• Aucun résultat trouvé

The VORTEX project

N/A
N/A
Protected

Academic year: 2021

Partager "The VORTEX project"

Copied!
23
0
0

Texte intégral

(1)

Hitting  the  diffraction  limit    

with  the  VORTEX  project  

Olivier  Absil  

FNRS  Research  Associate   University  of  Liège  

(2)

The  birth  of  a  concept  

•  FQPM  à  sub-­‐wavelength  gra@ngs  à  Annular  Groove  PM  

Advantages  of  the  AGPM    

•  Inner  working  angle  ≈  1  λ/D  

•  Clear  360°  discovery  space  

•  Achroma@c  (SG  design)  

•  Easy  to  implement   2  

0   0  

π   π  

Mawet,  Riaud,  Absil  &  Surdej  2005  

(3)

Grating  design/optimization  

3  

Delacroix  et  al.  2013  

Lo g(n ull   de pth )   -­‐4   -­‐3   -­‐2   3.5   3.6   3.7   3.8   3.9   4.0   4.1   Log(peak  rejec@on)  

(4)

Etching  on  CVD  diamond  

Nanoimprint  lithography  +  dry  plasma  etching  

•  N  band  (gra@ng  period  =  4.6  µm)  

•  L  band  (gra@ng  period  =  1.4  µm)  

Parameters  close  to  op@mal  …  need  to  test!  

4  

N  band  (Nov  2009)   N  band  (Feb  2012)   L  band  (Sep  2012)  

1.4  µm  

Forsberg  &  Karlsson  2013  

4.7  µm   4.6  µm  

(5)

Setting  up  the  bench  

5   “Yacadire”  @  Paris-­‐Meudon  

(6)

Anguish…  

(7)

High  performance  

7   1   10   100   1000   Pe ak   re je c7 on  

Delacroix  et  al.  2013  

(8)

Bliss!  

(9)

Installation  at  VLT  

9  

(10)

NACO:  science  demonstration  

Raw  image  of  β  Pic   Post-­‐processed  image  

10  

Absil  et  al.  2013  

(11)

Sensitivity  to  inner  planets  

11  

Absil  et  al.  2013  

β  Pic  b  

New     discovery    

(12)

The  VORTEX  project  

(2013-­‐2018)

 

12  

WP1  

Exploita@on  

Improvement  

WP2  

WP3  

Performance  

Observa@ons  

Op@mal  image  processing   Other  telescopes  

Improved  mid-­‐IR  AGPMs   Extension  to  K  and  H  bands  

Higher  topological  charges  

Perfo  simula@on  &  tes@ng   Post-­‐coronagraphic  WF  sensing  

Vortex  quantum  proper@es  

Highest     gain  

(13)

WP1:  ScientiWic  exploitation  

•  L-­‐band  =  sweet  spot  for  

exoplanet  imaging  

•  Complementary  to  XAO  

near-­‐IR  imagers  à   characteriza@on  

•  Access  to  new  

parameter  space  à  

targeted  surveys  

•  New  perspec@ves  on  

more  telescopes  (Keck  

coming  soon)   13  

L  

(14)

WP1:  image  processing  

(15)

WP2:  manufacturing  

•  Bewer  control  of  gra@ng  

parameters  

•  Solvent-­‐assisted  micro-­‐ moulding  replaces  NIL  

•  All  etching  recipes  further   op@mised  

•  Steeper  side  walls  

•  New  L-­‐band  AGPMs  

etched,  currently  tested  

•  Improvement  of  AR  

performance    

•  Etching  tests  for  K-­‐band  

AGPMs  to  start  soon   15  1

Solvent-assisted micro moulding

4

R1813:AZ EBR 6000 rpm 30 s

Cut-out stampC

115°C 60s

Solvent-assisted micro moulding

5

(16)

WP2:  charge-­‐2  vortex  (AGPM)  

Op@mized  L+M  band  

AGPMs  under  study  

•  Goal:  10-­‐3  over  whole  

L+M  band    

Designs  for  shorter  

wavelengths  (H-­‐K)  to  

be  op@mised  axer  

feedback  from  

etching  

16  

! VVC! Lb![nm]! Etch!depth!

[µm]! Etch!time!(4!cycles)! Date! Defect! B1_D4! 570B580! 4.72B4.86! 09!min!45!s! 2014B03B06! ! B1_D5! 580B590! 4.72B4.86! 09!min!45!s! 2014B03B06! ! B2_D3! 590B600! 4.81B4.95! 10!min!10!s! 2014B04B02! Rough! B2_D4! 570B580! 4.81B4.95! 10!min!10!s! 2014B04B02! ! B3_D1! 580$590& 4.71B4.80! 09!min!40!s! 2014B04B14! ! B3_D3! 570$580& 4.75B4.84! 09!min!45!s! 2014B04B14! Scratch! ! ! ! Possible!! B2_D3& B2_D4& & & B1 _D 4 & B1 _D 5 & & & B3 _D 3& & B3 _D 1&

(17)

WP2:  charge-­‐4  vortex  

Rejec@on  in  θ

4  

Mandatory  for  near-­‐

infrared  applica@ons  

on  ELTs  

17  

Step'2:'FDTD'

!'Phase'ramp

' 8! transmission   λ/D   charge-­‐2   charge-­‐4   0   1   2   1  

(18)

WP2:  charge-­‐4  vortex  

22! 18   17!

Phase'ramp:'SGVC4'with'lines

' 51.2'x'51.2'µm' dx'='dy'='0.1'µm' dz'='0.2'µm' 204.8'x'204.8'µm' dx'='dy'='0.2'µm' dz'='0.2'µm' ' 0 1 2 3 4 5 6 20 10 Pancharatnam phase φp 0 X ax is (µ m) − 10 − 20 − 25 − 20 − 15 − 10 − 5 0 5 10 15 20 25 Ya x is (µm ) 0 1 2 3 4 5 6 100 50 Pancharatnam phase φp 0 X ax is (µ m) − 50 − 100 − 100 − 80 − 60 − 40 − 20 0 20 40 60 80 100 Ya x is (µm ) 18!

Phase'ramp:'SGVC4'with'curves

' 51.2'x'51.2'µm' dx'='dy'='0.1'µm' dz'='0.2'µm' 102.4)x)102.4)µm) dx'='dy'='0.1'µm' dz'='0.2'µm' ' 0 1 2 3 4 5 6 20 10 Pancharatnam phase φp 0 X ax is (µ m) − 10 − 20 − 25 − 20 − 15 − 10 − 5 0 5 10 15 20 25 Ya x is (µm ) 0 1 2 3 4 5 6 50 Pancharatnam phase φp 0 X ax is (µ m) − 50 − 50 − 40 − 30 − 20 − 10 0 10 20 30 40 50 Ya x is (µm ) !)Better)on)the)xAaxis,)but)much)worse)on)the)yAaxis)

(19)

WP3:  performance  estimation  

Vortex'Phase'Mask:'Charge'2'

f' f' f' f' f' f' f' 3' Min:'2.33*10T11'' Max:2.23*10T3'

Entrance*pupil* Before*Lyot*Stop* Detector*

19   3D  FDTD  

simula@ons  

AO  residuals   +  op@cal  design  

(20)

WP3:  performance  testing  

VODCA:  the  Vortex  Op@cal  Demonstrator  for  

Coronagraphic  Applica@ons  

AGPM  tes@ng  +  in-­‐lab  valida@on  of  new  concepts  

20  

Design

VODCA Layout

(21)

WP3:  post-­‐corono  sensing  

At  Lyot  stop  or  on  the  science  camera  

See  talk  by  Elsa  Huby  this  axernoon  

(22)

WP3:  quantum  properties  

22  

No  OAM   No  OAM  

(23)

Interested?  Talk  to  us  

Références

Documents relatifs

In this issue, it is essential to appropriately identify the parts of the flow that play a dominant role in the way reactive fronts invade a stirred medium. In partic- ular, in

Au terme de cette recherche, nous pouvons dire que l’analyse du discours appartient à un domaine extrêmement complexe est difficile à cerner. Cette complexité est étroitement liée

We show that if there exists a rule satisfying individual rationality, efficiency, and strategy-proofness, then for any problem having a non-empty γ-core, the γ-core must be

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

surrogates measured vital capacity and aerobic capacity to predict the Cardiorespiratory Fitness among Soccer Players. Based on the background, which confirms that the

SuperB design is based on very low H-V emittances, low emittance coupling and very small beam sizes at the IP.. Moreover the crab-waist sextupoles demand for particular care

We prove uniqueness for the vortex-wave system with a single point vortex introduced by Marchioro and Pulvirenti [7] in the case where the vorticity is initially constant near the

LCM buoy Electronics containers Readout cables ~60m active 300m Junction box Acoustic beacon submarine cable Electro-optic ~ 40 km hydrophone anchor 2400 m Shore station Optical