• Aucun résultat trouvé

Behaviour, properties and structure of complex fluids upon spreading

N/A
N/A
Protected

Academic year: 2021

Partager "Behaviour, properties and structure of complex fluids upon spreading"

Copied!
135
0
0

Texte intégral

(1)

HAL Id: tel-02887347

https://pastel.archives-ouvertes.fr/tel-02887347

Submitted on 2 Jul 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Behaviour, properties and structure of complex fluids

upon spreading

Christophe Kusina

To cite this version:

Christophe Kusina. Behaviour, properties and structure of complex fluids upon spreading. Theoretical and/or physical chemistry. Université Paris sciences et lettres, 2019. English. �NNT : 2019PSLET031�. �tel-02887347�

(2)

Préparée à l’ESPCI Paris

Comportement, propriétés et structure des fluides

complexes à l’étalement

Behaviour, properties and structure of complex fluids upon

spreading

Soutenue par

Christophe KUSINA

Le 23 septembre 2019

Ecole doctorale n° 397

Physique et chimie des

matériaux

Spécialité

Physico-chimie

Composition du jury :

Daniel, BONN

Professeur, University of Amsterdam Président

Catherine, BARENTIN

Professeur, Institut Lumière Matière Rapporteuse

Guillaume, OVARLEZ

Directeur de recherche, Université de Bordeaux – CNRS Rapporteur

José, BICO

Maitre de conférences, ESPCI Paris Examinateur

Annie, COLIN

(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

𝜆𝑖 𝜆𝑜

0 < 𝜆𝑖 < ℎ 𝜆𝑜 ≥ ℎ 𝜆𝑜 ≥ ℎ 𝜆𝑖 ≥ ℎ

(20)

Chapter 1

(21)
(22)

𝜏 = 𝐹/𝐴 𝛾̇ 𝛾̇ =𝑑𝑣 𝑑𝑒 = 𝑑∆𝑙 𝑑𝑡) 𝜂 𝜂 =𝜎 𝛾̇ 𝜏 γ̇ 𝜏 𝛾̇ η 𝛾̇

(23)

ω π 𝛿𝐿 ∆𝐿 𝛾 𝛾 = ∆𝐿/𝑒 𝛾(𝑡) = 𝛾0. exp (𝑖𝜔𝑡) 𝛿 𝜏(𝑡) = 𝜏0. exp (𝑖𝜔𝑡 + 𝑖𝛿) 𝜏 = 𝐺∗. 𝛾 𝐺′ 𝐺′′ 𝐺∗= 𝐺′+ 𝑖𝐺′′. 𝐺′ 𝐺′′ 𝐺′= 𝜎0 𝛾0cos 𝛿 𝐺 ′′ =𝜎0 𝛾0sin 𝛿 𝐺′ 𝐺′′ 𝜏0 𝛾0

(24)

δ δ 𝜏 = 𝜂𝛾̇. 𝛾̇ = 𝑑𝛾 𝑑𝑡 𝜏 = 𝑖𝜂𝛾0𝜔exp (𝑖𝜔𝑡) 𝜏 = 𝜂𝛾0𝜔𝑒𝑥𝑝(𝑖𝜔𝑡)exp (𝑖𝜋 2⁄ ) 𝛿 = 𝜋 2⁄ 𝜏0 = 𝜂𝛾0𝜔 𝐺′ 𝐺′′ 𝐺′ 𝐺′′ 𝜂𝜔 𝜎 = 𝐾𝛾 𝐺′ 𝐺′′ 𝐺′ 𝐺′′

(25)

𝜃 𝛾̇ 𝛾̇ = 𝑅𝑒𝛺 𝑅𝑒− 𝑅𝑖 𝛾̇𝑟 = 𝑟𝛺 𝑒 𝛾̇ = 𝛺 𝛼 𝜏 𝜏 = 𝑇 2𝜋𝑅𝑒²ℎ 𝜏𝑟 = 2𝑇 𝜋𝑅3 𝜏 = 3𝑇 2𝜋𝑅3

(26)
(27)

𝜑𝑅𝐶𝑃

(28)

𝜂 = 𝜂0(1 − 𝜑 𝜑𝑅𝐶𝑃)

−[𝜂]𝜑𝑅𝐶𝑃

(29)

η φ 𝛾̇ → 𝛾̇ → 𝛾̇ → μ 𝜑𝐽0 𝛾̇ → μ μ μ μ

(30)

𝐼𝑣 η η 1/𝛾̇ 𝛾̇ 𝐼𝑣 =𝜂𝛾̇ 𝑃 𝑆𝑡 =𝛾̇𝜌𝑎2 𝜂 𝐼𝑣 𝜏 = 𝜇(𝐼𝑣)𝑃, 𝜙 = 𝑓(𝐼𝑣) 𝜏 𝜙 𝐼𝑣 𝜇 𝜏 = 𝜇(𝑓−1(𝜙)) 𝜂𝛾̇ 𝑓−1(𝜙) μ 𝜙 𝑃𝑒 =6𝜋𝜂𝑎3𝛾̇ 𝑘𝑏𝑇

(31)
(32)

𝐺′

𝐶𝑎 =𝛾̇𝜂𝑎

𝛾

(33)
(34)

𝛾

𝛾𝐿𝐺 𝛾𝑆𝐿

(35)

𝑆 = 𝛾𝑆𝐺 − 𝛾𝐿𝐺− 𝛾𝑆𝐿

𝜃e

𝛾𝑆𝐺 = 𝛾𝑆𝐿 + 𝛾𝐿𝐺𝑐𝑜𝑠𝜃𝑒

𝜃𝑒

(36)

𝜃𝑒

𝑙𝑐 = √ 𝛾

𝜌𝑔 𝑒 = 2𝑙𝑐𝑠𝑖𝑛 ( 𝜃𝑒

(37)

𝜃𝑎 𝜃𝑟

𝜃e 𝜃

η

(38)

Ca = Uη γ

(39)
(40)

Fviscous ~ Fcapillary+ Fgravity →

ηU e² ~

γk l + ρg

(41)

η η κ γκ ρ e ~ lcCa2⁄3 ρ γκ e ~ lcCa1⁄2

(42)
(43)
(44)

𝜃𝑒, . 𝐶𝑎𝑐 = 𝜃𝑒 3 9𝑙𝑛𝑙𝑐 𝑙′

(45)

𝑚𝑎𝑥~𝐿 (𝜂𝑉𝐿² 𝐵 )

3 4 ⁄

(46)

α 𝜏𝑦

(47)
(48)
(49)
(50)
(51)

Chapter 2

(52)
(53)
(54)

(𝜏 = 𝜏𝑦+ 𝑘. 𝛾̇𝑛) τ

(55)
(56)
(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)
(65)

Chapter 3

(66)
(67)
(68)

𝛿𝑓 𝛿𝑦 𝛿𝑓 𝛼 = 𝐷𝑓⁄𝛿𝑦 𝛼 𝛼 = tan (𝑠𝑖𝑛−1(sin(𝜃𝑛 𝑖))) tan (𝜃𝑖) 𝑛 = 1,33 𝛼 = 3,7

(69)
(70)

τ 𝜏𝑟𝑧 −𝜌𝑔 −𝜕𝑃 𝜕𝑧+ 1 𝑟 𝜕𝑟𝜏𝑟𝑧 𝜕𝑟 = 0 𝜌 𝜏𝑟𝑧(𝑟, 𝑡) 𝜏𝑦 = 1 𝜆𝑖(𝑡) − 𝜆𝑜(𝑡) (𝑟 −𝜆𝑖(𝑡)𝜆𝑜(𝑡) 𝑟 ) 𝜆𝑖 𝜆𝑜 𝜏𝑟𝑧(𝜆𝑖) = −𝜏𝑦 𝜏𝑟𝑧(𝜆𝑜) = 𝜏𝑦

(71)

𝜆𝑖 𝜆𝑜 𝜆𝑖 𝜆𝑜 𝑣𝑧(𝑟1) = 𝑉 > 0 𝑣𝑧(𝑟2) = 0 𝑉 + ∫ 𝛾̇ 𝑟2 𝑟1 (𝑟)𝑑𝑟 = 0 𝛾̇ = 𝜕𝑣𝑧⁄𝜕𝑟 2𝜋 ∫ 𝑟𝑣𝑧 𝑟2 𝑟1 (𝑟)𝑑𝑟 = −𝜋𝑟12𝑉 𝛾̇ = 0 𝜏 ≤ 𝜏𝑦 𝜏 = 𝜏𝑦+ 𝑘𝛾̇𝑛 𝜏 > 𝜏𝑦 𝛾̇ = { − (𝜏𝑦 𝑘) 1 𝑛 ( 𝜆𝑖𝜆𝑜 𝑟 − 𝑟 + 𝜆𝑖− 𝜆𝑜 𝜆𝑜− 𝜆𝑖 ) 1 𝑛 for 𝑟1 ≤ 𝑟 ≤ 𝜆𝑖 0 for 𝜆𝑖 ≤ 𝑟 ≤ 𝜆0 (𝜏𝑦 𝑘) 1 𝑛 (𝑟 − 𝜆𝑖𝜆𝑜 𝑟 + 𝜆𝑖 − 𝜆𝑜 𝜆𝑜− 𝜆𝑖 ) 1 𝑛 for 𝜆0 ≤ 𝑟 ≤ 𝑟2 𝜆𝑖 𝜆𝑜

(72)

𝜏𝑦 𝛾̇ 𝜏𝑟𝑧 𝜆𝑖 ℎ = −𝑟1+ √ ∫ 𝑟²𝛾̇𝑟𝜆𝑖 1 (𝑟)𝑑𝑟 ∫ 𝛾̇𝑟𝜆𝑖 1 (𝑟)𝑑𝑟

(73)

𝑉(𝑘 𝜏⁄ 𝑦)1⁄𝑛 𝐵𝑚 = 𝜏𝑦 𝑘 ( 𝑟2−𝑟1 𝑉 ) 𝑛 𝜏𝑐⁄ℎ 𝑙𝑐 = √𝛾 𝜌𝑔⁄ 𝛾 √ℎ𝑙⁄ 𝑐3 𝜏𝑦 > (𝜌𝑔) 3 4 ⁄ 1⁄2 𝛾1⁄4 𝜏𝑦 𝜆𝑖 < 𝑟1√1 + 2𝜏𝑦/𝜌𝑔𝑟1

(74)

𝜏𝑐 𝜏𝑐

𝜏𝑐 𝜏𝑐

(75)

𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜏𝑐⁄𝜌𝑔 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜏𝑐⁄𝜌𝑔 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜆𝑖 𝛾𝑐 𝜆𝑜 𝛾𝑐(𝑟2−𝜆𝑜) 𝑉𝑑 𝛾𝑐

(76)
(77)
(78)

Chapter 4

(79)
(80)
(81)
(82)
(83)

cos(𝜃) 𝛾𝐿𝐺 + 𝛾𝑆𝐿− 𝛾𝑆𝐺

𝐹𝑓 𝐹𝑏

𝜂𝑉

(84)

𝜂𝑉 ℎ02 ~ ∆𝑃 𝑙 ∆𝑃 𝐹𝑏 ~ 𝐵𝑏 𝑅𝑐2 ∆𝑃~𝐹𝑏 𝑙𝑏~ 𝐵 𝑅𝑐²𝑙 ν 𝐵 = 𝐸ℎ03 12(1−𝜈2) 𝜂𝑉 ℎ02 = 𝐵 𝑅𝑐²𝑙²

(85)

𝑙 ∝ (ℎ0𝑅𝑐²)1⁄3 ℎ0 ∝ 𝑅𝑐 5 3 ⁄ (𝜂𝑉 𝐵) 3 4 ⁄ 𝜏(0) = − 𝜏𝑦− 𝑘𝛾̇𝑛 𝛾̇ =𝜕𝑉 𝜕𝑧 > 0 𝜏(ℎ) =𝜕𝑃 𝜕𝑥ℎ0+ 𝜏(0)

(86)

𝜕𝑃 𝜕𝑥 𝜏(0) 𝜕𝑃 𝜕𝑥 ~ ∆𝑃 𝑙 ~ 𝐵 𝑅𝑐²𝑙² 𝜏(ℎ) ~ − 𝜏𝑦 ℎ0 ~ ( 𝑘𝑉𝑛𝑅 𝑐 10 3 ⁄ 𝐵 ) 1 𝑛+1 3⁄ 𝑅𝑐 𝑅𝑐 𝑅𝑐

(87)

𝑒 ~ (𝑘𝑉 𝑛𝐿 𝑐 10 3 ⁄ 𝐵 ) 1 𝑛+1 3⁄

(88)

−𝜕𝑃 𝜕𝑥+ 𝜕𝜏𝑧𝑥 𝜕𝑧 = 0 𝜏𝑧𝑥(𝑧) =2𝜏𝑦 ∆ (𝑧 − 𝜆) ∆ = 2𝜏𝑦/(𝜕𝑃/𝜕𝑥) ∆ 𝜆 𝜆𝑖 𝜆𝑜 𝜏𝑧𝑥(𝜆𝑖) = − 𝜏𝑦 𝜏𝑧𝑥(𝜆𝑜) = 𝜏𝑦 ∆ = 𝜆𝑜− 𝜆𝑖 𝜆 =𝜆𝑜+ 𝜆𝑖 2 𝜏𝑧𝑥(𝑧) = 2𝜏𝑦 𝜆𝑜− 𝜆𝑖(𝑧 − 𝜆𝑜+ 𝜆𝑖 2 )

(89)

𝜆𝑖 𝜆𝑜 𝑉 = − ∫ 𝛾̇ ℎ 0 (𝑧) 𝑒𝑉 = ∫ 𝑣𝑥 ℎ 0 (𝑧)𝑑𝑧 = [𝑧𝑣𝑥(𝑧) ] 0 ℎ − ∫ 𝑧 ℎ 0 𝛾̇(𝑧)𝑑𝑧 𝛾̇ = 𝜕𝑉𝑥 𝜕𝑧 [𝑧𝑣𝑥(𝑧) ] 0 ℎ = 0 𝜆𝑖 𝜆𝑜. 𝜆𝑖 𝜆𝑜 𝝀𝒊 𝝀𝒐

(90)

𝛾̇ = { − (2𝜏𝑦 𝑘 ) 1 𝑛 (𝜆𝑖− 𝑧 𝜆𝑜− 𝜆𝑖) 1 𝑛 < 0 for 0 ≤ 𝑧 ≤ 𝜆𝑖 0 for 𝜆𝑖 ≤ 𝑧 ≤ 𝜆0 (2𝜏𝑦 𝑘 ) 1 𝑛 (𝑧 − 𝜆𝑜 𝜆𝑜− 𝜆𝑖) 1 𝑛 > 0 for 𝜆0 ≤ 𝑧 ≤ ℎ 𝜆𝑖 𝜆𝑜 0 ≤ 𝑧 ≤ 𝜆𝑖 𝜆𝑖 ≤ 𝑧 ≤ 𝜆0 𝜆0 ≤ 𝑧 ≤ ℎ 1 + 𝑛 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑉 = 𝜆𝑖1+ 1 𝑛 − (ℎ − 𝜆𝑜)1+ 1 𝑛 (1 + 𝑛)(1 + 2𝑛) 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑒𝑉 = 𝑛𝜆𝑖2+1𝑛− (ℎ + 𝑛ℎ + 𝑛𝜆𝑜)(ℎ − 𝜆𝑜)1+ 1 𝑛 𝜆𝑖 𝜆𝑜 𝜆𝑖 𝜆𝑜 𝝀𝒊 𝝀𝒐 ≥ 𝜏𝑧𝑥(𝜆𝑖) = − 𝜏𝑦 𝜏𝑧𝑥(ℎ) ≤ 𝜏𝑦 𝛾̇ = {− ( 2𝜏𝑦 𝑘 ) 1 𝑛 (𝜆𝑖 − 𝑧 𝜆𝑜− 𝜆𝑖) 1 𝑛 < 0 for 0 ≤ 𝑧 ≤ 𝜆𝑖 0 for 𝜆𝑖 ≤ 𝑧 ≤ ℎ 𝜆𝑖 ≤ ℎ 𝜆𝑜> ℎ 1 + 𝑛 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑉 = 𝜆𝑖1+𝑛1

(91)

(1 + 𝑛)(1 + 2𝑛) 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑒𝑉 = 𝑛𝜆𝑖2+ 1 𝑛 𝜆𝑖 =1 + 2𝑛 𝑛 𝑒 𝜆𝑜 =1 + 2𝑛 𝑛 𝑒 + 1 𝑛(1 + 𝑛) −𝑛(1 + 2𝑛)1+𝑛2𝜏𝑦 𝑘 𝑒 1+𝑛𝑉−𝑛 𝝀𝒐 ≥ 𝝀𝒊 ≥ 𝜏𝑧𝑥(𝑧) < − 𝜏𝑦 0 ≤ 𝑧 ≤ ℎ 𝛾̇ = − (2𝜏𝑦 𝑘 ) 1 𝑛 (𝜆𝑖 − 𝑧 𝜆𝑜− 𝜆𝑖) 1 𝑛 𝜆𝑖 ≥ ℎ 𝜆𝑜> ℎ 1 + 𝑛 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑉 = 𝜆𝑖1+𝑛1− (𝜆𝑖− ℎ)1+ 1 𝑛 (1 + 𝑛)(1 + 2𝑛) 𝑛 [ 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ] 1 𝑛 𝑒𝑉 = 𝑛𝜆𝑖2+ 1 𝑛− (ℎ + 𝑛ℎ + 𝑛𝜆𝑜)(ℎ − 𝜆𝑖)1+ 1 𝑛 𝜆𝑖 𝜆𝑜 𝜆𝑖 𝜆𝑜 𝑧 < 𝜆𝑖 𝑧 = 𝜆0 𝜆𝑖

(92)

𝜆𝑖 𝜆𝑜 𝜆𝑖 𝜆𝑖 𝜆0 = ℎ(𝑥) 𝜆0 𝜆0 1 + 2𝑛 𝑛 𝑒(𝑘, 𝑉) + 1 𝑛(1 + 𝑛) −𝑛(1 + 2𝑛)1+𝑛2𝜏𝑦 𝑘 𝑒(𝑘, 𝑉) 1+𝑛𝑉−𝑛= 𝑤 𝜏𝑦 ≈ 2𝑘 𝜏𝑦

(93)
(94)
(95)

𝜏𝑧𝑥(𝑧) = 2𝜏𝑦 𝜆𝑜− 𝜆𝑖(𝑧 − 𝜆𝑜+ 𝜆𝑖 2 ) 𝜏𝑧𝑥(𝑒) = 0 𝜏𝑧𝑥(0) < − 𝜏𝑐 λ λ 𝛾̇ = {− ( 2𝜏𝑦 𝑘 ) 1 𝑛 (𝜆𝑖 − 𝑧 𝜆𝑜− 𝜆𝑖) 1 𝑛 < 0 for 0 ≤ 𝑧 ≤ 𝜆𝑖 0 for 𝜆𝑖 ≤ 𝑧 ≤ ℎ 𝑣𝑥(𝑧) = 𝑉

(96)

𝑣𝑥(𝑧) = { 𝑉 − 𝑛 1 + 𝑛( 2𝜏𝑦 𝑘(𝜆𝑜− 𝜆𝑖) ) 1 𝑛 (𝜆𝑖1+ 1 𝑛− (𝜆𝑖− 𝑧)1+ 1 𝑛) for 0 ≤ 𝑧 ≤ 𝜆𝑖 𝑉 − 𝑛 1 + 𝑛( 2𝜏𝑦 𝑘(𝜆𝑜− 𝜆𝑖)) 1 𝑛 𝜆𝑖1+𝑛1 for 𝜆𝑖 ≤ 𝑧 ≤ 𝑒 𝜆𝑖 𝜆𝑜 𝜏𝑧𝑥(𝑒) = 0 𝜆𝑜+ 𝜆𝑖 = 2𝑒 ∫ 𝑣𝑥 𝑒 0 (𝑧)𝑑𝑧 = 0 1 + 𝑛 𝑛 ( 𝑘(𝜆𝑜− 𝜆𝑖) 2𝜏𝑦 ) 1 𝑛 𝑒𝑉 − 𝑒𝜆𝑖1+𝑛1 + 𝑛 1 + 2𝑛𝜆𝑖 2+1𝑛 = 0 𝜆𝑜 = 2𝑒 − 𝜆𝑖 𝜆𝑖 1 + 𝑛 𝑛 ( 𝑘(𝑒 − 𝜆𝑖) 𝜏𝑦 ) 1 𝑛 𝑒𝑉 − 𝑒𝜆𝑖1+𝑛1+ 𝑛 1 + 2𝑛𝜆𝑖 2+1𝑛 = 0 𝜏𝑧𝑥(0) = −𝜏𝑦( 𝑒 𝑒 − 𝜆𝑖 ) 𝐹𝑐𝑎𝑝 = 𝛾(𝜃𝑒− 𝜃𝑑) 𝛾 𝜃𝑒 𝜃𝑑 𝐹𝑣𝑖𝑠𝑐 = −𝜏𝑦∫ 𝑥 sin(𝜃𝑑) 𝑥 sin(𝜃𝑑) − 𝜆𝑖 𝑑𝑥 𝑙𝑐 𝑎

(97)

𝜆𝑖 𝑥 sin(𝜃𝑑) 𝜃𝑑 𝜏𝑦 𝜏𝑦 < 10 𝑃𝑎 𝜏𝑤⁄𝜏𝑦 𝜏𝑤⁄𝜏𝑦

(98)
(99)
(100)

Chapter 5

(101)

- - - - - -

(102)
(103)

- - - - - -

(104)

𝐺𝑎 = 𝑔 𝐿3

𝜈²

𝜈 = 𝜂

(105)
(106)
(107)
(108)
(109)

Formula %w carbopol (in liquid phase) %v starch (global volume) %w glycerol (in liquid phase) Spreading defect risk φstarch (In the dry film) 𝝉𝒚 (Pa) k (Pa.s1/n) n 1 0.3 6.4 10 3 0.46 50.8 18.4 0.40 2 9.3 5 0.56 48.3 16.9 0.42 3 12.0 5 0.63 44.0 16.0 0.44 4 6.9 50 1 0.14 46.8 29.1 0.44 5 10.0 1 0.20 41.5 27.4 0.45 6 12.9 3 0.25 37.6 25.7 0.47

(110)
(111)
(112)

Formula %w carbopol (in liquid phase)

%v starch (global volume) %w glycerol (in liquid phase) φstarch (In the dry film) 𝛕𝐲 (Pa) (Pa.sk 1/n) n 3’A 0.30 14.6 10.0 0.68 19.9 10.3 0.46 3’B 0.43 19.8 14.3 31.5 17.1 0.48 3’C 0.75 30.5 25.0 67.5 62.0 0.48 3’D 1.15 40.9 38.2 225 226 0.77 4’A 0.30 8.5 50.0 0.17 28.0 20.8 0.45 4’B 0.38 10.7 62.5 36.7 37.4 0.46 4’C 0.45 13.0 75.6 45.2 104 0.48 4’D 0.60 17.3 99.8 63.4 193 0.51

(113)
(114)

φ φ

φ

φ

(115)
(116)
(117)
(118)
(119)
(120)
(121)
(122)
(123)
(124)
(125)

Appendix section

𝑟̃ = 𝑟 𝑟1; ℎ̃ = ℎ 𝑟1; 𝑧̃ = 𝑧 𝑙; 𝑃̃ = 𝑃 𝜌𝑔𝑙; 𝛾̇̃ = 𝑉𝛾̇ 𝑟2− 𝑟1; 𝜏̃ = 𝜏 𝜏𝑦; 𝑣̃𝑧 = 𝑣𝑧 𝑉 ; 𝐵𝑚 =𝜏𝑦 𝑘 ( 𝑟2− 𝑟1 𝑉 ) 𝑛 ; 𝑊 = 𝜏𝑦 𝜌𝑔𝑟1 −1 −𝜕𝑃 𝜕𝑧+ 𝑊 𝑟 𝜕𝑟𝜏𝑟𝑧 𝜕𝑟 = 0 𝜏𝑟𝑧(𝑟) = 1 𝜆𝑖− 𝜆𝑜(𝑟 − 𝜆𝑖𝜆𝑜 𝑟 ) ∫ 𝛾̇ 𝑟2 1 (𝑟)𝑑𝑟 = 1 − 𝑟2 ∫ 𝑟𝑣𝑧(𝑟)𝑑𝑟 𝑟2 1 = −1 2

(126)

𝛾̇ = { −𝐵𝑚𝑛1( 𝜆𝑖𝜆𝑜 𝑟 − 𝑟 + 𝜆𝑖− 𝜆𝑜 𝜆𝑜− 𝜆𝑖 ) 1 𝑛 for 1 ≤ 𝑟 ≤ 𝜆𝑖 0 for 𝜆𝑖 ≤ 𝑟 ≤ 𝜆0 𝐵𝑚1𝑛( 𝑟 −𝜆𝑖𝜆𝑜 𝑟 + 𝜆𝑖 − 𝜆𝑜 𝜆𝑜− 𝜆𝑖 ) 1 𝑛 for 𝜆0 ≤ 𝑟 ≤ 𝑟2 ℎ = −1 + √∫ 𝑟²𝛾̇ 𝜆𝑖 1 (𝑟)𝑑𝑟 ∫ 𝛾̇1𝜆𝑖 (𝑟)𝑑𝑟 { 𝜆𝑖, 𝜆𝑜} ∈ [1, 𝑟2] 𝑟2 𝐵𝑚 = 𝜏𝑦 𝑘 ( 𝑟2−𝑟1 𝑉 ) 𝑛 𝑟2 𝐵𝑚 −𝜌𝑔 −𝜕𝑃 𝜕𝑧+ 𝜕𝜏𝑥𝑧 𝜕𝑥 = 0 𝜌 𝜕𝑃 𝜕𝑧 𝜏𝑥𝑧(𝑥) 𝜏𝑦 = 2 𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 (𝑥 −𝜆𝑜 𝑝𝑙𝑎𝑡𝑒 + 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 2 ) 𝜆𝑜𝑝𝑙𝑎𝑡𝑒 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜏𝑥𝑧(𝜆𝑖𝑝𝑙𝑎𝑡𝑒) = −𝜏𝑦 𝜏𝑥𝑧(𝜆𝑜𝑝𝑙𝑎𝑡𝑒) = 𝜏𝑦

(127)

𝑣𝑧(0) = 𝑉 𝑣𝑧(𝐿) = 0 −𝑉 = ∫ 𝛾̇ 𝐿 0 (𝑥)𝑑𝑥 −𝑒 2𝑉 = ∫ 𝑣𝑥(𝑥)𝑑𝑥 𝐿 0 𝛾̇(𝑥) = { − (2𝜏𝑦 𝑘 ) 1 𝑛 ( 𝜆𝑖 𝑝𝑙𝑎𝑡𝑒 − 𝑥 𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 ) 1 𝑛 for 1 ≤ 𝑥 ≤ 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 0 for 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 ≤ 𝑥 ≤ 𝜆𝑜𝑝𝑙𝑎𝑡𝑒 (2𝜏𝑦 𝑘 ) 1 𝑛 ( 𝜆𝑖 𝑝𝑙𝑎𝑡𝑒 − 𝑥 𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒) 1 𝑛 for 𝜆𝑜𝑝𝑙𝑎𝑡𝑒 ≤ 𝑥 ≤ 𝑟2 𝛾̇(𝑥) = { 𝑉 − 𝑛 1 + 𝑛( 2𝜏𝑦 𝑘(𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒) ) 1 𝑛 ((𝜆𝑖𝑝𝑙𝑎𝑡𝑒) 1+1 𝑛− (𝜆 𝑖𝑝𝑙𝑎𝑡𝑒− 𝑥) 1+1 𝑛 ) for 1 ≤ 𝑥 ≤ 𝜆 𝑖𝑝𝑙𝑎𝑡𝑒 𝑉 − 𝑛 1 + 𝑛( 2𝜏𝑦 𝑘(𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒) ) 1 𝑛 (𝜆𝑖𝑝𝑙𝑎𝑡𝑒) 1+1𝑛 for 𝜆𝑖𝑝𝑙𝑎𝑡𝑒≤ 𝑥 ≤ 𝜆𝑜𝑝𝑙𝑎𝑡𝑒 − 𝑛 1 + 𝑛( 2𝜏𝑦 𝑘(𝜆𝑜𝑝𝑙𝑎𝑡𝑒− 𝜆𝑖𝑝𝑙𝑎𝑡𝑒) ) 1 𝑛 ((𝐿 − 𝜆𝑜𝑝𝑙𝑎𝑡𝑒) 1+𝑛1 − (𝑥 − 𝜆𝑜𝑝𝑙𝑎𝑡𝑒) 1+𝑛1 ) for 𝜆𝑜𝑝𝑙𝑎𝑡𝑒≤ 𝑥 ≤ 𝑟2 1 + 𝑛 21𝑛𝑛 (𝜆𝑜 𝑝𝑙𝑎𝑡𝑒 𝐿 − 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1 𝑛 = 𝐵𝑚1𝑛((𝜆𝑖 𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+𝑛1 − (1 −𝜆𝑜 𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+1𝑛 ) (1 + 2𝑛) ((𝜆𝑖 𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+1 𝑛 − (1 −𝜆𝑜 𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+1 𝑛 ) 𝑒 2𝐿= ( (1 + 𝑛 + 𝑛𝜆𝑜 𝑝𝑙𝑎𝑡𝑒 𝐿 ) (1 − 𝜆𝑜𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+1 𝑛 − 𝑛 (𝜆𝑖 𝑝𝑙𝑎𝑡𝑒 𝐿 ) 1+1 𝑛 )

(128)

𝐵𝑚 =𝜏𝑦 𝑘 ( 𝐿 𝑉) 𝑛 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 (𝜏𝑦 𝑘) 1 𝑛 𝜆𝑖𝑝𝑙𝑎𝑡𝑒=[( 1 + 𝑛 𝑛 ) 𝑛 (1 + 𝑒 2𝐿) 𝑛𝑘𝑉𝑛𝐿 2𝜏𝑦 ] 1 1+𝑛 𝜆𝑖𝑝𝑙𝑎𝑡𝑒 ∝ 𝐿 1 1+𝑛

(129)
(130)
(131)

(132)
(133)
(134)
(135)

ABSTRACT

The spreading of cosmetic products, although it seems trivial at the consumer level, involves many complex physico-chemical phenomena that are important to understand and control. In this thesis, we study in detail the phenomena that occur during the spreading of complex fluids. Through our studies, we provide scientific levers that will ultimately improve the performance of cosmetic products. To do this, we study various scientific fields such as complex fluid rheology (i. e. gels and solid particle dispersion), wetting, fluid mechanics and spreading systems.

MOTS CLÉS

Fluides complexes, rhéologie, mouillage, étalement.

RÉSUMÉ

L’étalement des produits cosmétiques, bien qu’il semble trivial à l’échelle du consommateur, met en action de nombreux phénomènes physico-chimiques complexes importants à comprendre et à maitriser. Dans cette thèse, nous étudions en détail les phénomènes qui interviennent lors de l’étalement de fluides complexes. A travers nos études, nous fournissons des leviers scientifiques qui permettront in fine d’améliorer les performances des produits cosmétiques. Pour ce faire, nous étudions divers domaines scientifiques comme la rhéologie des fluides complexes (c.-à-d. gels et dispersion de particules solides), le mouillage, la mécanique des fluides et les systèmes d’étalement.

KEYWORDS

Références

Documents relatifs

Regardons à présent l’évolution de la viscosité effective moyenne (au début de l’écoulement) pour chaque série. Ces viscosités évoluent de la même manière que le

We investigated the effect of the transition on the structure: by mixing at room temperature κ-car with β-lg aggregates formed separately at different CaCl 2 concentrations; or

Schématiquement (UML) 5 demarrer() stopper() rouler() tourner_gauche() tourner_droite() modele couleur nombre_places annee_fabrication consommation.. maVoiture nom

-Gaucher Rymond, Les Terroristes, Ed.. :فنؼلا فٌرؼت يف يسايسلا فنعلا ةرىاظ&#34; وباتك لخدم يف ميىاربإ قيفوت نينسح روتكدلا لوقي لااو ةيسايسلا ايبناوج

Dans cet article nous présentons la méthode numérique que nous avons développée pour la simulation numérique directe d’écoulements fortement chargés, avec plusieurs

over, the same fractal dimension 1.8 has been observed in aluminosiloxane gels which consist of Al-O-Al link- ages and unreactive O-Si(CHs)s groups localized on. each Al

Pour les variations qui se produisent au cours du temps post mortem et qui sont révélées par les gèls nous avons comme commun pour tous les muscles l'apparition et

Liu and Qin [1], on the other hand, showed that anholonomic geometric phases also exist in the problem of the gyromotion of charged particles (i.e., not guiding-centers) in