• Aucun résultat trouvé

A decision problem for ultimate periodicity in non-standard numeration systems

N/A
N/A
Protected

Academic year: 2021

Partager "A decision problem for ultimate periodicity in non-standard numeration systems"

Copied!
27
0
0

Texte intégral

(1)

non-standard numeration systems

ÉmilieCharlier UniversitélibredeBruxelles

(2)

Let's startwithclassical

k

-ary numeration system,

k ≥ 2

:

n =

`

X

i=0

d

i

k

i

, d

`

6= 0,

rep

k

(n) = d

`

· · · d

0

∈ {0, . . . , k − 1}

A set

X ⊆ N

is

k

-recognizable,ifthe language

rep

k

(X) = {rep

k

(x) : x ∈ X}

(3)

Examples of

k

-recognizable sets

I

Inbase

2

,the evenintegers:

rep

2

(2N) = 1{0, 1}

0 ∪ {ε}

I

Inbase

2

,the powers of

2

:

rep

2

({2

i

|i ∈ N}) = 10

I

Inbase

2

,the Thue-Morseset:

{n ∈ N : rep

2

(n)

contains aneven numbers of

1

s

}

I

Givena

k

-automaticsequence

(x

n

)

n≥0

over an alphabet

Σ

, then, forall

σ ∈ Σ

,the set

{i ∈ N : x

i

= σ}

is

k

-recognizable.

(4)

Divisibility criteria

If

X ⊆ N

is ultimatelyperiodic,then

X

is

k

-recognizable

∀k ≥ 2

.

X = (3N + 1) ∪ (2N + 2) ∪ {3},

Preperiod

= 4,

Period

= 6

χ

X

=



  

|





  







  



· · ·

Twointegers

k, ` ≥ 2

aremultiplicativelyindependentif

k

m

= `

n

⇒ m = n = 0.

Theorem(Cobham 1969)

Let

k, ` ≥ 2

be multiplicativelyindependent integers.

(5)

Theorem(J. Honkala 1986)

It is decidableif a

k

-recognizableset is ultimatelyperiodic. Sketchof Honkala's decisionprocedure:

I

Theinput isaDFA

A

X

accepting

rep

k

(X)

.

I

Thenumberof statesof

A

X

produces an upperbound on the possible(minimal) preperiodand period for

X

.

I

Consequently, therearenitelymany candidates tocheck.

I

For each pair

(a, p)

ofcandidates, produce aDFAforall possiblecorrespondingultimately periodicsetsand compareit with

A

X

.

(6)

I

Anumeration system(NS) isan increasingsequence of integers

U = (U

n

)

n≥0

such that

I

U

0

= 1

and

I

C

U

:= sup

n

≥0

dU

n+1

/U

n

e < +∞

.

I

U

islinearifitsatises alinearrecurrence relationover

Z

.

I

Let

n ∈ N

. Aword

w = w

`−1

· · · w

0

over

N

represents

n

if

`−1

X

i=0

w

i

U

i

= n.

I

(7)

I

Arepresentation

w = w

`−1

· · · w

0

ofan integeris greedyif

∀j,

j−1

X

i=0

w

i

U

i

< U

j

.

I

Inthat case,

w ∈ {0, 1, . . . , C

U

− 1}

.

I

rep

U

(n)

isthe greedyrepresentationof

n

with

w

`−1

6= 0

.

I

X ⊆ N

is

U

-recognizable

⇔ rep

U

(X)

is acceptedby anite automaton.

I

rep

(8)

It is basedon the sequence

F = (F

i

)

i≥0

= (1, 2, 3, 5, 8, 13, . . .)

dened by

F

0

= 1, F

1

= 2

and

F

i+2

= F

i+1

+ F

i

forall

i ≥ 0.

1 1 8 10000 15 100010 2 10 9 10001 16 100100 3 100 10 10010 17 100101 4 101 11 10100 18 101000 5 1000 12 10101 19 101001 6 1001 13 100000 20 101010 7 1010 14 100001 21 1000000 The pattern

11

is forbidden,

A

F

= {0, 1}

.

(9)

The

`

-bonacci numeration system

0

1

1

1

0

0

0

I

U

n+`

= U

n+`−1

+ U

n+`−2

+ · · · + U

n

I

U

i

= 2

i

,

i ∈ {0, . . . , ` − 1}

I

A

U

accepts allwordsthat do notcontain

1

`

(10)

Proposition

Let

U = (U

i

)

i≥0

be aNS s.t.

N

is

U

-recognizable. Any ultimately periodic

X ⊆ N

is

U

-recognizableand aDFAaccepting

rep

U

(X)

can be obtainedeectively.

NB: If

N

is

U

-recognizable,then

U

islinear.

Periodicityproblem: Given

U

s.t.

N

is

U

-recognizable and a

U

-recognizable set

X ⊆ N

. Isitdecidable if

X

is ultimately periodic?

(11)

Pseudo-result

Let

X

be ultimatelyperiodic withperiod

pX

. Any DFAaccepting

rep

U

(X)

has atleast

f

(

p

X

)

states, where

f

isincreasing.

Pseudo-corollary

Let

X ⊆ N

be a

U

-recognizable set ofintegerss.t.

rep

U

(X)

is accepted by a

d

-stateDFA.

If

X

isultimatelyperiodicwith period

pX

,then

f

(

p

X

) ≤

d

with

(

d

xed

f

increasing.

(12)

lim

i→+∞

U

i+1

− U

i

= +∞.

(1) Mostsystems arebuilt on anexponential sequence

(U

i

)

i≥0

.

Lemma

Let

U = (U

i

)

i≥0

be aNS satisfying (1 ). If

w

isagreedy

U

-representation, thenso is

10

r

w

(13)

Let

N

U

(m)

∈ {1, . . . , m}

denotes the number ofvaluesthat are taken innitelyoftenby the sequence

(U

i

mod m)

i≥0

.

Example (Zeckendorf system)

(F

i

mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .)

,so

N

F

(4) = 4

.

(F

i

mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .)

,so

N

F

(11) = 7

.

If

U = (U

i

)

i≥0

isalinearsystemoforder

k

,then,forall

m ≥ 2

,we have

k

U

(m) ≤ N

U

(m) ≤ π

U

(m),

(14)

Let

U

be aNS satisfying (1). If

X ⊆ N

isan ultimatelyperiodic

U

-recognizable set ofperiod

p

X

,then any DFAaccepting

rep

U

(X)

has atleast

N

U

(

pX

)

states.

Corollary

Let

U

be aNS satisfying (1). Assumethat

lim

m→+∞

N

U

(m) = +∞.

Then the period ofan ultimatelyperiodic set

X ⊆ N

s.t.

rep

U

(X)

is accepted by a

d

-stateDFA isbounded by the smallestinteger

M

s.t.

N

U

(m) >

d

forall

m ≥

M

,whichiseectively computable.

(15)

If

U = (U

i

)

i≥0

satisesa recurrencerelationof the kind

U

i+k

= a

1

U

i+k−1

+ · · · + a

k

U

i

,

(2)

with

a

k

= ±1

,then

lim

m→+∞

N

U

(m) = +∞

.

Proposition

Let

U = (U

i

)

i≥0

be anincreasingsequence satisfying (2 ). The following assertionsareequivalent:

I

lim

m→+∞

N

U

(m) = +∞

;

I

forallprime divisors

p

of

a

k

,

lim

v→+∞

N

U

(p

v

) = +∞

(16)

Let

Q

U

(x)

denote thecharacteristicpolynomialof the shortest recurrence relationsatised by

U

;and let

P

U

(x)

= x

k

Q

U

(

1

x

)

, where

k = deg(Q

U

(x))

. Theorem(Bell-C-Fraenkel-Rigo 2009) We have

N

U

(p

v

) → +∞

as

v → +∞

ifand only if

P

U

(x) = A(x)B(x)

with

A(x), B(x) ∈ Z[x]

suchthat:

I

B(x) ≡ 1 (mod p Z[x])

;

I

A(x)

(17)

Theorem(Muchnik 1991)

The ultimateperiodicityproblem isdecidable forallNS with a regularnumerationlanguage,provided thatadditionis recognizable.

Example (

U

i+4

= 3U

i+3

+ 2U

i+2

+ 3U

i

for all

i

≥ 0

,

(U

0

, U

1

, U

2

, U

3

) = (1, 2, 3, 4)

)

Additionisnotcomputable by aniteautomaton (duetoFrougny). Nevertheless,

N

U

(3

v

) → +∞

as

v → +∞

because

P

U

= 1 − 3x − 2x

2

− 3x

4

(18)

Theorem(C-Rigo 2008)

Let

U

be aNS satisfying (1)and

X ⊆ N

bean ultimatelyperiodic

U

-recognizable set ofperiod

pX

. If

1

occursinnitelymany times in

(U

i

mod

p

X

)

i≥0

thenany DFA accepting

rep

U

(X)

hasatleast

pX

states.

(19)

Theorem(Zeckendorf system)

Let

X ⊆ N

be ultimately periodicwith period

p

X

(and preperiod

a

X

). Any DFAaccepting

rep

F

(X)

has atleast

pX

states.

I

w

−1

L = {u : wu ∈ L} ↔

statesof minimalautomatonof

L

I

(F

i

mod p

X

)

i≥0

is purelyperiodic.

I

If

i, j ≥ a

X

and

i 6≡ j (mod p

X

)

then thereexists

t < p

X

s.t. either

i + t ∈ X

and

j + t 6∈ X

,or

i + t 6∈ X

and

j + t ∈ X

.

I

∃n

1

, . . . , n

pX

, ∀t

,

0 ≤ t < p

X

,the words

10

n

pX

· · · 10

n

2

10

n

1

0

| rep

F

(p

X

−1)|−| rep

F

(t)|

rep

F

(t)

(20)

I

Moreover

n

1

, . . . , n

p

X

canbe chosen s.t.

∀j

,

1 ≤ j ≤ p

X

,

val

F

(10

n

j

· · · 10

n

1

+| rep

F

(pX−1)|

) ≡

j

(mod p

X

)

and

val

F

(10

n

1

+| rep

F

(pX

−1)|

) ≥ a

X

.

I

For

i, j ∈ {1, . . . , p

X

}

,

i 6= j

, thewords

10

ni

· · · 10

n

1

and

10

nj

· · · 10

n

1

willgenerate dierentstates in theminimalautomaton of

rep

F

(X)

. Thiscan beshown by concatenating someword of length

| rep

(21)

w

−1

L = {u : wu ∈ L} ↔

states ofminimalautomaton of

L

X

= (11N + 3) ∪ {2}, a

X

= 3, p

X

= 11, | rep

F

(10)| = 5

Workingin

(F

i

mod 11)

i≥0

:

· · ·

21 1 01 10 28 53 21 10 110 28 53 21 1 0 00 0 00 00 00 1 1 0 00 0 00 00 01 0 00 0 00 00 00 2 1 0 00 0 00 00 10 1+2

∈ X

1 0 00 0 00 00 01 0 00 0 00 00 10 2+2

∈ X

/

⇒ (

10

5

)

−1

rep

F

(X) 6= (10

9

10

5

)

−1

rep

F

(X)

(22)

Forasequence

U = (U

i

)

i≥0

of integers,if

(U

i

mod m)

i≥0

is ultimately periodic,wedenote its(minimal) preperiodby

ι

U

(m)

.

Theorem(C-Rigo 2008)

Let

U = (U

i

)

i≥0

be alinearnumerationsystem. Let

X ⊆ N

be ultimately periodic withperiod

p

X

and preperiod

a

X

. Thenany DFAaccepting

rep

U

(X)

has atleast

| rep

U

(aX

− 1)|

ι

U

(p

X

)

states.

(23)

Theorem(C-Rigo 2008)

It is decidableif a

U

-recognizableset is ultimatelyperiodic for numeration systems

U = (U

i

)

i≥0

s.t.

I

N

is

U

-recognizable;

I

lim

i→+∞

U

i+1

− U

i

= +∞

;

I

lim

m→+∞

N

U

(m) = +∞

.

(24)

Remark

Whenever

gcd(a

1

, . . . , a

k

) = g ≥ 2

, we have

U

i

≡ 0 (mod g

n

)

for all

n ≥ 1

and forall

i

large enough;hence

N

U

(m) 6→ +∞

.

Examples

I

Integerbases:

U

n+1

= k U

n

I

U

n+2

= 2U

n+1

+ 2U

n

(25)

Learnmoreaboutlinearrecurrentsequences mod

m

...

I

H.T.Engstrom, On sequences denedby linearrecurrence relations,Trans. Amer. Math. Soc. 33(1931).

I

M.Ward, Thecharacteristicnumber ofasequence ofintegers satisfyinga linearrecursion relation, Trans. Amer. Math. Soc. 35 (1933).

I

M.Hall,An isomorphismbetweenlinearrecurringsequences and algebraic rings,Trans. Amer. Math. Soc. 44(1938).

I

(26)

Main ideas foranautomata-resolutionofthe periodicity problem:

I

If

X ⊆ N

isultimately periodic,thenthe state complexity of the associated minimalDFAshould grow withthe period and preperiod of

X

.

I

Analysethe inner structure ofDFAsaccepting the

(27)

F

-representations of even numbers

0

1

0

0

1

0

1

0

1

0

0

0

13 8 5 3 2 1

1 0

2

1 0 1

4

1 0 0 1

6

1 0 0 0 0

8

1 0 0 1 0 10

1 0 1 0 1 12

. .

Références

Documents relatifs

We illustrate how green components have been introduced in the design of the core network and base station sites (possibly targeting renewable power sources), in the adoption

يلوخلا نيمأ : و ةيندبلا ةيبرتلا لوصأ ةيضايرلا خيرات نودب ،يبرعلا ركفلا راد ،ىلولأا ةعبطلا ،.. يسوطسب ،يئارماسلا دمحأ سابع يسيوطسب دمحأ : ةيضايرلا ةيبرتلا يف سيردتلا

Comparing histone marks in subsets of genes that were ei- ther expressed or not expressed in human T cells (based on mRNA microarray data), we observed that most histone marks

Keywords: formal language theory, mildly context sensitive languages, IO and OI hierarchies, higher-order collapsible pushdown automata, group languages, algebraic topology,

Following (McCarthy and Nav- igli, 2009), we adapted this principle to the task, by com- plementing the initial annotation dataset with all the sub- stitutes provided by the

* Compréhension orale et écrite de phrases cellar is down the staircase.. A dark cat sat up

In Section 4, we deal with the case where the matroid is 4–connected up to separators of size 4, and in Section 5 we complete the proof of Theorem 1.2.. Section 5 begins with

We describe the existence of a repetitive model with the mentioned complex- ity, defined now by two numbers m (the number of equivalence classes) and c (the number of intervals