• Aucun résultat trouvé

Stratégies robustes pour le suivi et la prédiction de l'endommagement de structures composites à l'aide de piézocéramiques embarquées

N/A
N/A
Protected

Academic year: 2021

Partager "Stratégies robustes pour le suivi et la prédiction de l'endommagement de structures composites à l'aide de piézocéramiques embarquées"

Copied!
184
0
0

Texte intégral

(1)
(2)
(3)

(4)
(5)

(6)
(7)



(8)
(9)

(10)
(11)

(12)

(13)

(14)
(15)

℄ ℄ ℄

S

0

A

0

A

0

S

0

(16)

℄ ℄

<

>

<

>

0

0

0

0

(17)

0

0

0

0

0

0

0

0

0

0

0

0

(18)

A

0

S

0

−−

−−

(19)

(20)
(21)

(22)
(23)
(24)

A

A

0

b

c

l

c

t

C

C

c

C

p

C

s

d

d

31

δ

ǫ

ǫ

ii

ǫ

T

33

E

f

F(ω)

G

g

31

h

c

I,i

J

k

K

l

L

p

λ

onde

M

ν

n

N

φ

Q

c

r

R

p

R

s

σ

s

(25)

S

S

0

S

c

s(t)

s

(t)

∆s

degraded

∆s

damage

t

tanδ

θ

t

c

U(ω)

V

,U

pzt

,V

pzt

v

c

v

onde

v

ph

w

w

0

,w

1

ω

0

x

¯

x

ξ

y

Y

c

Y

11

c

Y

libre

ζ

(26)
(27)
(28)



(29)

(30)
(31)

℄ ℄ ℄ ℄ 

(32)

℄ ℄ ℄ ℄ ℄

(33)

(34)



(35)

(36)
(37)

  ℄ ℄ ℄

(38)

[0

o

,45

o

,90

o

,−45

o

]

s

,s=1.

.

.N

(39)

(40)

(41)

ν

E

L

E

T

ν

T

ν

T

G

L

G

T

E

1

=E

L

ν

12

L

E

2

=E

3

=E

T

ν

23

T

G

12

=G

L

G

23

=G

T

S

ǫ

σ

ǫ

11

ǫ

22

ǫ

33

23

13

12

=

1

E

1

−ν

12

E

1

−ν

12

E

1

0 0 0

−ν

21

E

1

1

E

2

−ν

23

E

2

0 0 0

−ν

12

E

1

−ν

23

E

2

1

E

2

0 0 0

0

0 0

1

G

23

0 0

0

0 0 0

1

G

12

0

0 0

0 0 0

1

G

12

σ

11

σ

22

σ

33

σ

23

σ

13

σ

12

l

σ

l

=S

−1

ǫ

l

T

ǫ

T

σ

θ

(42)

T

ǫ

=

cos

2

(θ)

s

in

2

(θ)

0

0

0

s

in(θ)cos(θ)

s

in

2

(θ)

cos

2

(θ)

0

0

0

−s

in(θ)cos(θ)

0

0

1

0

0

0

0

0

0

cos(θ)

s

in(θ)

0

0

0

0 −s

in(θ) cos(θ)

0

−2s

in(θ)cos(θ) 2s

in(θ)cos(θ) 0

0

0

cos

2

(θ)−s

in

2

(θ)

T

σ

=

cos

2

(θ)

s

in

2

(θ) 0 0

0

2s

in(θ)cos(θ)

s

in

2

(θ)

cos

2

(θ) 0 0

0

−2s

in(θ)cos(θ)

0

0

1 0

0

0

0

0

0 cos(θ) −s

in(θ)

0

0

0

0 s

in(θ)

cos(θ)

0

−s

in(θ)cos(θ) s

in(θ)cos(θ) 0 0

0

cos

2

(θ)−s

in

2

(θ)

0

o

90

o

(43)

℄ ℄ ℄ ℄

(44)

℄ ℄

(45)

℄ ℄ ℄ ℄  ℄

(46)

 ℄  ℄

(47)

 ℄ ℄ ℄

(48)

℄ ℄ ℄ ℄

(49)

℄ ℄

(50)

℄ ℄ ℄ ℄ ℄ ℄

(51)

x y

d

z

x ξ z ζ

t

x

k

ω

ξ=A

x

f

x

(z)e

j(ωt−kx)

ζ=A

z

f

z

(z)e

j(ωt−kx)

x

x

z

y

y

(52)

℄ ℄ ℄ ℄ ℄ ℄

S

0

A

0

(53)

0

500

1000

1500

2000

2500

3000

0

2000

4000

6000

8000

Frequence

(kHz)

Vit

es

se

d

e

gr

ou

pe

(

m/

s)

0

500

1000

1500

2000

2500

3000

0

2000

4000

6000

8000

Frequence

(kHz)

Vit

es

se

d

e

ph

as

e (

m/

s)

A

0

S

0

A

0

S

0

(a)

(b)

A

0

S

0

z ±

d

2

=0

c

l

c

t

tan(

βd

2

)

tan(

αd

2

)

=−

(k

4αβk

2

−β

2

2

)

2

tan(

βd

2

)

tan(

αd

2

)

=−(k

2

−β

2

)

2

4αβk

2

α

2

2

c

2

l

−k

2

2

2

c

2

t

−k

2

f

λ

c

p

=f

λ

k

(54)

c

g

=

dk

A

0

S

0

℄ ℄ ℄ ℄ ℄

ω

U(ω)

u(x

,t)=2Re

0

U(ω)e

j(k(ω)x−ωt)

k(ω)= ω

v

ph

(ω)

(55)

S

0

µs

µs

℄ ℄

0

5

10

15

20

25

30

−1

0

1

Temps

(µs)

A

mp

lit

ud

e

0

5

10

15

20

25

30

−0

.05

0

0

.05

Temps

(µs)

A

mp

lit

ud

e

(a)

(b)

℄ ℄ ℄

(56)

℄ ℄ ℄ ℄ ℄

Q

c

C

c

Y

11

c

h

c

g

31

S

c

v

c

ǫ

ii

V

0

=

Q

C

c

c

=

Y

11

c

h

c

g

31

S

c

(1−v

c

)

S

c

ǫ

ii

dS

s

θ

r=r

c

r=r

c

+2s

r

a

i

=0 a

0

=a

(57)

V

0

=

Q

C

c

c

=

Y

11

c

h

c

g

31

S

c

(1−v

c

)

S

c

rr

θθ

)rdrdθ=

Y

11

c

h

c

g

31

S

c

(1−v

c

)

S

c

(

du

dr

r

+

u

r

r

)rdrdθ

r

v

onde

f

λ

onde

n n=0,1,2,.

.

.

2r=

v

onde

f

(f)

n+

1

2

onde

(f) n+

1

2

n= 2rf

v

onde

(f)

−1

2

(58)

℄ ℄

0

10

20

30

40

50

60

70

80

90

100

−1

0

1

A

mp

lit

ud

e

no

r

ma

li

e

temps

(µs)

0

10

20

30

40

50

60

70

80

90

100

−1

0

1

temps

(µs)

A

mp

lit

ud

e

no

r

ma

li

e

0

10

20

30

40

50

60

70

80

90

100

−1

0

1

temps

(µs)

Dif

re

nc

e

d’

a

mp

lit

ud

e

no

r

ma

li

e

(b)

(a)

(c)

(59)

℄ ℄ ℄

(60)

5

10

15

20

−1

−0

.8

−0

.6

−0

.4

−0

.2

0

0

.2

0

.4

0

.6

0

.8

1

temps

(µs)

A

mp

lit

ud

e

S

igna

l

mesuré

Enve

loppe

Réf

lex

ions

,

autres

dommages

,

modes

.

.

.

Deux

ième

paquet

arr

ivé

Prem

ier

paquet

arr

ivé

(61)

 ℄ ℄

(62)

A

0

S

0

℄ ℄

(63)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

Y

libre

I

V

ω

l

t

c

w

δ

C

ǫ

T

33

(64)

Y

libre

(ω)=I(ω)

V(ω)

=iωwl

t

c

T

33

(1−iδ))=iωC+Ω

Y

c

E

d

31

Y

c

(ω)=Y

libre

(ω)−iω

wl

t

c

(d

31

E)

(65)

℄ ℄ ℄ ℄ ℄ ℄

(66)

 ℄ ℄ ℄ ℄

(67)

(68)

y

x

b

w

y

y=b+wx

w b

b

w

0

y=w

0

+w

1

x

(69)

y

y

N

(x

1

,y

1

).

.

.

(x

n

,y

n

),n=1.

.

.N

w

1

¯

x ¯

y

w

1

=

N

i=1

(x

i

−¯

x)(y

i

−¯

y)

N

i=1

(x

i

−¯

x)

2

w

0

y−w

1

x

¯

y

m

φ

i

(x)

y=w

0

+

m

i=1

φ

i

(x)x

i

∼w

0

+

m

i=1

w

i

x

i

(70)

φ

w

f(x

,w)=

M

i=1

w

i

φ

i

(x)+w

0

|

x|

ǫ

ǫ

E(w)=

N

1

N

i=1

|

y

i

−f(x

i

,w

)|

ǫ

+|

w|

|

2

|

x|

ǫ

=

0

|

x|<ǫ

|

x|−ǫ

α

i

α

i

(71)

f(x

)=

N

i=1

i

−α

i

)K(x

i

,x

)+λ

0

α

i

≥0,α

i

i

α

i

α

i

=0,∀

i

K(x

i

,x

)

f(x

,w)

K(x

a

,y

b

)=

M

i=1

φ

i

(x

a

i

(x

b

)

α

α

C

E(α

)=ǫ

N

i=1

i

i

)−

N

i=1

y

i

i

−α

i

)+1

2

N

i=1

N

j=1

i

−α

i

)(α

j

−α

j

)K(x

i

,x

j

)

N

i=1

i

−α

i

)=0,0≤α

i

i

≥C

,∀

i

(72)

g

i

(x

i

,x

)

f(x

)=

N

i=1

i

−α

i

)g

i

(x

i

,x

)+λ

0

(73)

(74)

℄ ℄ ℄ ℄ ℄ ℄

(75)

1,

2

1

1

1

2

1

2

(76)

A

0

S

0

0

0

(77)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(78)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(79)

0

0

℄ ℄ ℄ ℄ ℄

(80)

ω

Generated

PZT

ω

s

s

p

p

p

s

p

℄ ℄

(81)

δ

3

5

2

Generated

℄ ℄

<

℄ ℄

(82)

℄ ℄

(83)

>

ω

1

Y

1

(ω)

=

1

jωC

s

+R

s

1

Y

2

(ω)

= 1

Y

1

(ω)

+

jωL

p

1+jω

L

p

R

p

2

C

p

L

p

= 1

Y

1

(ω)

+

jωL

p

1+2j

ω

ω

o

ξ−

ω

ω

o

2

ω

o

ξ

ω

o

=

1

L

p

C

p

ξ= 1

2R

p

L

p

C

p

ω

o

ξ

s

p

L

p

p

s

(84)

s

p

s

p

p

p

(85)

3

(86)

s

ω

o

ξ

(87)

℄ ℄ ℄ ℄

=

s

s

<

p

p

p

(88)
(89)

s

s

p

p

p

s

s

(90)

(91)

(92)

<

>

<

>

(93)

℄ ℄

o

(94)

o

℄ ℄

<

>

(95)

o

o

o

℄ ℄

∆s

damage

(t)

∆s

degraded

(t)

s

(t)

s(t)

s

(t)=s(t)+∆s

degraded

(t)+∆s

damage

(t)

s

(t)

φ

(96)

s(t)+∆s

damage

(t)=s

(t)−∆s

degraded

(t)=IFFT[

ke

FFT(s

(t))

]

(97)

0

0

0

0

0

0

µ

0

0

0

0

(98)

℄ ℄

0

0

0

0

(99)

0

0

0

0

0

0

(100)

0

0

0

0

(101)

1,

2

1

1

1

2

1

2

(102)

A

0

S

0

(103)

℄ ℄ ℄ ℄ ℄ ℄ ℄

0

0

℄ ℄ ℄ ℄

(104)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(105)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(106)

℄ ℄ ℄ ℄ ℄ ℄

Y

(

ω)pzt

Generated

℄ ℄ ℄

(107)

℄ ℄

s

s

p

p

p

s

p

s

s

p

p

p

ω

i

ξ

i

Y(ω)

pzt

=

jωC

1

s

+R

s

+

n

i=1

jωL

i

1+2j(

ω

ω

i

i

−(

ω

ω

i

)

2

−1

ξ

i

= 1

2R

pi

L

pi

C

pi

, ω

i

=

1

L

pi

C

pi

(108)

Rre

f

=

100

Ugenera

ted

Igenera

ted

a)

b)

PZT

Cs

Rs

Cp1

Rp1

Lp1

i

=

1

:n

Rpn

Cpn

Lpn

n

th

resonance

1s

t

resonance

Ω

3

(109)

0

0

A

0

=

U

T

+

U

b

S

0

=

U

T

-

U

b

U

T

U

b

℄ ℄

V

pzt

(ω)

ǫ

ii

(110)

0

100

200

300

400

500

600

700

800

900

1000

−2

0

2

4

6

8

10

Frequency

(kHz)

Re

(

Y

PZ

T)

0

100

200

300

400

500

600

700

800

900

1000

−4

−2

0

2

4

6

Frequency

(kHz)

I

m (

Y

PZ

T)

0

200

400

600

800

1000

0

20

40

60

80

100

0

2

4

6

8

10

12

x

10

−3

Frequency

(kHz)

Adhes

ive

Coverage

Degradat

ion

(%)

Re

(

Y

PZ

T)

0

200

400

600

800

1000

0

50

100

−2

0

2

4

6

8

x

10

−3

Frequency

(kHz)

Adhes

ive

Coverage

Area

(%)

I

m (

Y

PZ

T)

a)

c)

d)

b)

V

pzt

(ω)

ǫ

ii

V

pzt

(ω)=

jωQ

Y

pzt

(ω)

pzt

(ω)

1

Y

pzt

(ω)

S

pzt

ǫ

ii

dS

(111)

0

100

200

300

400

500

600

700

800

900

1000

−5

0

5

10

x

10

−3

Frequency

(kHz)

Re

(Y

P

ZT

)

0

100

200

300

400

500

600

700

800

900

1000

−2

−1

0

1

2

3

4

5

6

x

10

−3

Frequency

(kHz)

I

m(

Y

PZ

T)

0

200

400

600

800

1000

0

20

40

60

80

100

−5

0

5

10

x

10

−3

Frequency

(kHz)

Young

’s

Modu

lus

Degradat

ion

(%)

Re

(Y

P

ZT

)

0

200

400

600

800

1000

0

20

40

60

80

100

−2

0

2

4

6

x

10

−3

Frequency

(kHz)

Young

’s

Modu

lus

Degradat

ion

(%)

I

m(

Y

PZ

T)

d)

c)

b)

a)

80

%

60

% 50

% 40

% 20

%

100

%

100

%

80

%

60

% 50

% 40

% 20

%

(112)

℄ ℄ ℄ ℄

(113)

Generated

0

100

200

300

400

500

600

700

800

900

1000

−5

0

5

10

15

x 10

−3

Frequency (kHz)

Re

(Y

P

ZT

)

0

100

200

300

400

500

600

700

800

900

1000

−6

−4

−2

0

2

4

6

8

x 10

−3

Frequency (kHz)

I

m(

Y

PZ

T)

100%

75% 50

% 25%

75% 50

% 25

% 0%

100%

0

%

a)

b)

(114)

ξ

i

ω

0

0

(115)

s

(t)=s(t)+∆s

degraded

(t)+∆s

damaged

(t)

S

(ω)=S(ω)+∆S

degraded

(ω)+∆S

damaged

(ω)

ω

ω

φ

ω

F(ω)=

S(ω)+∆S

S(ω)

degraded

(ω)

FEM

=A(ω)e

jφ(ω)

A(ω)=

A

reference

(ω)

A

degraded

(ω)

, φ

(ω)=φ

reference

(ω)−φ

degraded

(ω)

ω

φ

A

degraded

(ω)

φ

degraded

(ω)

A

reference

(ω)

φ

reference

(ω)

S(ω)

S

damaged

(ω)

∆S

damaged

(ω)=S

(ω)−

S(ω)

F(ω)

(116)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(117)

0

0

(118)

ω

φ(ω)

0

0

0

0

(119)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Actua

l

damage

Phantom

damage

Phantom

damage

d)

b)

c)

a)

0

0

0

0

0

0

0

(120)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0

0.05

0.1

0.15

0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

D

istance

(m)

Di

st

an

ce

(

m)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Phantom

damage

Actua

l

damage

a)

d)

c)

b)

0

0

0

0

0

0

0

0

(121)

0

0

(122)
(123)

1,

2

2

1

1

1

2

(124)

(125)

℄ ℄ ℄

(126)

℄ ℄ ℄ ℄ ℄

(127)

℄ ℄ ℄ ℄ ℄

(128)

(129)

8

±

±

±

3

(130)

℄ ℄

(131)

℄ ℄ ℄

0

20

40

60

80

100

1

0.5

0

0.5

1

T

ime

(µs)

No

r

ma

li

ze

d

a

mp

lit

ud

e (

V)

0

200

400

600

800

1000

0

0.5

1

Frequency (kHz)

No

r

ma

li

ze

d

a

mp

lit

ud

e (

V)

0

20

40

60

80

100

1

0.5

0

0.5

1

T

ime

(µs)

No

r

ma

li

ze

d

a

mp

lit

ud

e (

V)

0

200

400

600

800

1000

0

0.5

1

Frequency (kHz)

No

r

ma

li

ze

d

a

mp

lit

ud

e (

V)

0

20

40

60

80

100

1

0.5

0

0.5

1

T

ime

(µs)

A

mp

lit

ud

e

dif

fe

re

nc

e (

V)

0

200

400

600

800

1000

0

0.5

1

Frequency (kHz)

A

mp

lit

ud

e

dif

fe

re

nc

e (

V)

(b)

(

f)

(d)

(a

)

(c)

(e

)

(132)

℄ ℄ ℄ ℄

(133)

℄ ℄

(134)

0

5

10

15

20

25

30

35

40

45

50

4

3

2

1

0

1

2

3

4

T

ime

(µs)

A

mp

lit

ud

e (

m

V)

F

ind max

imum amp

l

itude

F

ind peaks 20

dB down

Extract

t

ime

d

ifference

(135)

℄ ℄

(136)

℄ ℄ ℄

<

>

(137)

(138)

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

(139)

℄ ℄ ℄

(140)

max

0

5

10

15

20

25

0

1

2

3

4

5

6

7

Impact number

Da

ma

e

di

a

me

te

r

m

m

Fa

i

lure

reso

ld

(141)

0

5

10

15

20

5

10

15

20

25

Actua

l

RN

I

Es

ti

ma

te

d

R

NI

Test plate 1

Test plate 2

Test plate 3

Test plate 4

Linear fit

(142)

0

1

2

3

4

5

6

7

0

5

10

15

20

25

Dama e

d

iame

ter mm

I

mp

ac

ts

r

it

ica

l

D

iame

ter

±

±

(143)

℄ ℄ ℄ ℄ ℄ ℄

(144)

℄ ℄

(145)

(146)
(147)

1,

2

2

1

1

1

2

(148)

(149)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(150)

℄ ℄ ℄ ℄ ℄ ℄ ℄ ℄

(151)

℄ ℄

8

±

±

±

(152)

3

℄ ℄ ℄

(153)

o

℄ ℄ ℄ ℄

(154)

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

LF

c

or

re

la

ti

on

v

ari

an

ce

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

PS

D

va

ri

an

ce

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

HF

ma

xi

mu

m

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

RF

s

ta

nd

ar

d

de

vi

ati

on

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

LF

me

di

an

0

5

10

15

20

25

30

0

0

.5

1

Impact

number

(N)

Ti

me

s

ig

na

l

me

an

a

mp

lit

ud

e

(c)

(a)

(e)

(b)

(d)

(f)

(155)

℄ ℄

generated

(156)

Rre

f

=

100

Ugenera

ted

Igenera

ted

a)

b)

PZT

Cs

Rs

Cp1

Rp1

Lp1

i

=

1

:n

Rpn

Cpn

Lpn

n

th

resonance

1s

t

resonance

Ω

ω

i

ξ

i

Y(ω)= 1

jωC

s

+R

s

+

n

i=1

jωL

pi

1+2j(

ω

ω

i

i

−(

ω

ω

i

)

2

−1

ξ

i

= 1

2R

pi

L

pi

C

pi

, ω

i

=

1

L

pi

C

pi

i

n

th

Generated

(157)

A

0

S

0

℄ ℄

0

0

ω

ω

ω

ω

(158)

0

10

20

30

0

200

400

600

800

1000

0

20

40

Impact

number

(N)

Frequency

(kHz)

A

0

a

mp

lit

ud

e

co

ns

ta

nt

0

10

20

30

0

200

400

600

800

1000

−200

−150

−100

−50

0

50

Impact

number

(N)

Frequency

(kHz)

A

0

un

wr

ap

pe

d

ph

as

e

ch

an

ge

(

o

)

0

10

20

30

0

200

400

600

800

1000

0

50

100

Impact

number

(N)

Frequency

(kHz)

S

0

a

mp

lit

ud

e

co

ns

ta

nt

0

10

20

30

0

200

400

600

800

1000

−200

−150

−100

−50

0

50

Impact

number

(N)

Frequency

(kHz)

S

0

un

wr

ap

pe

d

ph

as

e

ch

an

ge

(

o

)

(b)

(d)

(c)

(a)

A

0

S

0

ω

ω

ω

φ

ω

F(ω)=

S(ω)+∆S

S(ω)

degraded

(ω)

FEM

=A(ω)e

jφ(ω)

A(ω)=A

reference

(ω)

A

degraded

(ω)

, φ

(ω)=φ

reference

(ω)−φ

degraded

(ω)

ω

φ

A

degraded

(ω)

φ

degraded

(ω)

A

reference

(ω)

φ

reference

(ω)

(159)

∆S

damaged

(ω)=S

(ω)− S(ω)

F(ω)

A

0

S

0

S(ω)

0

0

20

0

0

50

60

0

80

90

0

5

10

Adhes

ive

cove

rage

deg

rada

t

ion

(%

)

Si

mu

la

te

d

mo

da

l

da

mp

in

g

(

%)

0

5

10

15

20

25

4

6

8

Impac

t

numbe

r

(N

)

Me

as

ur

ed

mo

dal

da

mpi

ng

(

%)

0

5

10

15

20

25

20

30

40

Impac

t

numbe

r

(n

)

Ad

he

siv

e

co

ve

ra

ge

de

gr

ad

ati

on

(

%)

(c

)

(b

)

(a

)

(160)

em

i

t

ter

rece

iver

A

0

S

0

A

SCF

(ω)=A

PZT1

(ω)∗A

PZT2

(ω), φ

SCF

(ω)=φ

PZT1

(ω)+φ

PZT2

(ω)

(161)

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

LF

c

or

re

la

ti

on

v

ari

an

ce

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

PS

D

va

ri

an

ce

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

HF

ma

xi

mu

m

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

RF

s

ta

nd

ar

d

de

vi

ati

on

0

5

10

15

20

25

0

0

.5

1

Impact

number

(N)

LF

me

di

an

0

5

10

15

20

25

30

0

0

.5

1

Impact

number

(N)

Ti

me

s

ig

na

l

me

an

a

mp

lit

ud

e

wo

SCF

w

ith

SCF

(c)

(a)

(e)

(b)

(d)

(f)

(162)

℄ ℄

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

±

=

(163)

0

5

10

15

20

25

1

0

1

2

3

4

5

6

7

8

Da

ma

ge

di

a

ma

te

r

(

m

m)

Fa

i

lurethresho

ld

(NDT)

−−

℄ ℄

(164)

0

5

10

15

20

25

0

5

10

15

20

25

30

35

Ac

tu

lRN

I

Est

i

m

t

❡ ❞

R

NI

−−

±

±

(165)

0

1

2

3

5

✻ ☎

0

5

10

15

20

25

D

m

✆❣

e

i

me

te (mm

)

R

UL

(

R

NI

)

0

1

2

3

5

✻ ☎

5

0

5

10

15

20

25

R

UL

(

R

NI

)

Be

f

e

❙✞❋

Af

te

❙✞❋ ✞

it

ic

l

i

me

te

℄ ℄

(166)

℄ ℄

(167)

A

0

S

0

(168)

8.

4±6.

7

5.

1±4.

3

±

±



(169)

(170)
(171)

(172)



(173)

Références

Documents relatifs

Binary alloy, solidification, sharp model, Stefan problem, finite volume method, Lagrange projection scheme, random sampling

Let us consider in a bit more detail the question of the Gibbs phenomena and attempt to understand whether it is better behaved in the Pad´ e-Jacobi approximation as compared to

Plus qu’une méthode, qui indique aux concepteurs comment il faut concevoir, l’approche ergonomique présentée défend l’idée que l’on peut tenter d’améliorer le travail

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L'étude de es régimes stationnaires nous permet néanmoins de jeter un regard ritique sur un des ingrédients du modèle Ane exposé dans le paragraphe pré édent (équation (4.6) )

2017 (arXiv:1712.08153), THESEUS aims at exploiting high-redshift Gamma–Ray Bursts for getting unique clues on the early Universe and, being an unprecedentedly powerful machine for

Apr`es avoir dress´e un portrait de cette particule, avec certains des r´esultats remarquables obtenus par ATLAS `a partir des donn´ees collect´ees en 2010 et en 2011, nous

du traitement automatisé des données à caractère personnel (STE n° 108), 18 mai 2018, § 48 : « [l]a légiti- mité d’une finalité dépendra des circonstances, le but étant