• Aucun résultat trouvé

Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model

N/A
N/A
Protected

Academic year: 2021

Partager "Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-02973927

https://hal.archives-ouvertes.fr/hal-02973927

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cramér-Rao bound for a mixture of real- and

integer-valued parameter vectors and its application to the linear regression model

Daniel Medina, Jordi Vilà Valls, Eric Chaumette, François Vincent, Pau Closas

To cite this version:

Daniel Medina, Jordi Vilà Valls, Eric Chaumette, François Vincent, Pau Closas. Cramér-Rao bound

for a mixture of real- and integer-valued parameter vectors and its application to the linear regres-

sion model. Signal Processing, Elsevier, 2021, 179, pp.107792. �10.1016/j.sigpro.2020.107792�. �hal-

02973927�

(2)

an author's https://oatao.univ-toulouse.fr/26816

https://doi.org/10.1016/j.sigpro.2020.107792

Medina, Daniel and Vilà Valls, Jordi and Chaumette, Eric and Vincent, François and Closas, Pau Cramér-Rao bound

for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model. (2021)

Signal Processing, 179. 107792. ISSN 0165-1684

(3)

Cramér-Rao bound for a mixture of real- and integer-valued parameter vectors and its application to the linear regression model

Daniel Medina

a,

, Jordi Vilà-Valls

b

, Eric Chaumette

b

, François Vincent

b

, Pau Closas

c

aInstitute of Communications and Navigation, German Aerospace Center (DLR), Germany

bISAE-SUPAERO/University of Toulouse, DEOS Dept., Toulouse, France

cElectrical and Computer Engineering Dept., Northeastern University, Boston, MA, USA

Keywords:

Cramér-Rao bound McAulay-Seidman bound

Mixed real-integer parameter vector estimation

Linear regression GNSS

Ambiguity resolution

a b s t r a c t

Performancelowerboundsareknowntobeafundamentaldesigntoolinparametricestimationtheory.A plethoraofdeterministicboundsexistintheliterature,rangingfromthegeneralBarankinboundtothe well-knownCramér-Raobound(CRB),thelatterprovidingtheoptimalmeansquareerrorperformance oflocallyunbiasedestimators.Inthiscontribution,weare interestedintheestimationofmixedreal- andinteger-valuedparametervectors.Weproposeaclosed-formlowerboundexpressionleveragingon thegeneralCRBformulation,beingthelimitingformoftheMcAulay-Seidmanbound.Suchformulation isthekeypointtotakeintoaccountinteger-valuedparameters.Asaparticularcaseofthegeneralform, weprovideclosed-formexpressionsfortheGaussianobservationmodel.Onenoteworthypointistheas- sessmentoftheasymptoticefficiencyofthemaximumlikelihoodestimatorforalinearregressionmodel withmixedparametervectorsand knownnoisecovariancematrix,thuscomplementingtheratherrich literatureonthattopic.Arepresentativecarrier-phasebasedprecisepositioningexampleisprovidedto supportthediscussionandshowtheusefulnessoftheproposedlowerbound.

1. Introduction

Integer parameter estimation appears inmany signal process- ing, biology and communications problems, to name a few. For instance, consider a multi-hypothesis testing problem where we want to identify the received signal over a (finite) set of possi- ble transmitted signals, then a solution is to maximize the log- likelihood function over the (integer) set of candidates. Another problem involvingestimation ofinteger quantities,jointly witha real-valued vector, isthat ofcarrier-phasebasedpreciseposition- ing in the context of Global Navigation Satellite Systems (GNSS) receivers.Inthegeodesyandnavigationcommunity,awellknown estimation approach is referred to asReal Time Kinematic (RTK) positioning[1].Carrier-phase measurementshaveanunknown in- teger part,referred to asthe ambiguity,to be estimatedin order toachievecm-levelaccuracyonthereal-valuedunknownposition ofthereceiver.TheframeworkthatunderpinspreciseGNSScarrier phase-basedambiguityresolutionisthetheoryofintegeraperture

Corresponding author.

E-mail addresses: daniel.ariasmedina@dlr.de (D. Medina), jordi.vila-valls@isae.fr (J. Vilà-Valls), eric.chaumette@isae.fr (E. Chaumette),closas@ece.neu.edu (P. Closas).

estimation [2,3], which also applies to other carrier phase-based interferometrictechniques,suchasVeryLongBaselineInterferom- etry (VLBI) [4], Interferometric Synthetic Aperture Radar (InSAR) [5],orunderwateracousticcarrierphase-basedpositioning[6].

Regardlessoftheestimationproblemaddressed, whendesign- ing andassessing estimators it is of fundamental importance to knowtheminimumachievableperformance,thatis,toobtaintight performance lower bounds (LBs). In general, in estimation prob- lems we are interested in minimal performance bounds in the meansquared error(MSE) sense, which providethe best achiev- ableperformanceontheestimationofparametersofasignalcor- ruptedbynoise.TherearetwomaincategoriesofLBs,deterministic andBayesian[7].While theformerconsiders thatthe parameters tobeestimatedaredeterministic andevaluate thelocallybestes- timatorperformance, thelatterconsiderrandom parameterswith a givena priori probability andevaluate theglobally best estima- torbehavior.Inthiscontributionweareinterestedindeterministic parameterestimation,thusonlythefirstclasswillbediscussed.

It is worth saying that such LBs have been proved to be ex- tremelyuseful,notonlyforcharacterizinganestimatorasymptotic performance, butalsoforsystem design[7–9].The mostpopular LB is the well-known Cramér-Rao Bound (CRB)derived for real- valuedparametervector,mainlydueto:i)itssimplicityofcalcula- https://doi.org/10.1016/j.sigpro.2020.107792

(4)

tion,forinstanceusingtheSlepian-Bangs’formula[10];ii)itisthe lowest bound onthe MSE ofanyunbiased estimator(i.e.,it con- siders localunbiasedness at the vicinity ofany selected parame- ters’value);andiii)itisasymptoticallyattainedbymaximumlike- lihoodestimators(MLEs)undercertainconditions(i.e.,highsignal- to-noise ratio (SNR) [11] and/or large numberof snapshots[12]), that is, MLEs are asymptotically efficient. Inherent limitations of such CRBsare their inabilityto:predict thethresholdphenomena; provide tightboundsincertaincases[13];anddeal withinteger- valuedparameterestimation,whichisthecontributionofthisar- ticle.

SincetheseminalCRBworks,severaldeterministicboundshave beenproposedintheliterature[14–22]toprovidecomputableap- proximationsoftheBarankinbound(BB)[23],whichisthetightest (greatest) LBforanyabsolutemoment ofordergreater than1 of unbiasedestimators.Infact,theBBconsidersuniformunbiasedness (i.e., unbiasedness over an interval ofparameter values including the selected value),resulting in a much strongerrestriction than thelocalunbiasednessconditionoftheCRB,butnotadmittingan analyticsolutioningeneral.

In thiscontribution,inorder toobtain a CRB-likeclosed-form expression forthe estimationofmixedparametervectors, includ- ing both real-andinteger-valuedparameters, we leverageonthe McAulay-Seidman bound (MSB)[16].The MSBis the BB approxi- mationobtainedfromadiscretizationoftheBarankinuniformun- biasednessconstraint,usingasetofselectedvaluesoftheparam- etervector, so-calledtestpoints.TheMSByields toageneraldef- inition ofthe CRB, expressedas a limitingform ofthe MSB. We derive aclosed-formgeneralCRBexpressionformixedparameter vectorsandprovideitsparticularclosed-formfortheGaussianob- servation model,which encompassesthe well known conditional andunconditionalobservationmodels[24].

On another note, one must keep in mind that inmany prob- lemsofpracticalinterest,includingthegeneral(nonlinear)caseof theproblemunderconsideration,noevidenceoftheachievability ofa givenLBby realizableestimatorsexists [7,8,13].Thus,froma practicalperspective,theLBconsideredmaybetoooptimisticand unable to represent the actual performance of anyestimator. To circumventtheunavailabilityofLBachievabilityresults,asolution relatesto thederivation ofanupperbound toprovidea comple- mentaryvision tothat oftheLB.Unfortunately, upperboundson theMSEofunbiasedestimatesdonotgenerallyexistiftheobser- vationspaceisunbounded.Nonetheless,upperboundsonthesta- tistical performance (notnecessarily theMSE) mayexistfor spe- cific estimators (not necessarily unbiased) in specific estimation problems [1,25–27]. Inparticular,forthe mixedintegerlinearre- gression model, a rich literature on the statistical performances of various estimators is alreadyavailable (see [1] and references therein), andan upperbound onthe probability that theMLE of thereal-valuedparametervectorliesinacertainregionexists[25]. Remarkably,aLBontheambiguitysuccessrate(probabilityofcor- rect estimationoftheinteger-valuedparametervector)doesexist aswell andappearsto be thecornerstonetoprove thatthe MLE of the real-valued parametervector is efficientin the asymptotic regime (high SNR) when the noise covariance matrix is known, thus completingtheliterature onthattopic(see Section3forde- tails). Asausecase,we considerthelinearregressionproblemin the contextofGNSSprecisepositioning tosupportthediscussion andshowtheusefulnessoftheproposedperformanceLB.

The article is organized as follows: Section 2 provides back- groundondeterministicLBsandtheir derivationasanormmini- mizationproblem,mainlyfocusedontheCRBasthelimitingform oftheMSB. Section 3detailsthederivation ofthenewbound, in the general case and for the Gaussian observation model. It es- tablishesthe asymptoticefficiencyoftheMLE fora linearregres- sionmodelwithmixedparametervectorsandknownnoisecovari-

ance matrix, and sketches possible generalizations and outlooks.

Theseresultsare thenparticularized foralinearregressionprob- lem,servingasmotivatingexampleanddiscussedinSection4.The paperconcludeswithadiscussionoftheresultsinSection5.

2. BackgroundonMcAulay-SeidmanandCramér-Raobounds forareal-valuedparametervector

2.1. TheMcAulay-Seidmanbound

Lety1bearandomreal-valuedobservationsvectorand⊂RM the observation space. Denote by p(y;

θ

)p(y|

θ

) the pdf of the

observationsconditionalonanunknowndeterministicreal-valued parametervector

θ

⊂RK.LetL2()be thereal vectorspace ofsquare integrablefunctionsover.Ifweconsideranestimator g

θ

0

(y)LN2()ofg(

θ

0),where

θ

0 isaselectedvalueofthepa-

rameter

θ

andg(

θ

)=(g1(

θ

),...,gN(

θ

)) isareal-valued function vector,thentheMSEmatrixwrites,

MSEθ0

g

θ

0

=Ey;θ0

g

θ

0

(

y

)

g

θ

0

(

·

)

. (1)

By noticingthat (1)is a Gram matrix associated withthe scalar product

h(y)

|

l(y)

θ0=Ey;θ0[h(y)l(y)],thesearch fora LBonthe MSE (1) (w.r.t. the Löwner ordering for positive symmetric ma- trices [28]) can be performed with two equivalent fundamental results: the generalization of the Cauchy-Schwartz inequality to Gram matrices (generally referred to as the "covariance inequal- ity”[18]) and the minimization ofa norm under linear constraints (LCs)[17,19,20].We shallpreferthe“norm minimization” formas its userequiresexplicitlytheselection ofappropriate constraints, which then determine the value of the LB on the MSE matrix, hence providing a clear understanding of the hypotheses associ- ated with the different LBs on the MSE. To avoid the trivial so- lutiong(

θ

0)(y)=g(

θ

0), some constraintsmustbe added.In that perspective,Barankin[23]introducedtheuniformunbiasednessfor- mulation,

Ey;θ

g

θ

0

(

y

)

=g

θ

,

θ

, (2a)

leadingtotheBarankinbound(BB),

min

g

(

θ0

)

∈LN2()

MSEθ0

g

θ

0 s.t. Ey;θ

g

θ

0

(

y

)

=g

θ

,

θ

,

(2b) which does not admit an analytic solution in general. The McAulay-Seidman bound(MSB)isthecomputable BB approxima- tion obtained from a discretization of the uniform unbiasedness constraint(2a).Let

{ θ}

L

{ θ}

[1,L]=

{ θ

1,...,

θ

L

}

Lbeasubsetof Lselectedvaluesof

θ

(a.k.a.testpoints). Then,anyunbiasedesti-

matorg(

θ

0)(y)verifying(2a)mustcomplywiththefollowingsub-

1Italic indicates a scalar quantity, as in a ; lower case boldface indicates a col- umn vector quantity, as in a ; upper case boldface indicates a matrix quantity, as in A . The n th row and m th column element of the matrix A will be denoted by A n,mor [ A ] n,m. The n th coordinate of the column vector a will be denoted by a nor [ a ] n. The matrix/vector transpose is indicated by a superscript ( ·) as in A . | A | is the determinant of the square matrix A . [ A B ] and A

B

denote the matrix resulting from the horizontal and the vertical concatenation of A and B , respectively. I Mis the identity matrix of dimension M . 1 Mis a M -dimensional vector with all components equal to one. For two matrices A and B, A ≥B means that A B is positive semi- definite (Löwner partial ordering) . · denotes a norm. If θ= [ θ1, θ2, . . . , θK] , then: ∂θ =

∂θ1, ∂θ2, . . . , ∂θK

, ∂θ=

∂θ1, ∂θ2, . . . , ∂θK

and h(θ0,y)

∂θ = h(θ,y)

∂θ θ

0

. p ( y ; θ) p ( y | θ) denotes the probability density function (pdf) of y parameterized by θ. E y;θ[ g (y )] denote the statistical expectation of the vector of functions g ( ·) with respect to y parameterized by θ. For the sake of simplicity, ( g ( y ))( ·) g ( y ) g ( y ) .

(5)

setofLLCs, Ey;θl

g

θ

0

(

y

)

=g

θ

l

, 1≤lL, (3a)

whichcanberecastas Ey;θ0

υ

θ0

y;

θ

L

g

θ

0

(

y

)

g

θ

0

=

⎢ ⎣

g

θ

1

g

θ

0

..

. g

θ

L

g

θ

0

⎥ ⎦

V

, (3b)

where

υ

θ0(y;

{ θ}

L)=(

υ

θ0(y;

θ

1),...,

υ

θ0(y;

θ

L)),

υ

θ0(y;

θ

)= p(y;

θ

)/p(y;

θ

0) is the vector of likelihood ratios associated to {

θ

}L.TheLLCs(3b)yields theapproximationof(2b)proposedby McAulayandSeidman[20],

min

g

(

θ0

)

∈LN2()

MSEθ0

g

θ

0 s.t.

=V, (4a)

anddefinestheMSB(Lemma1in[29])[16,20]

Ey;θ0

g

θ

0

(

y

)

g

θ

0

(

·

)

g

θ

0

R−1υ

θ0

g

θ

0

,

g

θ

0

g

θ

0,

θ

L

=

g

θ

1

g

θ

0

... g

θ

L

g

θ

0

, Rυθ0 Rυθ0

θ

L

=Ey;θ0

υ

θ0

y;

θ

L

υ

θ0

y;

θ

L

, (4b)

a generalization of the Hammersley-Chapman-Robbins bound (HaChRB)previouslyintroducedin[15,30]for2testpoints(L=2). 2.2. CRBasalimitingformoftheMSB

TheCRBcanbedefinedforanyabsolutemoment(greaterthan 1) asthelimitingformoftheHaChRB [15,30],asshowedin[23]. Theextensiontothemultidimensionalreal-valuedparameterscase forthe MSE(i.e.,absolutemomentoforder2) wasintroduced in [16],allowing to define the CRBasthe limitingformofthe MSB (4b).Consideringthesubsetoftestpoints

θ

1+K

=

θ

0,

θ

0+i1d

θ

1,...,

θ

0+iKd

θ

K

underd

θ

k=0, 1≤kK,

whereikisthekthcolumnoftheidentitymatrixIK,leadsto υθ0

y;

θ1+K

=

1 p(y;θ0+i1dθ1)

p(y;θ0) ...

p(y;θ0+iKdθK)

p(y;θ0)

, g

θ0

= 0 g

θ0+i11

g θ0

... g θ0+iKK

g θ0

,

and,withd

θ

=(d

θ

1,...,d

θ

K),yieldsto(seeAppendixA)

g

θ

0

Rυ1

θ0

g

θ

0

=

g

θ

0,d

θ

F

θ

0,d

θ

−1

g

θ

0,d

θ

, (5a)

F

θ

0,d

θ

=Ey;θ0

⎢ ⎢

⎢ ⎣

⎜ ⎜

⎜ ⎝

p

(

y;θ0+i1dθ1

)

p

(

y;θ0

)

dθ1p

(

y;θ0

)

.. .

p

(

y;θ0+iKdθK

)

p

(

y;θ0

)

dθKp

(

y;θ0

)

⎟ ⎟

⎟ ⎠ (

.

)

⎥ ⎥

⎥ ⎦

(5b)

g

θ

0,d

θ

=

g

(

θ0+i1dθ1

)

g

(

θ0

)

dθ1 ... g

(

θ0+iKdθK

)

g

(

θ0

)

dθK

, (5c)

whichresultsinageneraldefinitionoftheCRBg|θ(

θ

0)as

CRBg| θ θ0

= lim

sup{ dθ1=0,...,dθK=0} 0g θ0,dθ

F θ0,dθ−1

g

θ0,dθ

. (6a)

If

θ

0⊂RKandg(

θ

)andp(y;

θ

)areC1at

θ

0,then(6a)yields

thewellknownFisherInformationMatrix(FIM)F(

θ

)andtheusual

CRBexpression F

θ

=Ey;θ

"

lnp

y;

θ

∂θ (

.

)

#

, (6b)

CRBg|θ

θ

0

=

g

θ

0

∂θ

F

θ

0

1

$

g

θ

0

∂θ

%

. (6c)

3. CRBforamixtureofreal-valuedandinteger-valued parameters

Leveragingthe MSBandCRBresultspresentedintheprevious Section2,wederiveinthissectionaLBfordeterministicparame- tervectorestimation,wheresuchvectorcontainsbothreal-valued andinteger-valued parameters.A generalresultis provided, then particularizedforthecaseofGaussianobservations.

3.1. GeneralCRBformixedparametervectors

The main result derived in this article is summarized in the formof Theorem1. Acorollary follows,which simplifiesthe for- merinaparticularclassofmodels.

Theorem1(General CRBformixedparametervectors). Assumea setof observations y⊂RM and anunknown deterministicreal- valuedparametervector

θ

⊂RKwhere

θ

=[

ω

,z],

ω

∈RKω, z∈ZKz,Kω+Kz=K.Thosequantitiesarerelatedthroughastatistical modelof theformy|

θ

~p(y|

θ

),whichis available.Then,theMSEof

any unbiased estimator of a function g

θ

0

L2() for a selected valueoftheparameter

θ

0 islowerboundedby

CRBg|θ

θ

0

=

g

θ

0

F

θ

0

−1

g

θ

0

, (7)

with

g

θ

0

=

g

(

θ0

)

∂ω g

θ

1

g

θ

0

... g

θ

2Kz

g

θ

0

(8)

F

θ

0

=

Fω|θ

θ

0

H

θ

0

H

θ

0

MSz|θ

θ

0

, (9)

wherethetestpoints

θ

2Kz

aredefinedas

θ

j=

θ

0+

(

−1

)

j1iKω+

j+12

, 1j2Kz, (10)

thatis,

θ

1,

θ

2,...,

θ

2Kz1,

θ

2Kz

=

θ

0+iKω+1,

θ

0iKω+1,...,

θ

0+iK,

θ

0iK

. ThedifferenttermsinF

θ

0

aregivenby

Fω|θ

θ

0

=Ey;θ0

"

lnp

y;

θ

0

ω (

.

)

#

, (11a)

H

θ

0

=Ey;θ0

"

lnp

y;

θ

0

∂ω

t2Kz

#

(11b)

=

h

θ

0,

θ

1

h

θ

0,

θ

2

... h

θ

0,

θ

2Kz

, (11c)

MSz|θ

θ

0

=Ey;θ0

t2Kzt2Kz

12Kz12Kz, (11d)

3

(6)

wheret2Kz isdefinedas

t2Kz

υ

θ0

y;

θ

2Kz

=

$

p

y;

θ

1

p

y;

θ

0

,p

y;

θ

2

p

y;

θ

0

,...,p

y;

θ

2Kz

p

y;

θ

0

%

.

(11e) Proof. First, notice that in the real-valued parameter case, that is, if

θ

k0∈R, and both g(

θ

) and p(y;

θ

) are C1 at

θ

k0, then, the constraints associated to the following two test points,

θ

0+ikd

θ

k,

θ

0+ik(d

θ

k)

=

θ

0+ikd

θ

k,

θ

0ikd

θ

k

, Ey;θ0

p

(

y;θ0+ikdθk

)

p

(

y;θ0

)

dθkp

(

y;θ0

)

p

(

y;θ0ikdθk

)

p

(

y;θ0

)

(−dθk)p

(

y;θ0

)

g

θ

0

(

y

)

g

θ

0

=

g

(

θ0+ikdθk

)

g

(

θ0

)

dθk

g

(

θ0ikdθk

)

g

(

θ0

)

(dθk)

(12)

aim at the same single constraint in the limiting case where d

θ

k→0,d

θ

k=0,

Ey;θ0

"

lnp

y;

θ

0

∂θ

k

g

θ

0

(

y

)

g

θ

0

#

=

g

θ

0

∂θ

k

. (13)

However, this phenomenon isunlikely tohappen if

θ

k0∈Z inthe limitingcasewhered

θ

k→0,d

θ

k=0,since(12)thenbecomes

Ey;θ0

p

(

y;θ0+ik

)

p

(

y;θ0

)

p

(

y;θ0

)

p

(

y;θ0ik

)

p

(

y;θ0

)

p

(

y;θ0

)

g

θ

0

(

y

)

g

θ

0

=

"

g

θ

0+ik

g

θ

0

g

θ

0ik

g

θ

0

#

, (14)

where

p

y;

θ

0+ik

p

y;

θ

0

/p

y;

θ

0

and

p

y;

θ

0ik

p

y;

θ

0

/p

y;

θ

0

are unlikely to be linearly dependent (i.e., notice that F

θ

0,d

θ

in (5b) must be invertible to compute the CRBg|θ(

θ

0) in (6a)). Therefore, in most cases, the

combination of LCs (13) and (14) yields, from Lemma 1 in [29], the generaldefinition(7)ofCRBg|θ(

θ

0) wherethedifferent terms

inF

θ

0

aregivenby

Fω|θ

θ

0

=Ey;θ0

"

lnp

y;

θ

0

∂ω (

.

)

#

, (15a)

H

θ

0

=Ey;θ0

"

lnp

y;

θ

0

ω (

t2Kz12Kz

)

#

, (15b)

MSz|θ

θ

0

=Ey;θ0

(

t2Kz12Kz

) (

t2Kz12Kz

)

, (15c)

and where H(

θ

0) and MSz|θ(

θ

0) can also been expressed as

(11b)and(11d).

Corollary1. Ifg(

θ

)=

θ

,matrixθ(

θ

0)inTheorem1simplifiesto

θ

θ

0

=

i1 ... iKω iKω+1 −iKω+1 ... iK −iK

(K=z=3)

⎢ ⎣

IKω 0 0 0 0 0 0

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎥ ⎦

. (16)

3.2. TheGaussianobservationmodel

Let us consider an M-dimensional Gaussian real vector y with mean my=m

θ

and covariance matrix Cy=C

θ

: yNM

m

θ

,C

θ

andp

y;

θ

=p

y;m

θ

,C

θ

suchthat p

y;m

θ

,C

θ

= e12

(

ym

(

θ

) )

C−1

(

θ

) (

ym

(

θ

) )

√2

π

M

&

C

θ

. (17)

Ifwedefine Ci j=

C

θ

i

1

+C

θ

j

1

C

θ

0

1

1

, (18a)

mi j =C

θ

i

−1

m

θ

i

+C

θ

j

−1

m

θ

j

C

θ

0

−1

m

θ

0

, (18b)

δ

i j =m

θ

i

C

θ

i

1

m

θ

i

+m

θ

j

C

θ

j

1

m

θ

j

m

θ

0

C

θ

0

1

m

θ

0

, (18c)

thenwecanobtainthedifferentcomponentsrequiredtocompute the CRB (7)(see Appendix B fordetailed derivation of MSz|θ(

θ

0)

andh(

θ

0,

θ

j))as

MSz|θ

θ

0

i,j=

'

Ci j

C

θ

0

C

θ

i

C

θ

j

e12

(

mi j

)

Ci jmi jδi j1, (18d)

h

θ

0,

θ

j

k=

⎜ ⎜

⎜ ⎜

1 2tr

(

C

(

θ0

)

−1

∂ωk

C

θ

0

C

θ

j

C

(

θ0

)

−1

∂ωk

×

m

θ

j

m

θ

0

m

θ

j

m

θ

0

+m

(

θ0

)

∂ωk

C

θ

0

−1

m

θ

j

m

θ

0

⎟ ⎟

⎟ ⎟

(18e)

Fω|θ

θ

0

k,l =

m

θ

0

∂ω

k

C1

θ

0

m

θ

0

∂ω

l

+1 2tr

$

C1

θ

0

C

θ

0

∂ω

k

C1

θ

0

C

θ

0

∂ω

l

%

, (18f)

where(18f)istheSlepian-Bangsformula[31,p.47].

Inthefollowing,forsakeoflegibility,

θ

denoteseitherthevec-

tor of unknown parameters or a selected vector value

θ

0

= [

ω

0

,

z0

].

3.3. AsymptoticallyefficientestimatorsfortheGaussianlinear conditionalobservationmodel(g(

θ

)=

θ

)

Acaseof particularinterest is theGaussian linear conditional signalmodel,alsoknownasthemixed-integermodel[1,Ch.23],

y=B

ω

+Az+n, nNM

(

0,Cn

)

,

θ

=[

ω

,z],

ω

∈RKω, z∈ZKz, (19) wherethenoise covariancematrixCnis knownandtheparame- tervectorofinterestisg

θ

=

θ

.Forinstance,inGNSSRTKprecise

positioning,theM-vectorycontainsthepseudorangeandcarrier- phaseobservables,theKz-vectorztheintegerambiguities,andthe real-valuedKω-vector

ω

theremainingunknown parameters,such as, forexample, position coordinates,atmospheric delayparame- ters (troposphere, ionosphere) and clock parameters. The theory that underpins theresolution of(19) in themaximum likelihood

Références

Documents relatifs

— We give a relation between the sign of the mean of an integer-valued, left bounded, random variable X and the number of zeros of 1 − Φ(z) inside the unit disk, where Φ is

Les indicateurs statistiques concernant les résultats du joueur n°2 sont donnés dans le tableau ci-dessous.. Indicateurs statistiques des résultats du

Then U is factorial by Theorem 1, be- cause it is factorial if the points of Sing(R) impose independent linear conditions on homogeneous forms of degree 3r + d − 5 (see [8])...

Il ne peut donc être que 1, ce qui signifie que G a un unique sous-groupe à 23 éléments, qui est donc nécessairement égal à tous ses conjugués,

Ces deux tableaux représentent les notes de deux classes A et B obtenues après un devoir de mathématiques.. a) Citez les éventualités de cette expérience aléatoire. 2)

The proof uses Robin’s and Gronwall’s theorems on G(n). An alternate proof of one step depends on two properties of superabundant numbers proved using Alaoglu and Erd˝ os’s

Avant d’être utilisé, un conductimètre doit être étalonné, avec une solution étalon dont la conductivité est connue.. La sonde du conductimètre est un objet fragile à

Moreover, since the examples we have in mind are ideals of compact sets coming from harmonic analysis, we will concen- trate on proving criteria of “true-Σ 0 3 -ness” for ideals