• Aucun résultat trouvé

Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model

N/A
N/A
Protected

Academic year: 2021

Partager "Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model"

Copied!
11
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/26816

https://doi.org/10.1016/j.sigpro.2020.107792

Medina, Daniel and Vilà Valls, Jordi and Chaumette, Eric and Vincent, François and Closas, Pau Cramér-Rao bound

for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model. (2021)

Signal Processing, 179. 107792. ISSN 0165-1684

(2)

Cramér-Rao

bound

for

a

mixture

of

real-

and

integer-valued

parameter

vectors

and

its

application

to

the

linear

regression

model

Daniel Medina

a,∗

, Jordi Vilà-Valls

b

, Eric Chaumette

b

, François Vincent

b

, Pau Closas

c a Institute of Communications and Navigation, German Aerospace Center (DLR), Germany

b ISAE-SUPAERO/University of Toulouse, DEOS Dept., Toulouse, France

c Electrical and Computer Engineering Dept., Northeastern University, Boston, MA, USA

Keywords: Cramér-Rao bound McAulay-Seidman bound

Mixed real-integer parameter vector estimation

Linear regression GNSS

Ambiguity resolution

a

b

s

t

r

a

c

t

Performancelowerboundsareknowntobeafundamentaldesigntoolinparametricestimationtheory.A plethoraofdeterministicboundsexistintheliterature,rangingfromthegeneralBarankinboundtothe well-knownCramér-Raobound(CRB),thelatterprovidingtheoptimalmeansquareerrorperformance oflocallyunbiasedestimators.Inthiscontribution,weare interestedintheestimationofmixed real-andinteger-valuedparametervectors.Weproposeaclosed-formlowerboundexpressionleveragingon thegeneralCRBformulation,beingthelimitingformoftheMcAulay-Seidmanbound.Suchformulation isthekeypointtotakeintoaccountinteger-valuedparameters.Asaparticularcaseofthegeneralform, weprovideclosed-formexpressionsfortheGaussianobservationmodel.Onenoteworthypointisthe as-sessmentoftheasymptoticefficiencyofthemaximumlikelihoodestimatorforalinearregressionmodel withmixedparametervectorsand knownnoisecovariancematrix,thuscomplementingtheratherrich literatureonthattopic.Arepresentativecarrier-phasebasedprecisepositioningexampleisprovidedto supportthediscussionandshowtheusefulnessoftheproposedlowerbound.

1. Introduction

Integer parameter estimation appears inmany signal process-ing, biology and communications problems, to name a few. For instance, consider a multi-hypothesis testing problem where we want to identify the received signal over a (finite) set of possi-ble transmitted signals, then a solution is to maximize the log-likelihood function over the (integer) set of candidates. Another problem involvingestimation ofinteger quantities,jointly witha real-valued vector, isthat ofcarrier-phasebasedprecise position-ing in the context of Global Navigation Satellite Systems (GNSS) receivers.Inthegeodesyandnavigationcommunity,awellknown estimation approach is referred to asReal Time Kinematic (RTK) positioning[1].Carrier-phase measurementshaveanunknown in-teger part,referred to asthe ambiguity,to be estimatedin order toachievecm-levelaccuracyonthereal-valuedunknownposition ofthereceiver.TheframeworkthatunderpinspreciseGNSScarrier phase-basedambiguityresolutionisthetheoryofintegeraperture

Corresponding author.

E-mail addresses: daniel.ariasmedina@dlr.de (D. Medina), jordi.vila-valls@isae.fr

(J. Vilà-Valls), eric.chaumette@isae.fr (E. Chaumette),closas@ece.neu.edu (P. Closas).

estimation [2,3], which also applies to other carrier phase-based interferometrictechniques,suchasVeryLongBaseline Interferom-etry (VLBI) [4], Interferometric Synthetic Aperture Radar (InSAR)

[5],orunderwateracousticcarrierphase-basedpositioning[6]. Regardlessoftheestimationproblemaddressed, when design-ing andassessing estimators it is of fundamental importance to knowtheminimumachievableperformance,thatis,toobtaintight performance lower bounds (LBs). In general, in estimation prob-lems we are interested in minimal performance bounds in the meansquared error(MSE) sense, which providethe best achiev-ableperformanceontheestimationofparametersofasignal cor-ruptedbynoise.TherearetwomaincategoriesofLBs,deterministic

andBayesian[7].While theformerconsiders thatthe parameters tobeestimatedaredeterministic andevaluate thelocallybest es-timatorperformance, thelatterconsiderrandom parameterswith a givena priori probability andevaluate theglobally best estima-torbehavior.Inthiscontributionweareinterestedindeterministic parameterestimation,thusonlythefirstclasswillbediscussed.

It is worth saying that such LBs have been proved to be ex-tremelyuseful,notonlyforcharacterizinganestimatorasymptotic performance, butalsoforsystem design[7–9].The mostpopular LB is the well-known Cramér-Rao Bound (CRB)derived for real-valuedparametervector,mainlydueto:i)itssimplicityof calcula-https://doi.org/10.1016/j.sigpro.2020.107792

(3)

tion,forinstanceusingtheSlepian-Bangs’formula[10];ii)itisthe lowest bound onthe MSE ofanyunbiased estimator(i.e.,it con-siders localunbiasedness at the vicinity ofany selected parame-ters’value);andiii)itisasymptoticallyattainedbymaximum like-lihoodestimators(MLEs)undercertainconditions(i.e.,high signal-to-noise ratio (SNR) [11] and/or large numberof snapshots[12]), that is, MLEs are asymptotically efficient. Inherent limitations of such CRBsare their inabilityto:predict thethresholdphenomena; provide tightboundsincertaincases[13];anddeal with integer-valuedparameterestimation,whichisthecontributionofthis ar-ticle.

SincetheseminalCRBworks,severaldeterministicboundshave beenproposedintheliterature[14–22]toprovidecomputable ap-proximationsoftheBarankinbound(BB)[23],whichisthetightest (greatest) LBforanyabsolutemoment ofordergreater than1 of unbiasedestimators.Infact,theBBconsidersuniformunbiasedness

(i.e., unbiasedness over an interval ofparameter values including the selected value),resulting in a much strongerrestriction than thelocalunbiasednessconditionoftheCRB,butnotadmittingan analyticsolutioningeneral.

In thiscontribution,inorder toobtain a CRB-likeclosed-form expression forthe estimationofmixedparametervectors, includ-ing both real-andinteger-valuedparameters, we leverageonthe McAulay-Seidman bound (MSB)[16].The MSBis the BB approxi-mationobtainedfromadiscretizationoftheBarankinuniform un-biasednessconstraint,usingasetofselectedvaluesofthe param-etervector, so-calledtestpoints.TheMSByields toageneral def-inition ofthe CRB, expressedas a limitingform ofthe MSB. We derive aclosed-formgeneralCRBexpressionformixedparameter vectorsandprovideitsparticularclosed-formfortheGaussian ob-servation model,which encompassesthe well known conditional andunconditionalobservationmodels[24].

On another note, one must keep in mind that inmany prob-lemsofpracticalinterest,includingthegeneral(nonlinear)caseof theproblemunderconsideration,noevidenceoftheachievability ofa givenLBby realizableestimatorsexists [7,8,13].Thus,froma practicalperspective,theLBconsideredmaybetoooptimisticand unable to represent the actual performance of anyestimator. To circumventtheunavailabilityofLBachievabilityresults,asolution relatesto thederivation ofanupperbound toprovidea comple-mentaryvision tothat oftheLB.Unfortunately, upperboundson theMSEofunbiasedestimatesdonotgenerallyexistifthe obser-vationspaceisunbounded.Nonetheless,upperboundsonthe sta-tistical performance (notnecessarily theMSE) mayexistfor spe-cific estimators (not necessarily unbiased) in specific estimation problems [1,25–27]. Inparticular,forthe mixedintegerlinear re-gression model, a rich literature on the statistical performances of various estimators is alreadyavailable (see [1] and references therein), andan upperbound onthe probability that theMLE of thereal-valuedparametervectorliesinacertainregionexists[25]. Remarkably,aLBontheambiguitysuccessrate(probabilityof cor-rect estimationoftheinteger-valuedparametervector)doesexist aswell andappearsto be thecornerstonetoprove thatthe MLE of the real-valued parametervector is efficientin the asymptotic regime (high SNR) when the noise covariance matrix is known, thus completingtheliterature onthattopic(see Section3for de-tails). Asausecase,we considerthelinearregressionproblemin the contextofGNSSprecisepositioning tosupportthediscussion andshowtheusefulnessoftheproposedperformanceLB.

The article is organized as follows: Section 2 provides back-groundondeterministicLBsandtheir derivationasanorm mini-mizationproblem,mainlyfocusedontheCRBasthelimitingform oftheMSB. Section 3detailsthederivation ofthenewbound, in the general case and for the Gaussian observation model. It es-tablishesthe asymptoticefficiencyoftheMLE fora linear regres-sionmodelwithmixedparametervectorsandknownnoise

covari-ance matrix, and sketches possible generalizations and outlooks. Theseresultsare thenparticularized foralinearregression prob-lem,servingasmotivatingexampleanddiscussedinSection4.The paperconcludeswithadiscussionoftheresultsinSection5. 2. BackgroundonMcAulay-SeidmanandCramér-Raobounds forareal-valuedparametervector

2.1. TheMcAulay-Seidmanbound

Lety1bearandomreal-valuedobservationsvectorand



⊂ RM

the observation space. Denote by p(y;

θ

)p(y|

θ

) the pdf of the observationsconditionalonanunknowndeterministicreal-valued parametervector

θ



⊂ RK.LetL

2

(

)

be thereal vectorspace ofsquare integrablefunctionsover



.Ifweconsideranestimator

 g



θ

0



(

y

)

LN

2

(

)

ofg(

θ

0),where

θ

0 isaselectedvalueofthe pa-rameter

θ

andg

(

θ

)

=

(

g1

(

θ

)

,...,gN

(

θ

))

 isareal-valued function

vector,thentheMSEmatrixwrites,

MSEθ0



 g



θ

0



=E y;θ0





 g



θ

0



(

y

)

− g



θ

0



(

·

)





. (1) By noticingthat (1)is a Gram matrix associated withthe scalar product



h

(

y

)

|

l

(

y

)



θ0=Ey;θ0[h

(

y

)

l

(

y

)

],thesearch fora LBonthe

MSE (1) (w.r.t. the Löwner ordering for positive symmetric ma-trices [28]) can be performed with two equivalent fundamental results: the generalization of the Cauchy-Schwartz inequality to Gram matrices (generally referred to as the "covariance inequal-ity”[18]) and the minimization ofa norm under linear constraints (LCs)[17,19,20].We shallpreferthe“norm minimization” formas its userequiresexplicitlytheselection ofappropriate constraints, which then determine the value of the LB on the MSE matrix, hence providing a clear understanding of the hypotheses associ-ated with the different LBs on the MSE. To avoid the trivial so-lutiong

(

θ

0

)

(

y

)

=g

(

θ

0

)

, some constraintsmustbe added.In that perspective,Barankin[23]introducedtheuniformunbiasedness for-mulation,

Ey;θ





g



θ

0



(

y

)



=g



θ



,

θ



, (2a)

leadingtotheBarankinbound(BB), min  g

(

θ0

)

∈LN 2()



MSEθ0



 g



θ

0



s.t. E y;θ



 g



θ

0



(

y

)



=g



θ



,

θ



, (2b) which does not admit an analytic solution in general. The McAulay-Seidman bound(MSB)isthecomputable BB approxima-tion obtained from a discretization of the uniform unbiasedness

constraint(2a).Let

{

θ}

L

{

θ}

[1,L]

=

{

θ

1,...,

θ

L

}



Lbeasubsetof Lselectedvaluesof

θ

(a.k.a.testpoints). Then,anyunbiased esti-matorg

(

θ

0

)

(

y

)

verifying(2a)mustcomplywiththefollowing sub-1 Italic indicates a scalar quantity, as in a ; lower case boldface indicates a col-

umn vector quantity, as in a ; upper case boldface indicates a matrix quantity, as in A . The n th row and m th column element of the matrix A will be denoted by An,m or [ A ] n,m . The n th coordinate of the column vector a will be denoted by a n or

[ a ] n . The matrix/vector transpose is indicated by a superscript ( · )  as in A  . | A | is

the determinant of the square matrix A . [ A B ] and A B

denote the matrix resulting from the horizontal and the vertical concatenation of A and B , respectively. I M is the

identity matrix of dimension M . 1 M is a M -dimensional vector with all components

equal to one. For two matrices A and B, A ≥ B means that A − B is positive semi- definite (Löwner partial ordering) . · denotes a norm. If θ= [ θ1 , θ2 , . . . , θK ]  ,

then: ∂θ = ∂θ1 , ∂θ2 , . . . , ∂θK , ∂θ = ∂θ1 , ∂θ∂2 , . . . , ∂θ∂K and h(θ0,y) ∂θ = h(θ,y) ∂θ θ 0 . p ( y ; θ)  p ( y | θ) denotes the probability density function (pdf) of y parameterized by

θ. E y;θ[ g ( y ) ] denote the statistical expectation of the vector of functions g ( · ) with

(4)

setofLLCs, Ey;θl





g



θ

0



(

y

)



=g



θ

l



, 1≤ l≤ L, (3a)

whichcanberecastas Ey;θ0

υ

θ0



y;



θ



L



 g



θ

0



(

y

)

− g



θ

0













 =



g



θ

1



− g



θ

0



 . . .



g



θ

L



− g



θ

0











V , (3b) where

υ

θ0

(

y;

{

θ}

L

)

=

(

υ

θ0

(

y;

θ

1

)

,...,

υ

θ0

(

y;

θ

L

))

,

υ

θ0

(

y;

θ

)

=

p

(

y;

θ

)

/p

(

y;

θ

0

)

is the vector of likelihood ratios associated to {

θ

}L.TheLLCs(3b)yields theapproximationof(2b)proposedby

McAulayandSeidman[20], min  g

(

θ0

)

∈LN 2()



MSEθ0



 g



θ

0



s.t.



=V, (4a)

anddefinestheMSB(Lemma1in[29])[16,20] Ey;θ0





 g



θ

0



(

y

)

− g



θ

0



(

·

)







g



θ

0



R−1 υθ0



 g



θ

0



,



g



θ

0







g



θ

0,



θ



L



=

g



θ

1



− g



θ

0



... g



θ

L



− g



θ

0



, Rυθ0 Rυθ0



θ



L



=Ey;θ0



υ

θ0



y;



θ



L



υ

 θ0



y;



θ



L



, (4b) a generalization of the Hammersley-Chapman-Robbins bound (HaChRB)previouslyintroducedin[15,30]for2testpoints

(

L=2

)

.

2.2. CRBasalimitingformoftheMSB

TheCRBcanbedefinedforanyabsolutemoment(greaterthan 1) asthelimitingformoftheHaChRB [15,30],asshowedin[23]. Theextensiontothemultidimensionalreal-valuedparameterscase forthe MSE(i.e.,absolutemomentoforder2) wasintroduced in

[16],allowing to define the CRBasthe limitingformofthe MSB

(4b).Consideringthesubsetoftestpoints



θ



1+K =



θ

0,

θ

0+i 1d

θ

1,...,

θ

0+iKd

θ

K



underd

θ

k =0, 1≤ k≤ K,

whereikisthekthcolumnoftheidentitymatrixIK,leadsto υθ0  y;θ1+K  =1 p(y;θ0+i11) p (y;θ0) ... p(y;θ0+i KdθK) p (y;θ0)  , g  θ0=0 gθ0+i 11  − gθ0 ... gθ0+i K dθK − gθ0 ,

and,withd

θ

=

(

d

θ

1,...,d

θ

K

)

,yieldsto(seeAppendixA)



g



θ

0



R−1 υθ0



 g



θ

0



=



g



θ

0,d

θ



F



θ

0,d

θ



−1



 g



θ

0,d

θ



, (5a) F



θ

0,d

θ



=E y;θ0

p

(

y;θ0+i 11

)

−p

(

y;θ0

)

1p

(

y;θ0

)

. . . p

(

y;θ0+i KdθK

)

−p

(

y;θ0

)

dθKp

(

y;θ0

)

(

.

)



(5b)



g



θ

0,d

θ



=



g

(

θ0+i 11

)

−g

(

θ0

)

1 ... g

(

θ0+i KdθK

)

−g

(

θ0

)

dθK



, (5c) whichresultsinageneraldefinitionoftheCRBg|θ(

θ

0)as

CRBg | θ  θ0= lim sup { d θ1 =0, ... ,d θK =0 } →0 gθ0,dθFθ0,dθ−1g  θ0,dθ. (6a)

If

θ

0



⊂ RKandg(

θ

)andp(y;

θ

)areC1at

θ

0,then(6a)yields thewellknownFisherInformationMatrix(FIM)F(

θ

)andtheusual CRBexpression F



θ



=Ey;θ

"

lnp



y;

θ



∂θ

(

.

)



#

, (6b) CRBg|θ



θ

0



=

g



θ

0



∂θ

 F



θ

0



−1

$

g



θ

0



∂θ



%

 . (6c)

3. CRBforamixtureofreal-valuedandinteger-valued parameters

Leveragingthe MSBandCRBresultspresentedintheprevious

Section2,wederiveinthissectionaLBfordeterministic parame-tervectorestimation,wheresuchvectorcontainsbothreal-valued andinteger-valued parameters.A generalresultis provided, then particularizedforthecaseofGaussianobservations.

3.1. GeneralCRBformixedparametervectors

The main result derived in this article is summarized in the formof Theorem1. Acorollary follows,which simplifiesthe for-merinaparticularclassofmodels.

Theorem1(General CRBformixedparametervectors). Assumea setof observations y



⊂ RM and anunknown deterministic real-valuedparametervector

θ



⊂ RKwhere

θ

=[

ω

,z],

ω

RKω,

z∈ZKz ,Kω+Kz=K.Thosequantitiesarerelatedthroughastatistical

modelof theformy|

θ

~ p(y|

θ

),whichis available.Then,theMSEof any unbiased estimator of a function g



θ

0



L

2

(

)

for a selected

valueoftheparameter

θ

0 islowerboundedby

CRBg|θ



θ

0



=



g



θ

0



F



θ

0



−1



 g



θ

0



, (7) with



g



θ

0



=



g

(

θ0

)

∂ω g



θ

1



− g



θ

0



... g



θ

2Kz



− g



θ

0



(8) F



θ

0



=

Fω|θ



θ

0



H



θ

0



H



θ

0



 MS z|θ



θ

0





, (9)

wherethetestpoints



θ



2Kz aredefinedas

θ

j=

θ

0+

(

−1

)

j−1i +



j+1 2 , 1≤ j≤ 2Kz, (10) thatis,

θ

1,

θ

2,...,

θ

2Kz−1,

θ

2Kz

=

θ

0+i +1,

θ

0− i+1,...,

θ

0+iK,

θ

0− iK

.

ThedifferenttermsinF



θ

0



aregivenby

Fω|θ



θ

0



=E y;θ0

"

lnp



y;

θ

0



∂ω

(

.

)



#

, (11a) H



θ

0



=E y;θ0

"

lnp



y;

θ

0



∂ω

t2Kz

#

(11b) =

h



θ

0,

θ

1



h



θ

0,

θ

2



... h



θ

0,

θ

2Kz



, (11c) MSz|θ



θ

0



=E y;θ0

t2Kzt2Kz

− 12Kz12Kz, (11d) 3

(5)

wheret2Kz isdefinedas t2Kz

υ

θ0



y;



θ



2Kz



=

$

p



y;

θ

1



p



y;

θ

0



, p



y;

θ

2



p



y;

θ

0



,..., p



y;

θ

2Kz



p



y;

θ

0



%

 . (11e) Proof. First, notice that in the real-valued parameter case, that is, if

θ

0

k∈R, and both g(

θ

) and p(y;

θ

) are C1 at

θ

k0, then,

the constraints associated to the following two test points,



θ

0+i kd

θ

k,

θ

0+ik

(

−d

θ

k

)



=



θ

0+i kd

θ

k,

θ

0− ikd

θ

k



, Ey;θ0

p

(

y;θ0+i kdθk

)

−p

(

y;θ0

)

dθkp

(

y;θ0

)

p

(

y;θ0−i kdθk

)

−p

(

y;θ0

)

(−dθk)p

(

y;θ0

)



g



θ

0



(

y

)

− g



θ

0





=



g

(

θ0+i kdθk

)

−g

(

θ0

)

dθk







g

(

θ0−i kdθk

)

−g

(

θ0

)

(−dθk)





(12)

aim at the same single constraint in the limiting case where

d

θ

k→0,d

θ

k =0, Ey;θ0

"

lnp



y;

θ

0



∂θ

k



 g



θ

0



(

y

)

− g



θ

0





#

=

g



θ

0



∂θ

k  . (13)

However, this phenomenon isunlikely tohappen if

θ

0

k ∈Z inthe

limitingcasewhered

θ

k→0,d

θ

k =0,since(12)thenbecomes

Ey;θ0

p

(

y;θ0+i k

)

−p

(

y;θ0

)

p

(

y;θ0

)

p

(

y;θ0−i k

)

−p

(

y;θ0

)

p

(

y;θ0

)



g



θ

0



(

y

)

− g



θ

0





=

"



g



θ

0+i k



− g



θ

0







g



θ

0− i k



− g



θ

0





#

, (14) where



p



y;

θ

0+i k



− p



y;

θ

0



/p



y;

θ

0



and



p



y;

θ

0− i k



− p



y;

θ

0



/p



y;

θ

0



are unlikely to be linearly dependent (i.e., notice that F



θ

0,d

θ



in (5b) must be invertible to compute the CRBg|θ(

θ

0) in (6a)). Therefore, in most cases, the combination of LCs (13) and (14) yields, from Lemma 1 in [29], the generaldefinition(7)ofCRBg|θ(

θ

0) wherethedifferent terms inF



θ

0



aregivenby Fω|θ



θ

0



=E y;θ0

"

lnp



y;

θ

0



∂ω

(

.

)



#

, (15a) H



θ

0



=E y;θ0

"

lnp



y;

θ

0



∂ω

(

t2Kz− 12Kz

)



#

, (15b) MSz|θ



θ

0



=E y;θ0

(

t2Kz− 12Kz

)

(

t2Kz− 12Kz

)



, (15c)

and where H(

θ

0) and MS

z|θ(

θ

0) can also been expressed as (11b)and(11d). 

Corollary1. Ifg

(

θ

)

=

θ

,matrix



θ(

θ

0)inTheorem1simplifiesto



θ



θ

0



=

i1 ... iKω iKω +1 −iKω +1 ... iK −iK

= (Kz=3)

I 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 1 −1

. (16)

3.2. TheGaussianobservationmodel

Let us consider an M-dimensional Gaussian real vector y with mean my=m



θ



and covariance matrix Cy=C



θ



: y

NM



m



θ



,C



θ



andp



y;

θ



=p



y; m



θ



,C



θ



suchthat

p



y; m



θ



,C



θ



= e− 1 2

(

y−m

(

θ

)

)

 C−1

(

θ

)

(

y−m

(

θ

)

)

√ 2

π

M

&

C



θ



. (17) Ifwedefine Ci j=



C



θ

i



−1+C



θ

j



−1− C



θ

0



−1



−1, (18a) mi j =C



θ

i



−1m



θ

i



+C



θ

j



−1m



θ

j



− C



θ

0



−1m



θ

0



, (18b)

δ

i j =m



θ

i



C



θ

i



−1m



θ

i



+m



θ

j



C



θ

j



−1m



θ

j



− m



θ

0



C



θ

0



−1m



θ

0



, (18c) thenwecanobtainthedifferentcomponentsrequiredtocompute the CRB (7)(see Appendix B fordetailed derivation of MSz|θ(

θ

0) andh(

θ

0,

θ

j))as

MSz|θ



θ

0



i, j=

'

Ci j

C



θ

0



C



θ

i



C



θ

j



e 1 2 

(

mi j

)

Ci jmi j−δi j − 1, (18d)

h



θ

0,

θ

j



k=

1 2tr

(

C

(

θ0

)

−1 ∂ωk



C



θ

0



− C



θ

j



C

(

θ0

)

−1 ∂ωk ×



m



θ

j



− m



θ

0



m



θ

j



− m



θ

0







+m∂ω

(

θk0

)

C



θ

0



−1



m



θ

j



− m



θ

0



(18e)

Fω|θ



θ

0



k,l =

m



θ

0



∂ω

k  C−1



θ

0

∂

m



θ

0



∂ω

l +1 2tr

$

C−1



θ

0

∂

C



θ

0



∂ω

k C−1



θ

0

∂

C



θ

0



∂ω

l

%

, (18f) where(18f)istheSlepian-Bangsformula[31,p.47].

Inthefollowing,forsakeoflegibility,

θ

denoteseitherthe vec-tor of unknown parameters or a selected vector value



θ

0



= [



ω

0



,



z0



].

3.3. AsymptoticallyefficientestimatorsfortheGaussianlinear conditionalobservationmodel(g

(

θ

)

=

θ

)

Acaseof particularinterest is theGaussian linear conditional signalmodel,alsoknownasthemixed-integermodel[1,Ch.23],

y=B

ω

+Az+n, n∼ NM

(

0,Cn

)

,

θ

=[

ω

,z],

ω

R, zZKz, (19)

wherethenoise covariancematrixCnis knownandthe

parame-tervectorofinterestisg



θ



=

θ

.Forinstance,inGNSSRTKprecise positioning,theM-vectorycontainsthepseudorangeand carrier-phaseobservables,theKz-vectorztheintegerambiguities,andthe

real-valuedKω-vector

ω

theremainingunknown parameters,such as, forexample, position coordinates,atmospheric delay parame-ters (troposphere, ionosphere) and clock parameters. The theory that underpins theresolution of(19) in themaximum likelihood

(6)

senseisthetheoryofintegerinference[2,3][1,Ch.23].Thesearch for the MLE of a selected value

θ

for the mixed-integer model

(19)canbecastasaminimizationproblemovermixedinteger-real parameters, )

θ

=arg min ω∈R,zZKz

**

y− D

θ

**

2C n, D=

B A

. (20)

A closed-form solution to (20) is not known,due to the integer natureofz.Instead,athree-stepdecompositionoftheproblemis typicallyconsidered[32],andtheresultingminimizationproblems aresequentiallyresolvedas[33]

min ω∈RKω ,zZKz

**

y− D

θ

**

2C n=

**

**

y− D

(

¯

ω

¯z

+**

**

2 Cn (21a) +min z∈ZKz

¯z− z

2 Cω¯ (21b) + min ω∈R

)

ω

(

z

)

ω

2 C)ω( z) , (21c)

where)

ω

(

z

)

=

ω

¯− Cω¯,¯zC−1¯z

(

¯z− z

)

.Thefirstterm(21a)corresponds to the MLE solution where z is treated as a real valued vector (instead of aninteger valuedvector).The output ofthisestimate

¯

θ

=[

ω

¯,¯z]isreferredtoasfloatsolutionanditsassociated co-variancematrixis Cθ¯=

Cω¯ Cω¯,¯z C¯z,ω¯ C¯z



=



DC−1 n D



−1 ,

which, by exploiting the four-blocks matrix inversion expression

[28],leadsto C)ω(z)=Cω¯− Cω¯,¯zC−1¯z C¯z,ω¯ =



BC−1 n B



−1 .

The second term (21b) in the decomposition corresponds to the integer-least-square(ILS),forwhichanintegersolution)zisfound. Finally,thethirdterm(21c)isthe fixedsolution,consistingon en-hancingtheestimates

ω

¯ upontheestimatedintegervector)z )

ω

=)

ω

(

)z

)

=

ω

¯ − Cω¯,¯zC−1¯z

(

¯z−)z

)

. (22)

The improvement in )

ω

accuracy is dueto constrainingthe float solution ¯z to a more restrictive class of estimators. Three differ-ent classes of estimators have beendeveloped for mixedinteger models [34], andforeach one the optimalestimators have been identified:i)theclassofinteger(I)estimators[35];ii)theclassof integer-aperture (IA) estimators[36];andiii)the classof integer-equivariant (IE)estimators[37].Thefirstclassisthemost restric-tive class. Thisis due to the fact that the outcomes ofany esti-mator within this class are required to be integers. Well-known examples of estimators fromthis class are integerrounding ()zR),

integerbootstrapping()zB)andtheoptimalsolutionso-called

inte-ger least-squares ()zLS) which is the MLE. The most relaxedclass

istheclassofIE-estimators.Theseestimatorsarereal-valued,and theyonlyobeytheintegerremove-restoreprinciple.Animportant estimator in thisclass is the best IE-estimator ()zBIE) since it has

the smallestvariance,even smallerthan thevariance ofthe float solution.TheclassofIA-estimatorsisasubsetoftheIE-estimators butitencompassestheclassofI-estimators.TheIA-estimatorsare ofahybridnature inthesense thattheir outcomesareeither in-tegers or real. It is also worth noting that distributional results are readily available [25,38].Interestingly enough, integer round-ing,integerbootstrapping,andintegerleast-squaresestimators()zR,

)zB,)zLS)areuniformlyunbiased[39]underGaussianadditivenoise

(19),leadingtoanuniformlyunbiasedestimator

ω

)(22),sincethen E[)

ω

]=E[

ω

¯]=

ω

.Thus theproposed CRBθ|θ(

θ

) (7)isarelevantLB fortheGaussianlinearconditionalsignalmodel(19)and

C)ω=C)ω()z)≥ CRBω|θ



θ



,)z

{

)zR,)zB,)zLS

}

. Firstly, as [1, (23.54)] P

(

)zLS=z

)

≥ P

(

)zB=z

)

≥ P

(

)zR=z

)

, and [1, (23.23)] lim tr(Cn)→0 P

(

)zR=z

)

=1,then lim tr(Cn)→0 C)zLS= lim tr(Cn)→0 C)zB= lim tr(Cn)→0 C)zR=0.

Thus, for any )z

{

)zR,)zB,)zLS

}

, since [25, (29)] C)ω()z)=C)ω(z)+ Cω¯,¯zC−1¯z C)zC−1¯z C¯z,ω¯, lim tr(Cn)→0 Cω)()z)=



BC−1n B



−1 .

Secondly,sinceitiswell knownthat addingunknownparameters leadstoanequalorhigherCRB,then(25a)

C)ω()z)≥ CRBω|θ



θ



≥ F−1ω|θ



θ



=



BC−1 n B



−1 .

Therefore,forany)z

{

)zR,)zB,)zLS

}

,

lim tr(Cn)→0 Cω)()z)=tr(limC n)→0 CRBω|θ



θ



=



BC−1 n B



−1 ,

which proves that )zR,)zB and)zLS are asymptotically efficient

es-timators. Last, since)zBIE is also uniformly unbiased with a MSE

lessthan oratthemostequaltotheMSEof)zLS[37,(24)],itisan

asymptoticallyefficientestimatoraswell.

3.4. Generalizationsandoutlooks

TheproposedCRBformixedparametervectors(7)hasbeen de-rived in thecontext of “standard” deterministicestimation prob-lemsforwhichaclosed-formexpressionofp(y;

θ

)isavailable.In the context of “non standard” deterministic estimation problems (see[40]andreferencestherein),p(y;

θ

)resultsfromthe marginal-ization of an hybrid p.d.f. dependingon both random



θ

r∈RPr



and deterministic (

θ

) parameters, i.e., p



y;

θ



=,RP r p



y,

θ

r

|

θ



d

θ

r,

which ismathematically intractable andprevents fromusing the proposed standardCRB (7). Fortunately,anyLB deriving fromthe MSB, as for instance (7), can be transformed into two variants, namely the so-called “modified” LB [40, Section III] and “non-standard” LB [40,Section IV]fitted tonon-standard deterministic estimation. Thus, two CRB variants for mixed parameter vectors canbe readilyintroduced inthecontext of“nonstandard” deter-ministic estimation. Since the proposed CRB (7) can also be re-gardedasaCRBdealingwithrestrictingthesetofpossiblevalues of some of the unknown parameters, namely the integer-valued parameters,itisworthnoticingthat(7)canalsotakeintoaccount continuous restriction on the set of possible values of the real-valued parameters. When the continuous restriction is described by a set of P equality constraints, f

(

ω

)

=0∈RP, 1≤ P≤ K

ω− 1, wherethematrix

f

(

ω

)

/

ω

RP×Kω hasfullrowrank(P),which is equivalentto requiringthat the constraintsare not redundant, it leads to the so-calledconstrained CRB [41–44]. In the caseof mixedparametervectors,it amountstoreplacetheLCs(13)with

[29] Ey;θ

"

$

U

(

ω

)



lnp



y;

θ



∂ω

%



 g



θ



(

y

)

− g



θ





#

=

$

g



θ



∂ω

 U

(

ω

)

%

 ,

where U

(

ω

)

∈RKω×(Kω−P) is a basis of ker



f(ω) ∂ω

, which leads to update the definition of Fω|θ(

θ

) (11a), H(

θ

) (11b) and



g(

θ

)

(8) as follows: Fω|θ(

θ

) → U(

ω

)Fω|θ(

θ

)U(

ω

), H(

θ

) → U(

ω

)H(

θ

), and



g



θ



=



∂ωg

(

θ

)

U

(

ω

)

g



θ

1



− g



θ

0



... g



θ

2Kz



− g



θ

0



. 5

(7)

4. ExampleofGaussianlinearregressionproblem:GNSSRTK precisepositioning

Inthissection,weexemplifytheaforementionedresultswitha particularexampleofGaussianlinearconditionalsignalmodel,aka thelinearregressionproblemwithmixedrealandinteger param-eters,thatistheGNSSRTKprecisepositioningproblem.

4.1. SignalmodelforGNSSRTKprecisepositioning

RTK is a GNSS-based relative positioning method, where the position of a target is determined with respect to a base sta-tion of known coordinates [45]. RTK exploits the use of code and carrier-phase pseudorange observations. Carrier-phase obser-vationsarecharacterizedbyanoise(typically)twoordersof mag-nitude lower than code pseudorange measurement, but they are ambiguous by an unknown numberof integer ambiguities.Thus, the achievement of high precision positioning requires the esti-mation ofthe dynamicalparameters ofthe target alongwiththe unknown integerambiguitieswithinaprocessreferred toas Inte-gerAmbiguityResolution(IAR)[33].Weassume thatM+1 satel-lites are tracked simultaneously by thebase andtarget GNSS re-ceivers. First, single-differencingthe observations,i.e., subtracting the observations atthe target from the base stations, eliminates the atmosphericandsatellite-related delays.Then, the process of double-differencing,i.e., subtracting thesingle-difference observa-tions withrespect toa reference satellite, removesthe effects of receiversclockoffsets.TheresultingGNSSRTKmodelcanbe mod-eledasy∼ NM



m

(

θ

)

,Cn



with m

(

θ

)

=D

ω

z



, D=[BA], B=

B B



, A=

A 0



, Cn=

Cφ 0 0 Cρ



, (23)

where y=

φ

,

ρ



is theobservation vector, composed by the double-differencecarrier-phaseandcodeobservations,denotedas

φ

,

ρ

∈RM respectively, whose corresponding covariance matrices

are Cφ andCρ.

ω

∈R3 isthetarget receivertobasestation base-linevector;andz∈ZM isthevectorofunknowninteger

ambigui-ties. ThematrixBistheso-calledgeometrymatrixwhichis com-posed ofthe unit line-of-sight vectorspointingfromthereceiver to eachsatellite. Aisthediagonal matrixwiththe wavelengthof the carrier-phase measurements [32,46]. The covariance matrices CφandCρaredefinedasCφ=2

σ

2

φTW−1TandCρ=2

σ

ρ2TW−1T,

where

σ

φ and

σ

ρ are thezenith-referenced undifferenced phase and code standard deviations [46], T=[IM − 1M] is the

double-differencing matrix, W=diag

(

w1,...,wM+1

)

is a diagonal values andwi isthesatellite elevation-dependentweight.Asitis

formu-lated, the RTK problem can be seen to fit the linear regression problem discussed earlier in Section 4. In practice, the solution forthe mixedrealandinteger model(20)isgenerallysolved via themixedreal-integerregression((21a)–(21c)).Thus, theRTK po-sitioning modelconstitutesa practicalexampleofGaussian linear regressionwithmixedreal-andinteger-valuedparameters.

4.2. CRBforGNSSRTKprecisepositioning

Asaforementioned,intheRTKproblem,theGaussianlinear ob-servationmodelreads

y=

φ

ρ



=D

θ

+n, n∼ NM

(

0,Cn

)

,B=[b1...b], A=[a1...aKz]. (24)

From theresultspresentedinSection 3.1,werecall thattheCRB, referredtoasCRBReal/Integerinthefollowing,isgivenby

CRBθ|θ



θ



=



θ



θ



F



θ



−1



θ



θ



, F



θ



=

Fω|θ



θ



H



θ



H



θ



 MSz|θ



θ





,

where



θ(

θ

)isgivenby(16),andwehavetocomputeF



θ



using the generalGaussian modelequations givenin Section 3.2. Since Cndoesnotdependon

θ

,(18a)–(18c))become

Ci j=C n, mi j=C−1n



m



θ

i



+m



θ

j



− m



θ



,

δ

i j=m



θ

i



C−1 n m



θ

i



+m



θ

j



C−1 n m



θ

j



− m



θ



C−1n m



θ



, [MS]i, j=e

(

m

(

θ

)

−m

(

θi

)

−m

(

θj

)

)

C−1 nm

(

θ

)

+m

(

θi

)

 C−1nm

(

θj

)

.

TheseequationsallowcomputationoftheelementsintheCRB for-mula.Particularly,computingFω|θ(

θ

)for1≤ k,k≤ Kω becomes

Fω|θ



θ



k,k=

m



θ



∂ω

k  C−1n

m



θ



∂ω

k =

bk bk



 C−1n

bk bk



, suchthat Fω|θ



θ



=BC−1 n B. (25a) Let

θ

j=

θ

+

(

−1

)

j−1i Kω+-j+1 2 . and

θ

i=

θ

+

(

−1

)

i−1i Kω+/i +1 2 0. Then,

MSz|θ



θ



i, j=e

(

m

(

θ

)

−m

(

θi

)

−m

(

θj

)

)

C−1n m

(

θ

)

+m

(

θi

)

 C−1 nm

(

θj

)

− 1 =e

(

θθiθj

)

DC−1nDθ+

(

θi

)

 DC−1 nD

(

θj

)

− 1, (25b)

andfor1≤ k≤ Kω,wehavethat

h



θ

,

θ

j



k=

m



θ



∂ω

k  C−1n



m



θ

j



− m



θ



=

bk bk



 C−1n D



θ

j

θ



, whichleadsto H



θ



=BC−1 n D

i+1 −i+1 ... iK −iK

. (25c)

It is worth remembering that relaxing the condition on the integer-valued part ofthe parameters’ vector, and assuming that bothparameters arereal-valued,

ω

RKω, zRKz ,then the stan-dardCRBisgivenbytheinverseofthefollowingFIM,

Fθ|θ



θ



=DC−1

n D, (26)

andisreferredtoasCRBRealinthefollowing. 4.3. Illustrativeexample

To illustrate the validity of the proposed LB, a realistic GNSS RTK experiment was simulated.Particularly, the receiver-satellite geometryconsideredisillustratedinFig.1(M+1=13satellites), underawiderangeofprecision levelsfortheundifferencedcode observations –preserving the noise ofcarrier-phase (

φ

) measure-mentstwoordersofmagnitudelowerthancode(

ρ

)observable–. Toevaluate theLSperformance,the root(total)MSE (RMSE), ob-tained from104 Monte Carlo runs, forboth 3D positionand the 12(M)integerambiguitieswasconsideredasameasureof perfor-mance.

Fig.2(left)showsthe3D position(

ω

) RMSEoverthestandard deviation ofcode observations

σ

ρ, aswell asthe square-root of

(8)

Fig. 1. Skyplot of the simulated GNSS receiver-satellite geometry.

the corresponding (total)CRBs,witha zoomofthelow noise re-giongiveninFig.2(right).First,noticethatthestandardLS (equiv-alenttotheMLE)RMSE,asexpected,coincideswiththeCRBRealfor therangeoftested

σ

ρ values,whichgivestheultimateachievable performance withboth code andphase observablesif nointeger constraint isimposed forambiguitiesz. Secondly,the ILS perfor-mance, considering thatthe floatpositionestimate isalways cor-rectedbytheoutputambiguitiesoftheIAR,clearlydependsonthe noise level. Three regions of performance can identified: i) large noiseregime:theILScoincideswithbothstandardLSandCRBReal,

which is clear from the ILS success rate shown in Fig. 3, where wecanseethatfor

σ

ρ >5[m]acorrectintegersolutionisnever found,then,onaverage,isasifnointegerconstraintwasimposed;

ii) low noise regime:the IAR obtains the correct ambiguity solu-tionwithhighprobability,thentheILScoincideswiththeso-called

CorrectILS(whichonlyconsidersthesuccessfuloutputsoftheIAR)

and theCRBReal|Integer, whichshowsthat theILS is asymptotically

efficient; and iii) threshold region: below the so-called threshold point (inthiscase,

σ

ρ >0.1[m]),theILSRMSEdeparts fromthe

CRBReal|Integerandrises towards theCRBReal,witheven asmall

re-gionwheretheRMSEoverpassestheperformanceofastandardLS

Fig. 3. Success rate for the integer parameter estimation of the RTK positioning problem.

(inthiscase,for1<

σ

ρ < 10[m]).Thisregiondescribesthe be-haviour ofthe ILS, which abandons its asymptotic efficiencyand ambiguouserrorsoccurduetothe(partially)wrongestimationof theintegerambiguities.Thethresholdpointvarieswiththe satel-litegeometry,numberofobservations(i.e.,numberoffrequencies tracked) andobservationnoises. Therefore, theprecise prediction forthe transitionpoint remains an open challenge. Finally,if we considered onlythesuccessfullyfixed ambiguities,theCorrect ILS

wouldcoincide withtheCRBReal|Integer.However, the correct

solu-tiontotheILSproblemcannotbe guaranteedoutsidethe asymp-toticregion.

Regarding theCRBReal|Integer andCRBReal comparison,it isclear

that considering the integer nature ofa part of the vector to be estimatedhasastrongimpactontheachievableperformance,and therefore, highlights the interest of the estimating the so-called integer ambiguities. As a byproduct, this highlights the impor-tanceof theLB proposed inthiscontribution.Obviously, restrict-ing the set ofpossible values (integer instead ofreal) leads to a

LB such that CRBReal|Integer ≤ CRBReal. For this bound there exists

alsoa noisethresholdregion fromwherethereal/integer

parame-Fig. 2. Positioning RMSE and square-root of CRBs as a function of the standard deviation of observation noise σρ.

Figure

Fig. 2 (left) shows the 3D position ( ω ) RMSE over the standard deviation of code observations σ ρ , as well as the square-root of
Fig.  2. Positioning RMSE and square-root of CRBs as a function of the standard deviation of observation noise  σρ
Fig.  4. Ambiguity RMSE and square-root of CRBs as a function of the standard deviation of observation noise  σρ

Références

Documents relatifs

Our approach does not give the most general ”quantum Cram´er-Rao bound”[12–14], op- timized over all possible quantum states and all possible quantum measurements, but instead

In particular, we discuss k-LinReg, a straightforward and easy to implement algorithm in the spirit of k-means for the nonconvex optimization problem at the core of switched

To enrich the model which can be based on Formula (1), it is possible to associate different thresholds (weak preference, preference, weak veto, veto; see, e.g., [BMR07]) with

Introduction Models Disaggregation Rank Illustration Inference Implementation On the rank of a bipolar-valued outranking

4 (left) shows the ambiguity ( z ) RMSE as a function of the standard deviation of the code observations σ ρ (recall that σ φ is always set two orders of magnitude lower than σ ρ

The approach relies on the premise that user requirements expressed by the means of User Stories and Scenarios can be specified using a standard user interface

Then, the relations between the average signal envelopes or correlation functions and the reverberation properties of the medium and the relative positions of the noise source,

These mesoionics can be successfully used for orthogonal double click reactions and provide a versatile platform to access benzo[c]thiophenes and