivevaluableinformationontheadaptiveimmuneresponse. Despite the variability related to samples obtained from free-rangingharbourseals,aclearstimulationof theTlymphocytes associatedwithasignificantproliferationcouldbeobserved(Fig.3). Theinvitrostimulationindex(SI),currentlyusedincellculture, showed significantinterindividual variation. Nevertheless, high inter-andintra-individualvariationsoflymphocyteproliferation

alsooccurin humansin which thewholelifehistory is gener-allyknown,andinwhichhomogeneousgroupsweretested(e.g. Stoneetal.,2009).Ourresultsdidnothighlightanyclear corre-lationbetweenthestimulationindicesandthepollutantsorclass ofpollutantsstudied(component1,Table5).Incontrast,a pre-viousstudyshowedthatinvitroConA-inducedperipheralblood lymphocyteproliferationwasinverselycorrelatedtowholeblood levelsof tetra- toocta-CBs,p,p-DDT,o,p-DDEand p,p-DDEin a smallgroup(n=5)ofbottlenose dolphins (Tursiopstruncatus) (Lahvis et al., 1995). However, thevery small sample size and largeage range of those animals(3–32 years old, approximate age) precluded drawing extensive conclusions. Studies on har-boursealpupshighlightedmodulatingeffects ofPCBsfromthe blubber (Levinet al.,2005;Mos etal., 2006).Mos etal.(2006) showed that the proliferative responses of T lymphocytes, but not ofBlymphocytes(mimickedby stimulationwiththe poly-clonalactivatorsConAandlipopolysaccharide(LPS),respectively), weresignificantlydecreasedinharboursealpupspresentinghigher PCB concentrations in their blubber. On the other hand, Levin etal.(2005)reportedasignificantbodyweight-independent posi-tivecorrelationbetweenbothT-cellmitogen(phytohemagglutinin [PHA])-andB-cellmitogen(LPS)-inducedlymphocyteproliferation and the blubber concentrations of 11 PCBs, but no signifi-cantcorrelationswerefoundbetweenConA-inducedlymphocyte proliferationandtotalPCBconcentration(Levinetal.,2005). How-ever,thecorrelationsobservedbetweenlymphocyteproliferation indices and blubber or blood PCB levelsare different as these two tissuesdiffer in OC affinitiesand retention capacities. This isbecausetheirlipidcompositionis differentandbecause con-taminantshavedifferentlipophilicproperties(AddisonandBrodie, 1987;Sinjarietal.,1996),resultinginaselectiveretentionofthe morelipophiliccompoundsintheblubberandthemorepolar com-poundsintheblood(Lydersenetal.,2002).

Intheframeworkofinvitroexposuretocontaminants,Neale et al. (2002) showed no significantdepression in harbour seal lymphoproliferationwhenexposedto10␮MCB-156andCB-80. Other studies of in vitro exposure tosome OC mixtures (PCBs andTCDD)haverevealedsignificantpositivecorrelationswiththe ConA-inducedTcellproliferationintheharbourseal,Northernfur seal,Stellersealion,belugawhale,Commerson’sdolphinandsea otter(Levinetal.,2007;Morietal.,2006).Onthecontrary, signifi-cantdecreasesinlymphocyteproliferationwereseenaftermercury exposureinharbourseals(Dasetal.,2008;Dufresneetal.,2010) andafterOCmixtureexposureinmice(Morietal.,2006),for exam-ple.Theinvitroexposureofharboursealgranulocytesto12␮M ofBDE-47,-99and -153had alsobeenshowntoinducea thiol depletionandphagocytosisinhibition(Frouinetal.,2010).

In the present study, the number of activated lymphocytes appearedsignificantlynegatively correlatedtoonlya fewblood pollutants (PCB 209, 4-HO-CB208 and PCP) but this cannot be clearlydiscussedforPCB209and4-HO-CB208astheyareminor compounds.Incontrast,PCP,awidelyusedpesticideubiquitous intheenvironment,hadbeendemonstratedtohavesuppressive effects on human lymphocytes in vitro (Lang and Mueller-Ruchholtz, 1991) as well as on diverse cellular and humoral immuneparameters(Danieletal.,1995,2001).Serumlevelsare notavailableforcomparisoninmarinemammals,buthumans usu-allypresentmuchlowerconcentrations(ButteandHeinzow,1995). PCPshouldthusbemonitoredinmarinemammalsinordertofind outmoreaboutitsbiologicaleffects.

Thefactthatnoclearcorrelationcouldbefoundbetweenthein vitroSIandthecontaminantspresentinbloodoffree-rangingadult harboursealsatthattimeoftheirannualcycledoesnotmeanthat chemicalshavenotoxiceffectonPBLs.Inalllikelihood,thereare morecomplexinteractionsbetweenconfoundingfactors explain-ingimmunological variationsobservedinvitro.Inanycase, the

(9)

resultsobtainedininvitroassaysshouldbeinterpretedcautiously asPBLsareisolatedfromenvironmentallycontaminatedharbour seals.Generallyspeaking,factorssuchaspreciseage,nutritional status,geneticfactors,stress,disease,nursing,orfasting,mayhave additionalinfluencesonimmunefunctions,therebylimitingthe directabilitytodetecttheeffectsofcontaminantsontheimmune system(Levinetal.,2005).Thosefactorsshouldthusbetakeninto consideration,withintherealmsofpossibility.Inthisstudy,all indi-vidualswereadultsinagoodbodycondition,presentingnosign ofdisease.Yetminorinjuriesorinfections andstressmayhave influencedthelymphocyteresponses.

Furthermore,contaminantsweremeasuredinserum(organic pollutants)orwholeblood(metals)andnotinblubberorinliver, both tissues known to accumulate these contaminants over a lifetime(Weijset al.,2011)incontrast toblood(Habranet al., 2013). However,correlations couldbe made betweenlevels of organochlorinesfoundinbloodandblubber(Lydersenetal.,2002). Phocidsealsregularlygothroughfastingorreducedfoodintake periodsandmostoftheirmasslossduringtheseperiodsisderived fromcatabolismoflipidsfromtheirinnerblubberlayer(Nordoy andBlix,1985).Inharbourseals,themobilizationoflipidsfrom theblubbernotablyoccursinindividualshavinglowerfoodintake duringthebreedingandmoultingseasons(Burns,2008),inpups duringthepostweaningfast(MuelbertandBowen,1993)andin femalesproducingmilk(Bonessetal.,1994).Lactationisindeed particularlydemanding,leadingtoimportantlossofbodyfatand energy(Bowenetal.,1992).Bloodsamplesfromasealwhichis inastateofpositiveenergybalancewouldthushavePOPlevels reflectingthoseinthediet,whilebloodlevelsduringfastingand lactatingperiodsarereflectinginnerblubberlevelsof bioaccumu-latedlipophiliccontaminants.Moreover,sealsinaprimecondition generallyhavelowerconcentrationsthananimalsinapoor con-dition(Lydersenet al.,2002).Harboursealsof this studywere sampledwhileinagoodconditionbeforethebreedingseasonand afterthemoultingseason,andnotwhilein apoorconditionas duringmoultforexample.Theirbloodlevelscouldthusreflectlow contaminantconcentrationscomparedtothoseoffastingandmilk productionperiods.

Resultsobtainedinourstudyhighlightedthefactthatvariations inproliferationcouldnotbedirectlylinkedtothebloodpollutants investigatedinadultharboursealsinagoodbodycondition,but thatotherfactorscouldmostlikelyhaveaninfluence.Field stud-iesdothusallowtheopportunitytostudythedirectandindirect effectsof real-worldexposurestoPOPs ontheimmunesystem whenconfoundingfactorsareminimized(Levinetal.,2005). 5. Conclusions

Weprovideherearelevantapproachtogetabetter understand-ingoftherelationshipsbetweentheimmunefunctionandseveral organicandinorganiccontaminantspresentinthebloodof free-rangingadultharboursealsfromtheNorthSea. Thisisthefirst studyreportingthesimultaneousmeasurementofblood haematol-ogyparameters,traceelements,PCBs,PBDEs,naturallyproduced MeO-PBDEs,DDXs,OxC, TN,HCBand themetabolitesHO-PCBs, inbloodofhealthyharbourseals,concomitantlytothestudyof lymphocyteproliferation invitro.Significantlymphocyte prolif-erationwasobservedandresultshighlighteda clearcorrelation betweenthenumberoflymphocytesperbloodmillilitreandPCP, butnotbetweenthelymphocytestimulationindicesandblood con-taminantlevels.Thiscorroboratesthefactthatperipheralblood lymphocytesisolatedfromwildharboursealsandculturedin con-trolledconditionsconstituteavaluabletoolforinvitrostudies,as longasconfoundingfactorsarelimited.Nevertheless,astudy car-riedoutona biggersamplesizewouldbenecessarytoconfirm thoseresults.

Acknowledgements

AurélieDupontwassupportedbyaFRIAgrant(Fondspourla for-mationàlarecherchedansl’industrieetdansl’agriculture).Krishna DasisaF.R.S.–FNRSResearchAssociate(FondsdelaRecherche Sci-entifique).ThisstudywassupportedbytheFRFCGrant#2.4502.07 (F.R.S.-FNRS).Thesealcapturewasconductedunderthefundingof theMinistryofRenewableEnergies,Agriculture,Environmentand RuralAreasofSchleswig-Holstein,Germany.LiesbethWeijsand AdrianCovaciacknowledgefinancialsupportfromFWO-Flanders (FoundationforScientificResearch).Theauthorswishtothankall peopleinvolved,fortheirhelpinthefieldtrials,samplingand pro-cessingofbloodanalyses.TheauthorsarealsogratefultoRenzo Biondo(LaboratoryofOceanology,ULg)foritsvaluabletechnical assistanceintraceelementanalysis,andtoRaafatStephanforhis helpin flow cytometry(Imaging andFlowCytometryplatform, GIGA,ULg).ThisisaMAREpublication.

References

Addison,R.F.,Brodie,P.F.,1987.Transferoforganochlorineresiduesfromblubber throughthecirculatorysystemtomilkinthelactatinggreysealHalichoerus grypus.Can.J.Fish.Aquat.Sci.44,782–786.

AppalachianStateUniversity,2013.CriticalValuesoftheMann-WhitneyU (Two-Tailed Testing) [Data file], Retrieved from: http://www.lesn.appstate.edu/ olson/statdirectory/Statistical%20procedures/MannWhitney%20U%20Test/ Mann-Whitney%20Table.pdf

Boness,D.J.,Bowen,W.D.,Oftedal,O.T.,1994.Evidenceofamaternalforagingcycle resemblingthatofotariidsealsinasmallphocid,theharborseal.Behav.Ecol. Sociobiol.34,95–104.

Bowen,W.D.,Oftedal,O.T.,Boness,D.J.,1992.Massandenergytransferduring lactationinasmallphocid,theharborseal(Phocavitulina).Physiol.Zool.65, 844–866.

Burns,J.J.,2008.HarborsealandspottedsealPhocavitulinaandP.largha.In:Perrin, W.F.,Wursig,B.,Thewissen,J.G.M.(Eds.),EncyclopediaofMarineMammals., seconded.AcademicPress,SanDiego,CA,pp.533–542.

Butte,W.,Heinzow,B.,1995.ReferenzwertederKonzentrationanPentachlorphenol inSerumundUrin(deutsch).KlinischesLabor12,31–35.

CámaraPellissó,S.,Mu ˜noz,M.J.,Carballo,M.,Sánchez-Vizcaíno,J.M.,2008. Determi-nationoftheimmunotoxicpotentialofheavymetalsonthefunctionalactivity ofbottlenosedolphinleucocytesinvitro.Vet.Immunol.Immunopathol.121, 189–198.

ChemoMetec A/S, 2013. NucleoCounter NC-100 concept. Cell via-bility, Retrieved from: http://www.chemometec.com/en-GB/ Products/NucleoCounter-NC-100/NC-100-Concept/Cell-Viability

Colegrove,K.M.,Greig,D.J.,Gulland,F.M.D.,2005.Causesoflivestrandingsof north-ernelephantseals(Miroungaangustirostris)andpacificharborseals(Phoca vitulina)alongthecentralCaliforniaCoast,1992–2001.Aquat.Mamm.31,1–10.

Daniel,V.,Huber,W.,Bauer,K.,Opelz,G.,1995.Impairedin-vitrolymphocyte responsesinpatientswithelevatedpentachlorophenol(PCP)bloodlevels.Arch. Environ.Health50,287–292.

Daniel,V.,Huber,W.,Bauer,K.,Suesal,C.,Mytilineos,J.,Melk,A.,Conradt,C., Opelz,G.,2001. Associationofelevatedbloodlevelsofpentachlorophenol (PCP)withcellularandhumoralimmunodeficiencies.Arch.Environ.Health56, 77–83.

Das,K.,Debacker,V.,Pillet,S.,Bouquegneau,J.-M.,2003.Heavymetalsinmarine mammals.In:Vos,J.G.,Bossart,G.,Fournier,M.,O’Shea,T.(Eds.),Toxicologyof MarineMammals.TaylorandFrancisPublishers,Washington,DC,pp.135–167.

Das,K.,Siebert,U.,Gillet,A.,Dupont,A.,Di-Poï,C.,Fonfara,S.,Mazzucchelli,G.,De Pauw,E.,DePauw-Gillet,M.-C.,2008.Mercuryimmunetoxicityinharbourseals: linkstoinvitrotoxicity.Environ.Health,7.

DeGuise,S.,2002.Cellularimmunologyofcetaceans.In:Pfeiffer,C.J.(Ed.),Molecular andCellBiologyofMarineMammals.KriegerPublishingCompany,Melbourne, Florida,pp.235–244.

DeGuise,S.,Martineau,D.,Béland,P.,Fournier,M.,1998.Effectsofinvitro expo-sureofbelugawhaleleucocytestoselectedorganochlorines.J.Toxicol.Environ. HealthA55,479–493.

DeGuise,S.,Beckmen,K.B.,Holladay,S.D.,2003.Contaminantsandmarine mam-malimmunotoxicologyandpathology.In:Vos,J.G.,Bossart,G.D.,Fournier,M., O’Shea,T.J.(Eds.),ToxicologyofMarineMammals.NewPerspectives:Toxicology andtheEnvironment.TaylorandFrancis,London,pp.38–54.

deSwart,R.L.,Kluten,R.M.G.,Huizing,C.J.,Vedder,L.J.,Reijnders,P.J.H.,Visser,I.K.G., UytdeHaag,F.G.C.M.,Osterhaus,A.D.M.E.,1993.MitogenandantigeninducedB andTcellresponsesofperipheralbloodmononuclearcellsfromtheharbour seal(Phocavitulina).Vet.Immunol.Immunopathol.37,217–230.

deSwart,R.L.,Harder,T.C.,Ross,P.S.,Vos,H.W.,Osterhaus,A.D.M.E.,1995a. Morbil-livirusesandmorbillivirusdiseasesofmarinemammals.Infect.AgentsDis.4, 125–130.

deSwart,R.L.,Ross,P.S.,Timmerman,H.H.,Hijman,W.C.,deRuiter,E.M.,Liem,A.K.D., Brouwer,A.,vanLoveren,H.,Reijnders,P.J.H.,Vos,J.G.,Osterhaus,A.D.M.E.,

(10)

1995b.Shorttermfastingdoesnotaggravateimmunosuppressioninharbour seals(Phocavitulina)withhighbodyburdensoforganochlorines.Chemosphere 31,4289–4306.

deSwart,R.L.,Ross,P.S.,Vedder,L.J.,Boink,F.B.T.H.,Reijnders,P.J.H.,Mulder,P.G.H., Osterhaus,A.D.M.E.,1995c.Haematologyandclinicalchemistryvaluesfor har-bourseals(Phocavitulina)fedenvironmentallycontaminatedherringremain withinnormalranges.Can.J.Zool.73,2035–2043.

deSwart,R.L.,Ross,P.S.,Vos,J.G.,Osterhaus,A.D.M.E.,1996.Impairedimmunityin harbourseals(Phocavitulina)exposedtobioaccumulatedenvironmental con-taminants:reviewofalong-termfeedingstudy.Environ.HealthPerspect.104, 823–828.

Debier,C.,Pomeroy,P.P.,Dupont,C.,Joiris,C.,Comblin,V.,LeBoulengé,E.,Larondelle, Y.,Thomé,J.-P.,2003.QuantitativedynamicsofPCBtransferfrommothertopup duringlactationinUKgreysealsHalichoerusgrypus.Mar.Ecol.Prog.Ser.247, 237–248.

Dietz,R.,Heide-Jørgensen,M.P.,Harkonen,T.,1989.Massdeathsofharborseals (Phocavitulina)inEurope.Ambio18,258.

Dufresne,M.M.,Frouin,H.,Pillet,S.,Lesage,V.,DeGuise,S.,Fournier,M.,2010.

Comparativesensitivityofharbourandgreysealstoseveralenvironmental contaminantsusinginvitroexposure.Mar.Pollut.Bull.60,344–349.

Duignan,P.J.,Saliki,J.T.,StAubin,D.J.,Early,G.,Sadove,S.,House,J.A.,Kovacs,K., Geraci,J.R.,1995.EpizootiologyofmorbillivirusinfectioninNorthAmerican harborseals(Phocavitulina)andgrayseals(Halichoerusgrypus).J.Wildl.Dis.31, 491–501.

Frouin,H.,Lebeuf,M.,Hammill,M.,Masson,S.,Fournier,M.,2010.Effectsof individ-ualpolybrominateddiphenylether(PBDE)congenersonharboursealimmune cellsinvitro.Mar.Pollut.Bull.60,291–298.

Greenland,J.A.,Limpus,C.J.,2007.Marinewildlifestrandingandmortalitydatabase annualreport2007.II.CetaceanandPinniped.In:EnvironmentalProtection Agency,Conservationtechnicalanddatareport.,pp.30.

Griesel,S.,Mundry,R.,Kakuschke,A.,Fonfara,S.,Siebert,U.,Prange,A.,2006. Min-eralelementsandessentialtraceelementsinbloodofsealsoftheNorthSea measuredbytotal-reflectionX-rayfluorescenceanalysis.Spectrochim.ActaB: Atom.Spectrosc.61,1158–1165.

Griesel,S.,Kakuschke,A.,Siebert,U.,Prange,A.,2008.Traceelementconcentrations inbloodofharborseals(Phocavitulina)fromtheWaddenSea.Sci.TotalEnviron. 392,313–323.

Habran,S.,Debier,C.,Crocker,D.E.,Houser,D.S.,Das,K.,2011.Blooddynamicsof mercuryandseleniuminnorthernelephantsealsduringthelactationperiod. Environ.Pollut.159,2523–2529.

Habran,S.,Pomeroy,P.P.,Debier,C.,Das,K.,2013.Changesintraceelementsduring lactationinamarinetoppredator,thegreyseal.Aquat.Toxicol.126,455–466.

Hanni,K.D.,Long,D.J.,Jones,R.E.,Pyle,P.,Morgan,L.E.,1997.Sightingsandstrandings ofGuadalupefursealsincentralandnorthernCalifornia,1988–1995.J.Mammal. 78,684–690.

Härkönen,T.,Dietz,R.,Reijnders,P.,Teilmann,J.,Harding,K.,Hall,A.,Brasseur,S., Siebert,U.,Goodman,S.J.,Jepson,P.D.,Rasmussen,T.D.,Thompson,P.,2006.The 1988and2002phocinedistempervirusepidemicsinEuropeanharbourseals. Dis.Aquat.Organ.68,115–130.

Hasselmeier,I.,Fonfara,S.,Driver,J.,Siebert,U.,2008.Differentialhematology pro-filesoffree-ranging,rehabilitated,andcaptiveharborseals(Phocavitulina)of theGermanNorthSea.Aquat.Mamm.34,149–156.

Henderson,R.J.,Kalogeropoulos,N.,Alexis,M.,1994.Thelipidcompositionof selectedtissuesfromaMediterraneanmonkseal,Monachusmonachus.Lipids 29,577–582.

Jepson,P.D.,Bennett,P.M.,Deaville,R.,Allchin,C.R.,Baker,J.R.,Law,R.J.,2005.

Relationshipsbetweenpolychlorinatedbiphenylsandhealthstatusinharbor porpoises(Phocoenaphocoena)strandedintheUnitedKingdom.Environ. Toxi-col.Chem.24,238–248.

Kakuschke,A.,Prange,A.,2007.Theinfluenceofmetalpollutionontheimmune systemapotentialstressorformarinemammalsinthenorthsea.Int.J.Comp. Psychol.20,179–193.

Kakuschke,A.,Valentine-Thon,E.,Griesel,S.,Fonfara,S.,Siebert,U.,Prange,A.,2005.

Immunologicalimpactofmetalsinharborseals(Phocavitulina)oftheNorthSea. Environ.Sci.Technol.39,7568–7575.

Kakuschke,A.,Valentine-Thon,E.,Griesel,S.,Rosenberger,T.,Mundry,R.,Siebert, U.,Prange,A.,2008.Bloodmetallevelsandmetal-influencedimmunefunctions ofharboursealsincaptivity.Mar.Pollut.Bull.56,764–769.

Kannan,K.,Blankenship,A.L.,Jones,P.D.,Giesy,J.P.,2000.Toxicityreferencevalues fortoxiceffectsofpolychlorinatedbiphenylstoaquaticmammals.Hum.Ecol. RiskAssess.6,181–201.

Lahvis,G.P.,Wells,R.S.,Kuehl,D.W.,Stewart,J.L.,Rhinehart,H.L.,Via,C.S.,1995.

Decreasedlymphocyteresponsesinfree-rangingbottlenosedolphins(Tursiops truncatus)areassociatedwithincreasedconcentrationsofPCBsandDDTin peripheralblood.Environ.HealthPerspect.103,67–72.

Lang,D.,Mueller-Ruchholtz,W.,1991.Humanlymphocytereactivityafterinvitro exposuretotechnicalandanalyticalgradepentachlorophenol.Toxicology70, 271–282.

Levin,M.,DeGuise,S.,Ross,P.S.,2005.Associationbetweenlymphocyte pro-liferationandpolychlorinatedbiphenylsinfree-rangingharborseal(Phoca vitulina)pups fromBritish Columbia,Canada. Environ.Toxicol. Chem.24, 1247–1252.

Levin,M.,Leibrecht,H.,Mori,C.,Jessup,D.,DeGuise,S.,2007.Immunomodulatory effectsoforganochlorinemixturesuponinvitroexposureofperipheralblood leucocytesdifferbetweenfree-rangingandcaptivesouthernseaotters(Enhydra lutris).Vet.Immunol.Immunopathol.119,269–277.

Lipscomb,T.P.,Kennedy,S.,Moffett,D.,Krafft,A.,Klaunberg,B.A.,Lichy,J.H.,Regan, G.T.,Worthy,G.A.J.,Taubenberger,J.K.,1996.Morbilliviralepizooticin bot-tlenosedolphinsoftheGulfofMexico.J.Vet.Diagn.Invest.8,283–290.

Luebke,R.W.,Hodson,P.V.,Faisal,M.,Ross,P.S.,Grasman,K.A.,Zelikoff,J.,1997.

Aquaticpollution-inducedimmunotoxicityinwildlifespecies.Toxicol.Sci.37, 1–15.

Lydersen,C.,Wolkers,H.,Severinsen,T.,Kleivane,L.,Nordøy,E.S.,Skaare,J.U.,2002.

Bloodisapoorsubstrateformonitoringpollutionburdensinphocidseals.Sci. TotalEnviron.292,193–203.

Mori,C.,Morsey,B.,Levin,M.,Nambiar,P.R.,DeGuise,S.,2006. Immunomodu-latoryeffectsofinvitroexposuretoorganochlorinesonT-cellproliferation inmarinemammalsandmice.J.Toxicol. Environ.HealthA:Curr.Iss. 69, 283–302.

Mos,L.,Morsey,B.,Jeffries,S.J.,Yunker,M.B.,Raverty,S.,Guise,S.D.,Ross,P.S.,2006.

Chemicalandbiologicalpollutioncontributetotheimmunologicalprofilesof free-rangingharborseals.Environ.Toxicol.Chem.25,3110–3117.

Muelbert,M.M.C.,Bowen, W.D., 1993. Durationoflactation andpostweaning changesinmassandbodycompositionofharbourseal,Phocavitulina,pups. Can.J.Zool.71,1405–1414.

Müller,G.,Wohlsein,P.,Beineke,A.,Haas,L.,Greiser-Wilke,I.,Siebert,U.,Fonfara, S.,Harder,T.,Stede,M.,Gruber,A.D.,Baumgärtner,W.,2004.Phocinedistemper inGermanSeals,2002.Emerg.Infect.Dis.10,723–725.

Nakatsuru,S.,Oohashi,J.,Nozaki,H.,Nakada,S.,Imura,N.,1985.Effectofmercurials onlymphocytefunctionsinvitro.Toxicology36,297–306.

Neale,J.C.C.,VandeWater,J.A.,Harvey,J.T.,Tjeerdema,R.S.,Gershwin,M.E.,2002.

Proliferativeresponsesofharborseal(Phocavitulina)Tlymphocytestomodel marinepollutants.Dev.Immunol.9,215–221.

Nordoy,E.S.,Blix,A.S.,1985.Energysourcesinfastinggreysealpupsevaluated withcomputedtomography.Am.J.Physiol.–Regul.Integr.Comp.Physiol.249, R471–R476.

O’Shea,T.J.,Tanabe,S.,2003.Persistentoceancontaminantsandmarinemammals: aretrospectiveoverview.In:Vos,J.G.,Bossart,G.D.,Fournier,M.,O’Shea,T.J. (Eds.),ToxicologyofMarineMammals.Taylor&Francis,London,NewYork,pp. 99–134.

Osinga,N.,ShahiFerdous,M.M.,Morick,D.,GarcíaHartmann,M.,Ulloa,J.A., Ved-der,L.,UdodeHaes,H.A.,Brakefield,P.M.,Osterhaus,A.D.M.E.,Kuiken,T.,2012.

Patternsofstrandingandmortalityincommonseals(Phocavitulina)andgrey seals(Halichoerusgrypus)inTheNetherlandsbetween1979and2008.J.Comp. Pathol.147,550–565.

Pillet,S.,Fournier,M.,Measures,L.N.,Bouquegneau,J.-M.,Cyr,D.G.,2002.Presence andregulationofmetallothioneinsinperipheralbloodleucocytesofgreyseals. Toxicol.Appl.Pharmacol.185,207–217.

Reijnders,P.J.H.,1980.Organochlorineandheavymetalresiduesinharbourseals fromthewaddenseaandtheirpossibleeffectsonreproduction.Neth.J.SeaRes 14,30–65.

Reijnders,P.J.H.,1981.Managementandconservationoftheharbourseal,Phoca vitulina,populationintheinternationalwaddenseaarea.Biol.Conserv.19, 213–221.

Rogan,E.,Baker,J.R.,Jepson,P.D.,Berrow,S.,Kiely,O.,1997.Amassstrandingof white-sideddolphins(Lagenorhynchusacutus)inIreland:biologicaland patho-logicalstudies.J.Zool.242,217–227.

Ross,P.S.,2002.Theroleofimmunotoxicenvironmentalcontaminantsin facilitat-ingtheemergenceofinfectiousdiseasesinmarinemammals.Hum.Ecol.Risk Assess.8,277–292.

Ross,P.S.,DeSwart,R.,Addison,R.,VanLoveren,H.,Vos,J.,Osterhaus,A.,1996a.

Contaminant-inducedimmunotoxicityinharbourseals:wildlifeatrisk? Toxi-cology112,157–169.

Ross,P.S.,DeSwart,R.L.,Timmerman,H.H.,Reijnders,P.J.H.,Vos,J.G.,VanLoveren,H., Osterhaus,A.D.M.E.,1996b.Suppressionofnaturalkillercellactivityinharbour seals(Phocavitulina)fedBalticSeaherring.Aquat.Toxicol.34,71–84.

Ross,P.S.,DeSwart,R.L.,VanLoveren,H.,Osterhaus,A.D.M.E.,Vos,J.G.,1996c.The immunotoxicityofenvironmentalcontaminantstomarinewildlife:areview. Annu.Rev.FishDis.6,151–165.

Ross,P.S.,Beckmen,K.B.,Pillet,S.,2003a.Immunotoxicologyoffree-ranging pin-nipeds:approachestostudydesign.In:Vos,J.G.,Bossart,G.,Fournier,M.,O’Shea, T.(Eds.),ToxicologyofMarineMammals.TaylorandFrancisPublishers, Wash-ington,DC,pp.570–591.

Ross,P.S.,Vos,J.G.,Osterhaus,A.D.M.E.,2003b.Theimmunesystem,environmental contaminantsandvirus-associatedmassmortalitiesamongpinnipeds.In:Vos, J.G.,Bossart,G.,Fournier,M.,O’Shea,T.(Eds.),ToxicologyofMarineMammals. TaylorandFrancisPublishers,Washington,DC,pp.534–557.

Siebert,U.,Wohlsein,P.,Lehnert,K.,Baumgartner,W.,2007.Pathologicalfindings inharbourseals(Phocavitulina):1996–2005.J.Comp.Pathol.137,47–58.

Siebert,U.,Heidmann,A.,Friedhoff,N.,Kruse,H.,Rigét,F.,Adler,S.,Maser,E.,2012.

Organochlorineburdensinharboursealsfromthegermanwaddenseacollected duringtwophocinedistemperepizooticsandringedsealsfromwestgreenland waters.J.Environ.Anal.Toxicol.2,2–8.

Sinjari,T.,Klasson-Wehler,E.,Oskarsson,A.,Darnerud,P.O.,1996.Milktransferand neonataluptakeofcoplanarpolychlorinatedbiphenyl(PCB)congenersinmice. Pharmacol.Toxicol.78,181–186.

Stone,K.D.,Feldman,H.A.,Huisman,C.,Howlett,C.,Jabara,H.H.,Bonilla,F.A.,2009.

Analysisofinvitrolymphocyteproliferationasascreeningtoolforcellular immunodeficiency.Clin.Immunol.131,41–49.

vanLoveren,H.,Ross,P.S.,Osterhaus,A.D.M.E.,Vos,J.G.,2000.Contaminant-induced immunosuppressionandmassmortalitiesamongharbourseals.Toxicol.Lett. 112–113,319–324.

(11)

VandenBerghe,M.,Weijs,L.,Habran,S.,Das,K.,Bugli,C.,Rees,J.-F.,Pomeroy, P.,Covaci,A.,Debier,C.,2012.Selectivetransferofpersistentorganic pollu-tantsandtheirmetabolitesingreysealsduringlactation.Environ.Int.46,6– 15.

Vermes,I.,Haanen,C.,Steffens-Nakken,H.,Reutellingsperger,C.,1995.Anovelassay forapoptosisflowcytometricdetectionofphosphatidylserineexpressionon earlyapoptoticcellsusingfluoresceinlabelledAnnexinV.J.Immunol.Methods 184,39–51.

Vos,J.G.,Ross,P.S.,deSwart,R.L.,vanLoveren,H.,Osterhaus,A.D.M.E.,2003.The effectsofchemicalcontaminantsonimmunefunctioninharborseals:resultsof asemi-fieldstudy.In:Vos,J.G.,Bossart,G.D.,Fournier,M.,O’Shea,T.J.(Eds.), Toxi-cologyofMarineMammals,NewPerspectives:ToxicologyandtheEnvironment. TaylorandFrancis,pp.558–591.

Weijs,L.,Das,K.,Siebert,U.,vanElk,N.,Jauniaux,T.,Neels,H.,Blust,R.,Covaci,A., 2009a.Concentrationsofchlorinatedandbrominatedcontaminantsandtheir metabolitesinserumofharboursealsandharbourporpoises.Environ.Int.35, 842–850.

Weijs,L.,Dirtu,A.C.,Das,K.,Gheorghe,A.,Reijnders,P.J.H.,Neels,H.,Blust,R., Covaci,A.,2009b.Inter-speciesdifferencesforpolychlorinatedbiphenylsand polybrominateddiphenylethersinmarinetoppredatorsfromtheSouthern NorthSea:Part1.Accumulationpatternsinharboursealsandharbourporpoises. Environ.Pollut.157,437–444.

Weijs,L.,Dirtu,A.C.,Das,K.,Gheorghe,A.,Reijnders,P.J.H.,Neels,H.,Blust,R.,Covaci, A.,2009c.Inter-speciesdifferencesforpolychlorinatedbiphenylsand poly-brominateddiphenylethersinmarinetoppredatorsfromtheSouthernNorth Sea:Part2.Biomagnificationinharboursealsandharbourporpoises.Environ. Pollut.157,445–451.

Weijs,L.,Covaci,A.,Yang,R.S.H.,Das,K.,Blust,R.,2011.Anon-invasiveapproach tostudylifetimeexposureandbioaccumulationofPCBsinprotectedmarine mammals:PBPKmodelinginharborporpoises.Toxicol.Appl.Pharmacol.256, 136–145.

Zharinov,A.,Tarasov,P.,Shvalov,A.,Semyanov,K.,vanBockstaele,D.R.,Maltsev,V., 2006.Astudyoflightscatteringofmononuclearbloodcellswithscanningflow cytometry.J.Quant.Spectrosc.Radiat.Transfer102,121–128.

Figure

Fig. 1. The sampling sites Lorenzenplate and Kolumbus Loch are sandbanks of the Wadden Sea offshore of Germany
Fig. 2. Flow cytometry scatter plot of cell populations obtained after whole blood centrifugation in CPT TM
Table 3 summarizes  PCBs,  HO-PCBs,  DDXs, PCP,  PBDEs, TBA, TN, OxC and HCB serum concentrations (pg/ml)
Fig. 4. PC1 and PC2 loading plot. The nine pollutant vectors of log-transformed concentrations represent the Bravais-Pearson correlations with the first and second principal components.

Références

Documents relatifs

However, for the datasets that do not provide the 360° videos, but directly the saliency maps (NOSSDAV17 and MM18), we can create the content-based saliency maps using their

In this paper, measurements are reported for tensile strength of tablets compressed from single-component and binary powder mixtures of lactose with microcrystalline cellulose

La partie entière est nulle, puisque le degré du numérateur est strictement inférieur à celui du dénominateur.. Il n'y a que des pôles réels et donc des éléments simples

The second strategy consists in using a DCNN pre-trained on ImageNet as a source collection, applying it to a different destination collection and use the final ImageNet

In the current work, a hybrid stochastic analysis approach Neural network (ANN) and Monte Carlo simulation (MCS) was developed allowing for the prediction of soil output

Certains ont le pas plus lourd dû à leur corpulence mais j’y décèle tout de même un caractère plus marqué pouvant même aller jusqu’à l’indélicatesse.. Un pas

Toutes ces instances de socialisations contribuent à former les compétences comportementales. Elles permettent, au sein de l’école, de socialiser l’élève conformément

Cela se traduit aussi au travers de statuts plus ou moins différenciés au travers, par exemple, d’un formalisme dans le langage (usage du prénom ou du nom, emploi du titre,