• Aucun résultat trouvé

Vegetable oil modeling applied for the formulation of structured lipids

N/A
N/A
Protected

Academic year: 2021

Partager "Vegetable oil modeling applied for the formulation of structured lipids"

Copied!
29
0
0

Texte intégral

(1)

To cite this document:

Gerbaud, Vincent and Teles dos Santos, Moises and Carrillo Le Roux, Galo

Vegetable oil modeling applied for the formulation of structured lipids. (2012) In:

Journées chevreul 2012 : Chimie du végétal et lipochimie, 5-6 Jun 2012, Maison Alfort, France.

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/

Eprints ID: 6245

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@inp-toulouse.fr

(2)

Vegetable oil modeling applied for

the formulation of structured lipids

Vincent Gerbaud

Laboratoire de Génie Chimique, Toulouse

Moises Teles Dos Santos, Galo Carillo Le Roux

Universidad de Sao Paulo (Brasil)

(3)

Outline

-

Motivations

-

SFC : Solid fat content : the core property

-

Vegetable Oil modeling

Analysis

Development

-

Results

Binary TAGs mixture

Four TAGs mixture

Vegetable oil: 17 TAGs and more..

Oil blends, interesterified or not

Structured lipids application

-

Conclusions

(4)

Motivations

-

Growing need for TAG based products = more

systematic tools for their design

3

ROSILLO-CALLE, F. et al. A global overview of vegetable oils with

reference to biodiesel. Report for the IEA Bioenergy Task 40 (2009)

Our model

concerns

food &

industrial

uses

Foods

Cosmetics

Lubricants

Cutting fluids

Waxes

Solvents

Vegetable Oil

(5)

Solid Fat Content: the core property

-

Many evidences that end-user attributes are correlated

with Solid Fat Content

Flöter. The role of physical properties

data in product development. Eur. J.

Lipid Sci. Technol. 2009, 111, 219–226

(6)

Solid Fat Content: the core property

Physical

Chemical

Attributes (end-user perception)

Macroscopic properties

Microstructure

Processing

Storage

SFC

Polymorphism

Composition

FA

TAGs

Veg.Oil / Fat

stability

spreadability

texture

shine

Flavor

Natural

sources

End-user

The molecular

scale

5

(7)

Vegetable Oil modeling

-

Datas are not uniform and consistent across the scales.

-

Predictive models did not exist so far.

Physical

Chemical

Attributes (end-user perception)

Macroscopic properties

Microstructure

Processing

Storage

SFC

Polymorphism

Composition

FA

TAGs

Veg.Oil / Fat

stability

spreadability

texture

shine

Flavor

Natural

sources

Data (SP, T

m

)

Data (FAME)

Data Data

Data

Data (NMR)

Data QSPR correlations 6

(IV)

(8)

-

A predictive model for the missing links:

SFC vs Veg. Oil composition

• By using FA distribution or TAGs composition

Vegetable Oil modeling

7

SFC

Polymorphism

Composition

FA

TAGs

Veg.Oil / Fat

(9)

Vegetable Oil modeling

-

Model analysis

SFC calculation

• solid – liquid equilibrium (SLE)

– Minimizing the gibbs free energy G

A very complex mixture pb

• Veg. Oils blends

m’ Veg. Oils

> 95% of n’ TAGs

combination of 3 FA

– Each scale give rise to phase

diagrams, SFC, DSC

Polymorphism affects the SLE

-

The final model must be

predictive to help oil blend

design

SFC Polymorphism

Composition

FA TAGs Veg.Oil / Fat

8

Liq.

Solids

(10)

The SLE model

-

Model INPUT:

Veg. Oil considered as a mixture of n’ TAGs

Getting TAGs composition?

• (rare) from TAGs analysis

• (frequent) from FA distribution

– from which we generate a probable TAGs distribution…

-

Model OUTPUT:

The TAGs distribution among the phases liquid and solids vs

temperature

• Enable to compute SFC and DSC curves

α β’ β α LIQUID α β’ β α LIQUID

+ …….

+

+

α β’ β α LIQUID

+

9

(11)

The SLE model

-

Polymorphic solid(s) – liquid equilibrium

10 ) ln ( iliquid nc i liquid i liquid RT x x g

= = 1

(

)

       +         − ∆ =

= ) ( ) ( ) ( , ) ( , ) ( ) ( ln solid j i j solid i j solid i m j solid i m nc i j solid i j solid x T T R H x RT g 1 1 γ 1

Predicted for each phase

Function of TAGs composition

) ,

, (

&T f polymorhicFAtypeFAposition

Hm m= ∆

∑∑

= =

+

+

=

np j nc i i j j i E p app p

T

n

Hm

T

G

C

C

1 1

∑∑

= = = nc i np j j i j i g n n n G with n G 1 1 ) ( ) ( ) ( min

-

Results:

Solid Fat Content obtained

directly from n

TAG

phase j

(equilibrium) DSC curves

(12)

SLE Results: PPP/OOO vs PPP/CCC

-

Molecular size greatly affects crystal lattice and the SLE!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70

Molar fraction (OOO)

T e m p e ra tu re ( ºC ) 0 10 20 30 40 50 60 70 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Temperature (ºC) s o lid m o la r fr a c ti o n 0 10 20 30 40 50 60 70 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Temperature (ºC) s o lid m o la r fr a c ti o n

PPP (C16:0)

OOO (C18:1)

PPP (C16:0)

CCC (C10:0)

SFC

SFC

Phase diagram

-400 -20 0 20 40 60 80 10 20 30 40 50 60 Temperature (ºC) C p [ k J /m o l. K ]

PPP

OOO

PPP + CCC

DSC Curve

11 P: palmitic acid (C16:0) / C: capric acid (C10:0) / O: oleic acid (C18:1)

(13)

25% OOO 25% CCC 25% PPP 25% SSS

mixture

-

Capturing the complexity of TAG behavior in mixture

OOO and CCC melt together over the same T range

PPP and SSS melt as pure compounds

P: palmitic acid (C16:0) / S: estearic acid (C18:0)/ C: 12

-200 0 20 40 60 80 0.2 0.4 0.6 0.8 1 Temperature (ºC) S F C ( m a s s ) -200 0 20 40 60 80 500 1000 1500 Temperature (ºC) C p ( k J /K ) -200 0 20 40 60 80 0.05 0.1 0.15 0.2 0.25 Temperature (ºC) m o ls o n s o lid s ta te /t o ta l o f m o ls -200 0 20 40 60 80 0.05 0.1 0.15 0.2 0.25 Temperature (ºC) m o ls o n l iq u id s ta te /t o ta l o f m o ls PPP SSS CCC OOO PPP SSS CCC OOO

OOO + CCC

PPP

SSS

SFC DSC Curve

(14)

Veg. Oil: Palm oil

-

Palm oil: 17 TAGs.

Melting Point correctly calculated

Good SFC agreement, considering that we used two incoherent

data sources

• Exp. Data: TAG composition from Sambanthamurthi R et al. (2000)

• Exp. Data: mean SFC from Lin, S.W. (2002)

13 -200 -10 0 10 20 30 40 50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Temperature (ºC) S F C ( m a s s f ra c ti o n ) SFC Vs Temperature -200 -10 0 10 20 30 40 50 1 2 3 4 5 6 Temperature (ºC) C p [ k J /m o l. K ] Simulated DSC

(15)

Veg. Oil: Palm oil

14

-

DSC: temperature profile and main phase transitions

We solve S- L Equilibrium = we get equilibrium DSC

• = DSC with infinitely slow heating rate

-200 -10 0 10 20 30 40 50 0.01 0.02 0.03 0.04 0.05 0.06 Temperature ºC Simulated Experimental (10 ºC/min) Experimental (5 ºC/min) PamPamPam

1

°

C/min

T7 = 41,51

°

C

(16)

Oil blends and interesterified blends

-

Canola Oil (30%) – Fully

Hydrogenated Palm Oil

Stearin (70%)

No reaction:

• 96 TAGs

After interesterification:

• 162 TAGs

-

Analysis:

Both physical & interesterified

blends predictions agree with

experimental data

Predicts the trend at lower

temperature

Reaction makes peaks

different and broader

-300 -20 -10 0 10 20 30 40 50 60 2 4 6 8 10 12 14 Temperature (ºC) C p [ k J /m o l. K ] -300 -20 -10 0 10 20 30 40 50 60 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Temperature (ºC) S F C ( m a s s f ra c ti o n )

Before reaction

After reaction

15

(17)

Ternary Veg. Oil blend

-

Influence of interesterification

SFC is higher when SFO fraction is low

Interesterification greatly reduces the SFC

16

Not interesterified

Interesterified

Solid Fat Content

Solid Fat Content

T = 10 ºC

PREDICTED in 2 hrs

Palm Oil (PO)

Sunflower Oil (SFO)

Palm Kernel Oil (PKO)

(SFO)

(PO)

(PKO)

(SFO)

(PO)

(PKO)

(18)

Structured Lipids Application

-

Designing functional foods to get nutraceutical benefits

ex. DHA enhanced products

17

TAG1 TAG2 TAG3 TAG4

sn1 caprylic caprylic caprylic caprylic

sn2 EPA DHA γ-LINOLEIC AA

sn3 caprylic caprylic caprylic caprylic

EPA

C20:5

Arachidonic Acid C20:4

γγγγ

-linoleic C18:3

Omega-3 Omega-6 Omega-6

Omega-3

Medium FA

Medium FA

PUFA

sn2

DHA C22:6

(19)

Structured Lipids Application

-

High melting SL affects palm oil initial melting T

-20

0

-10

0

10

20

30

40

50

60

0.2

0.4

0.6

0.8

1

Temperature (ºC)

S

F

C

(

m

a

s

s

f

ra

c

ti

o

n

)

pure palm oil

palm oil + SL01 (30%): C8-EPA-C8 palm oil + SL02 (30%): C8-DHA-C8 palm oil + SL03 (30%): C8-g-linolênico-C8 palm oil + SL04 (30%): C8-AA-C8

Teles dos Santos, Gerbaud, Le Roux. Phase Equilibrium and Optimization Tools: Application for

Enhanced Structured Lipids for Foods. J Am Oil Chem Soc (2011) 88:223–233.

(20)

Structured Lipids Application

-

The effect on SFC depends on the T range

Palm oil + (Caprylic – EPA – Caprylic)

-200 -10 0 10 20 30 40 50 60 0.2 0.4 0.6 0.8 1

Temperature (ºC)

S

F

C

(

m

a

s

s

f

ra

c

ti

o

n

)

pure palm oil

palm oil + SL01 5% palm oil + SL01 10% palm oil + SL01 20% palm oil + SL01 30% palm oil + SL01 40% palm oil + SL01 50%

Teles dos Santos, Gerbaud, Le Roux. Phase Equilibrium and Optimization Tools: Application for

Enhanced Structured Lipids for Foods. J Am Oil Chem Soc (2011) 88:223–233.

(21)

Conclusions

-

A knowledge-based predictive model

Solid (multi) – liquid equilibrium based model

Uses FA distribution or TAGs composition data

• FULLY PREDICTIVE model for SFC & equilibrium DSC curves

Accuracy is good

– We need coherent TAG & SFC data to prove that it could be even

better…

Valid for any TAG mixture:

• binary, ternary, vegetable oil, oil blend, interesterified oils

blend

Not valid for binary FA mixture

20

Teles dos Santos, Gerbaud, Le Roux. Phase Equilibrium and Optimization Tools:

Application for Enhanced Structured Lipids for Foods. J Am Oil Chem Soc (2011)

-

Computer aided design of oil blends

Finding the blend that matches targeted SFC and DSC

Objective: to anticipate the most promising lab experiments

(22)

SLE Results: 4 TAGs mixture

-

Composition in each phase

Solid phase is gradually enriched with SSS;

OOO fraction gradually decreases in liquid phase

-200 0 20 40 60 80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Temperature (ºC) m o ls o n s o lid /t o ta l o f m o ls o n s o lid -200 0 20 40 60 80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Temperature (ºC) m o ls o n l iq u id /t o ta l o f m o ls o n l iq u id PPP SSS CCC OOO PPP SSS CCC OOO -20 0 20 40 60 80 Temperature (ºC) -20 0 20 40 60 80 Temperature (ºC) -200 0 20 40 60 80 0.05 0.1 0.15 0.2 0.25 Temperature (ºC) m o ls o n s o lid s ta te /t o ta l o f m o ls -200 0 20 40 60 80 0.05 0.1 0.15 0.2 0.25 Temperature (ºC) m o ls o n l iq u id s ta te /t o ta l o f m o ls PPP SSS CCC OOO PPP SSS CCC OOO 21

(23)

eq - DSC theoretical prediction Vs Experimental

Data

1

°

C/min

T7 = 41,51

°

C

C.P. Tan, Y.B. Che Man.

Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: effects of scanning rate variation.

Food Chemistry 76 (2002) 89–102

Palm Oil

22

A FA-based model could not capture that

(24)

Transition Temperatures (ºC)

1

2

3

4

5

Exp.

Calc.

Exp.

Calc.

Exp.

Calc.

Exp.

Calc. Exp. Calc.

Peanut Oil

-51,7

nc*

-29,7

-28

-14,57

-11

0,83

2

8,26

7

Grapeseed Oil

-39,32

-40

-31,62

-30

-22,82

-21

-15,12

-15

-

-eq - DSC theoretical prediction Vs Experimental Data

Exp Data.: C.P. Tan and Y.B. Che Man . Differential Scanning Calorimetric

Analysis of Edible Oils: Comparison of Thermal Properties and Chemical

Composition. JAOCS, Vol. 77, no. 2 (2000)

Calc.: calculated by VODesign

*nc: no convergence

(25)

Single VO: Cocoa Butter

-

Cocoa butter: 12 TAGs.

High accuracy for lower temperatures

Shorter melting range corrected detected

• time elapsed: 26s

10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Temperature (ºC) S F C ( m a s s f ra c ti o n )

SFC Vs Temperature

10 20 30 40 50 0 1 2 3 4 5 6 7 8 9 10 Temperature (ºC) C p [ k J /m o l. K ]

Simulated DSC

Exp. Data: WON, K. W. THERMODYNAMIC MODEL OF LIQUID-SOLID EQUILIBRIA FOR NATURAL FATS AND OILS. Fluid

PREDICTED PREDICTED

(26)

Unconventional oils

-

Milkfat – corn oil (80-20) interesterified : 145 TAGs

Simulated and experimental results in agreement (T > 20 ºC)

Time: 15 min 37 s

0 10 20 30 40 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 (a) Temperature (ºC) S F C ( m a s s f ra c ti o n ) 0 10 20 30 40 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 (b) Temperature (ºC) C p [ k J /m o l. K ]

Exp. Data: RODRIGUES, J. N.; GIOIELLI, L. A. Food Research International, v. 36, n. 2, p. 149-159, 2003.

(27)

Unconventional oils

-

Theoretical prediction for value-added vegetable oil

Grapeseed Oil: 10 TAGs

-40 -30 -20 -10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Temperature (ºC)

S

F

C

(

m

a

s

s

f

ra

c

ti

o

n

)

-40 -30 -20 -10 0 0 1 2 3 4 5 6

(b) Temperature (ºC)

C

p

[

k

J

/m

o

l.

K

]

26

(28)

Influence of Temperature:

ternary blend not interesterified

27 PO–SFO–PKO

0

°

C

10

°

C

15

°

C

25

°

C

30

°

C

35

°

C

0.80 0.45 0.35 0.20 0.14 0.09 PREDICTED

(29)

Influence of Temperature:

ternary blend interesterified

28 PO–SFO–PKO

0

°

C

10

°

C

15

°

C

25

°

C

30

°

C

35

°

C

0.90 0.35 0.12 0.50 0.18 0.06 PREDICTED

Références

Documents relatifs

In the literature, this classi- fication process identifies seven categories of information about travelers: 1- risk taking attitude, 2- economic attributes, 3- general cost

We have carried out low-temperature transport measurements on these films close to the superconductor-to-insulator transition (SIT) and shown a qualitative difference between the

Similar results conceming the equations of the temperature critical regions are obtained by comparing the mean field value of the order parameter (the slowest field variable 1~)

In [7] we proposed the gravitational task model, which is able to express the target demand of such applications and compute an approximation of their trade-off assuming

plasmas, ions and electrons have different tempe- ratures ; to reach highly charged states, it is necessary to reduce the neutral gas pressure to avoid charge exchange

We construct in this paper a dynamic general equilibrium model which displays the central features of the IS-LM model, and notably an income multiplier greater than one, so

The discrete analogous of the so-called Atlas model 1 which has been recently in- troduced in [10] is defined as a family of semi-infinite one-dimensional interacting particle

هيلع للهاب لاا يقيفوت امو هيلاو تلكوت بينا ﴾. لا ةعماج يف لامعلأا ةرادإ مسق يف يتذتاسأ ىلإ ركشلا ليزجب هجوتأو ب ،ةريو صخاو ركذلاب فرشملا ذاتسلأا