• Aucun résultat trouvé

Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: A model system of YAG

N/A
N/A
Protected

Academic year: 2021

Partager "Spark and plasma in spark plasma sintering of rigid ceramic nanoparticles: A model system of YAG"

Copied!
9
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 16587

To link to this article : DOI:10.1016/j.jeurceramsoc.2014.08.001

URL :

http://dx.doi.org/10.1016/j.jeurceramsoc.2014.08.001

To cite this version :

Marder, Rachel and Estournès, Claude and

Chevallier, Geoffroy and Chaim, Rachman Spark and plasma in

spark plasma sintering of rigid ceramic nanoparticles: A model

system of YAG. (2014) Journal of the European Ceramic Society,

vol. 35 (n° 1). pp. 211-218. ISSN 0955-2219

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Spark

and

plasma

in

spark

plasma

sintering

of

rigid

ceramic

nanoparticles:

A

model

system

of

YAG

R.

Marder

a,∗

,

C.

Estournès

b,c

,

G.

Chevallier

b,c

,

R.

Chaim

a aDepartmentofMaterialsScienceandEngineering,TechnionIsraelInstituteofTechnology,Haifa32000,Israel bUniversitédeToulouse,UPS,INP,InstitutCarnotCirimat,118,routedeNarbonne,F-31062ToulouseCedex9,France

cCNRS,InstitutCarnotCirimat,F-31062Toulouse,France

Abstract

Yttriumaluminumgarnet(YAG)nano-particlesweresparkplasmasinteredbetween1100◦Cand1400Cunder2–100MPapressurewithout isothermaltreatments.Thespanofrelativedensitybetween48%and99%enabledmicrostructuralexaminationatdifferentstagesofthedensification. Electronmicroscopyexaminationshowedmaterialjetswithamorphouscharacterconnectingbetweenthesphericalnano-particles,whichwere relatedtosurfacemelting.Alignednano-particleswithinthenano-clusters,apparentlyaffectedbyhighlocalelectricfields,wereobservedin thepartiallydensemicrostructure.Rapiddensificationfrom1200◦Cwasrelatedtodensificationbynano-particleslidingandrotationassisted bysurfacesoftening.TheobservedmicrostructuralfeatureswerediscussedwithrespecttosparkingandplasmaformationduringtheSPS.The occurrenceofplasmawasexplainedbymeansoftheplasmaformation-plasticdeformationdiagram.

©2014ElsevierLtd.Allrightsreserved.

Keywords:Plasma;Sparkplasmasintering;Densification;Powderconsolidation;YAG

1. Introduction

Sparkplasmasintering(SPS)andotherelectricfieldassisted sinteringtechniquesbecomemorewidespreadforrapid fabrica-tionofsimple-andcomplex-shapeceramicparts(seereview1). Thisisevidenced bythemany patentsregisteredinthisfield inrecentyears.2 Therefore,correct application of these tech-niques for efficient fabrication of the ceramic articles with controlledmicrostructureandpropertiesbecomehighpriority. Thisnecessitatesdeterminationofthesinteringand densifica-tion mechanisms active during the SPS, with respect to the composition and microstructure of the ceramic powder and theprocessparameters.Severaldifferentatomisticmechanisms wereproposedfortherapidsintering,densification,andgrain

Correspondingauthor.Tel.:+97248294290;fax:+97248295677.

E-mailaddresses:rachelma@technion.ac.il,rachel.marder@gmail.com

(R.Marder).

growth (orits inhibition)innano-ceramic powders.3–9 Tokita was among the first to point out that spark andplasma can alsobeactiveinnon-conductingceramics.6,10Thedebateabout thepresenceorlackofsparkingandplasmainnon-conducting ceramiccompactshasbeenchallengedbythelocalmeltingand materialjetsreportedinseveraldifferentceramicssubjectedto SPS.11–13 Recently,asimplemodelfor dischargeandplasma formationduringtheSPSwasputforward,usingthe percola-tivenatureofthe electriccurrent inthegranulardielectrics.14 Twoonsettemperaturesforactivationofeitherplastic deforma-tionorenhanceddiffusionviaparticlesurfacemelting/softening duetoplasma,weredetermined;thelowertemperatureamong the two determinesthe densification mechanism to be active first.TheenhancedshrinkageinLiFmicrocrystalsatpressures below the yieldstress was consistentwiththeseexpectations for spark dischargeand plasma heating atlow pressuresand temperatures.15

ThepresentpaperreportsthedensificationofYAGasarigid modelsystemfornano-particlecompactssubjectedtoSPSwith

(3)

Table1

TheSPSconditionsandspecimensfinaldensities.

nc-YAGpowder SPStemperature[◦C] Pressure[MPa] Finalrelativedensity[%] Grainsize[nm]

Asreceived(AR) 1100 2 45.5 1100 32 51.8 1100 64 54.6 1100 100 60.1 90±33 1200 2 43.7 1200 100 61.9 92±43 1250 100 67.7 96±38 1300 100 73.9 115±34 1350 100 87.7 138±41 1400 2 70.8 1400 100 99.0 325±121 Heattreated(HT) 1100 2 46.1 1100 100 50.8

clear microstructureevidencefor surfacemeltingvia plasma. Theoccurrenceofdischargesparkfollowedbyplasmaheating wasanalyzedfollowingapercolativecurrentmodelingranular dielectriccompacts.

2. Experimental

Purecommercialnano-crystallineYttriumAluminumGarnet (nc-YAG)powder(Nanocerox,USA)withspherical morphol-ogy andameancrystallitesize (diameter)of 70±50nmwas used.Thepowderwasusedintheas-receivedform(AR-powder) andafterheattreatment(HT-powder)for2hinairat1000◦C.

Discs of 8mm in diameter werefabricated using the SPS unit(Dr.Sinter,SPS2080)attheNationaleCNRSdeFrittage FlashPNF2/CNRSinToulouse.Forallthesinteringexperiments thepowderswerepouredintothegraphitediewithoutfurther pressing,thusthegreendensityisclosetothetapdensityofthe powders.Thegreencompactwasisolatedfromthediewalland thepunchesusinggraphitefoils(Grafoil).

The SPS experiments were conducted at different tem-peratures (between 1100◦C and 1400◦C) and pressures (2–100MPa) using the AR and the HT powders. The vari-oussintering conditionsandthe resultantfinaldensities were summarized inTable 1. The startingtemperature for all SPS experimentswas600◦C;whenthistemperaturewasstabilized

(∼3minafterturningontheSPScurrent–voltage) thedesired uniaxialpressurewasapplied.Thetemperaturewasraisedunder maximalloadataconstantheatingrateof100◦Cmin−1tothe

finalSPStemperature.TheprocesswasstoppedatthefinalSPS temperature byreleasingthe pressureandcoolingthesystem (byturningoffthecurrent–voltage),withoutisothermalholding timeatthefinalSPStemperature.Pulsedurationof3.3msanda vacuumlevelof2–3Pawereused.TheSPSparameterssuchas voltage, current,temperature,pressure,ramdisplacementand ramdisplacementratewererecordedduringtheprocess.

Inordertoconfirmordismisssignificantdiffusionprocesses atthestartingtemperatureof600◦Cthreegreennc-YAG spec-imens were prepared by cold isostatic pressing (CIP) under 210MPa pressure,followed by heat treatments for 1h inair at500◦C,600C,and700C.

The finaldensities were measured byweighing andusing theArchimedesmethodwithdistilledwatermedium.Thelinear shrinkageandtemporaryrelativedensityofthecompactswere calculatedusingthedimensionanddensitiesofthespecimens aftertheSPSprocessandaccordingtotheram displacement. Theeffects of the graphitedieassemblyon thedisplacement wasconsideredandtreatedaccordingtotheproceduredescribed elsewhere.16

The microstructure of the powder and the specimens was characterized using high resolution scanning electron micro-scope(HRSEM,ZeissUltraPlusFEGSEMequippedwithEDS) operatedat2–4kV,andtransmissionelectronmicroscope(TEM, FEITecnaiG2 T20)operated at200kV.Specimensfor TEM werepreparedbyconventionalthinninganddimpling,followed byAr-ionmillingtoelectrontransparency.Athincarbon coat-ingwasappliedtomostofthespecimenstominimizecharging effectsinSEMandTEM.Thegrainsizewasdeterminedfrom HRSEM images, whereatleast 200 grainswere counted for eachspecimen.Thepowdersparticlesizewasmeasuredusing theTEMimages.X-raydiffraction(XRD)wasusedfor struc-ture analysis using X-ray diffractometer (Rigaku SmartLab) equippedwithmonochromatedCuKaradiation,andoperatedat 40kVand40mA;ascanningspeedof0.015◦s−1wasused. Dif-ferentialscanningcalorimeter– DSC(Labsys1600,Setaram) wasused tocharacterizethe thermalbehaviorof the powder, usingtheheatingrateof10◦Cmin−1.

3. Results

TheYAGnano-powderswerecharacterizedusingXRDand electronmicroscopy.TheXRDspectrumoftheas-received(AR) powder showed peaks of the Yttrium Aluminum Perovskite –YAlO3(YAP)phase(JCPDS-00-54-0621)(Fig.1).Asmall

peakat30.5◦correspondingeithertohexagonalY2O3

(JCPDS-00-020-1412) or anew YAGphase17 is present, probably as residueof the powder manufacturingprocessby liquidflame spray pyrolysis. However,the fraction of thisimpurity phase wasestimatedtobeless than3.5vol%.Heattreatmentof the as-receivedpowder for2h inairat1000◦Cresultedincubic

(4)

Fig.1.XRDoftheas-received(AR)andheattreated(HT)powder.Heat

treat-mentledtophasetransformationofthePerovskitephaseofyttriumaluminum

oxide(YAP)intothecubicgarnetphase(YAG).ThesmallpeaksintheAR

powderrefertotheresidualcubicYAG.

transformationwentalmosttocompletion.TheARpowderhad a particlesize 70±50nm, measured using the TEMimages (Fig.2a).Partoftheparticlesrevealedanamorphouscharacter, usingtiltingexperimentsinTEM.Somechangeswereobserved intheparticlesizeaftertheheattreatment,especiallythe small-estparticlesdisappeared.However,welldevelopedneckswere foundbetweentheindividualparticles(Fig.2b).DSCoftheAR powder(notshownhere)revealedexothermicpeaksat894◦C,

1087◦Cand1241C.Thefirstpeakat894Ccorrespondsto

thecrystallizationofcubicYAG18,19whilethesecondpeakat 1087◦CisrelatedtophasetransformationofYAPintoYAG.19,20 Thepeakat1241◦CwasalsoreportedbyheatingofpureYAG butitsoriginisunknown.21

ThedensityandtemperaturechangesduringtheSPS heat-ingoftheARpowderto1400◦Cat2and100MPapressures wereshown inFig.3a. The shrinkage profilesof these spec-imensarerepresentativefor allthespecimensfabricatedwith theARpowder,sinceallexperiencedsimilarheatingand pres-sureapplicationregimes,albeitwithdifferentfinaltemperatures. Applicationof100MPapressureledtotheimmediate shrink-age. Thisfirst shrinkage inthe still un-sintered powder most probablyoccursbyrearrangementprocessesonly,without plas-ticdeformation,duetothehighyieldstressofYAG.Thelower pressureof2MPa,whichispracticallytheholdingpressure dur-ingtheSPS,ledtoalmostnoshrinkagebycompaction.Further increaseindensitywasobservedattemperaturesaround950◦C (i.e.370s),howeverthisshrinkageceasedaround1060◦C(i.e. 480s).Thisfurthershrinkagewas hindered between1060◦C and1200◦CduetophasetransformationofYAPtoYAGphase, whichwasaccompaniedbyavolumeincreaseof∼17%that bal-ancedfurtherdensification.Duringthistransformationasmall increase inthe pressure was recorded for all specimens (red dash-dottedcurvesinFig.3a).

At1200◦C(i.e.560s)theshrinkagecontinuedagain, irre-spective of the applied pressure. The highest shrinkage rate wasnotedbetween1200◦Cand1400C,wherethechangein

Fig.2.BrightfieldTEMimagesofthe(a)ARand(b)HTpowder.Necking

betweenthenano-particlesintheHTpowderwasobserved.

the specimen density was almost 40% for the specimen sin-teredat100MPa,and25%forthespecimensinteredat2MPa. The maximal shrinkage rateof 7.9×10−1s−1 was measured around1380◦Candwasidenticalatbothpressures.Thisrapid shrinkagemayberelatedtotheenhanceddiffusionalprocesses atthe particlesurfaces,aswill beexplainedinthe discussion below.Density curvesversustheSPSparametersfor ARand HTpowdercompactsat100MPaupto1100◦Cwereshownin Fig.3b.It shouldbementioned that novisiblechanges were observed in the particle size and shape after heating experi-mentsat 500◦C,600Cand700Cfor 1hinair.Therefore,

(5)

Fig.3.Density,temperatureandpressureversusSPSprocesstimefor(a)heating

oftheARpowderto1400◦Cat2MPa(blackdashedcurve)and100MPa(black

solidcurve)pressure.(b)HeatingoftheAR(blacksolidcurve)andHT(black

dashedcurve)powdersto1100◦Cat100MPa.Temperatureandpressureare

shownbythebluedottedlineandthereddashed-dotlines,respectively.(For

interpretationofthereferencestocolorinthistext,thereaderisreferredtothe

webversionofthearticle.)

SPS start(which was at 600◦C),before the start of the SPS heating, can be neglected. The shrinkage recorded for both powders at the beginningof the heating was associated with thepressureapplication,henceparticlerearrangement.TheHT powderdidnotexhibitanyshrinkageduringtheheatingupto 1100◦Canduntilthepressurewasreleased(dashed-linecurve inFig.3b).

The final densities of the AR powder sintered at 2 and 100MPapressuresversusSPStemperatureareshowninFig.4a. Asexpected,thehigherpressureusedduringheatingbySPSto 1400◦C,resultedindenserspecimen,i.e.71%versus99%for 2and100MPapressure,respectively.Itwasapparentthat sig-nificantdensification startsabove1200◦C,irrespectiveof the

appliedpressure(Fig.4a).Thegreenandthefinalrelative den-sities of the compacts heated to1100◦C bySPS at different

pressures(2,32,64and100MPa),wereshowninFig.4b.The greendensityisthe densityafterpressureapplicationpriorto heating,andmeasuredat600◦C(filledcirclesinFig.4b).Both densities (greenandfinal)showed comparablelinear depend-ence with the applied pressure, which indicates that similar densification mechanisms occur between these temperatures, irrespectiveoftheappliedpressure.Thisfurtherindicatesthat theincreaseindensitybelow1100◦Cismainlyduetothe par-ticle rearrangementcaused bythe pressure increase(∼14%), ratherthanbytemperatureincrease(∼7%).

HRSEMimagesfromthefracturesurfacesofthespecimens sinteredtodifferentfinaltemperaturesallowedtheinvestigation

Fig.4.(a)FinaldensitiesoftheARpowderspecimensversusSPStemperature

at2and100MPa.(b)Green(circles)andfinal(triangles)relativedensitiesof

thespecimensheatedbySPSto1100◦Cshowlineardependencewithpressure.

Densityincreasedby14%and7%duetothepressureandtemperatureincrease,

respectively.(Forinterpretationofthereferencestocolorinthefigurelegend,

thereaderisreferredtothewebversionofthearticle.)

of the microstructure evolution duringthe SPS. The sintered microstructurewashomogeneous,wheretheparticle morphol-ogy changedwiththe temperature increasefrom spherical to polyhedralgrainshape(Fig.5a–c).At1200◦Cmanyrod-like featuresbridgingoverthegapsbetweentheparticles/grainswere observed(insertsinFig.5a). Thesefeatures resembled mate-rialjetsbetweenthegrains,mostprobablyformedbythelocal spark; they were absent at 1300◦C and 1400◦C treatments. An increase inthe grainsize withSPS temperature increase wasalso observed(Table1). Thesolid frameof thepartially sinteredcompactswithwell-developedneckswasobservedin TEM(Fig.6a). Furthermore, unusual features were observed within the microstructure of the partially sintered compacts below1200◦C,inbothTEMandHRSEMimages.Thesewere

characterizedby narrowrod-shaped amorphous material jets, connectingbetweenthemuchlargeradjacentparticlesaround acavity (arrowed inFig. 6a andb, respectively). The amor-phous nature of the material jets was confirmed by tilting experimentsinTEM,wherenocontrastchangeswereobserved inthematerialjets,whilesignificantchangeswereobservedin thecrystallineparticlesconnectingthesejets.Theserodsdonot representconventionalneckssincetheyconnectbetween adja-centgrainswhicharefarapart;theycanbeclearlydistinguished fromtheconventional necks,bytheirunusual largemeniscus whichdoesnotshowanyfaceting.Thelargemeniscus geom-etryof therod-shape jetmaterial connectingbetweendistant particlescanbe thereforeassociatedwiththemodel ofliquid phasesintering.22Theserodsaremostprobablytheremnantof

(6)

Fig.5.HRSEMimagesofthefracturesurfaceofYAGspecimensdensifiedbySPSat(a)1200◦C,(b)1300Cand(c)1400C.Severalrod-likefeaturesbridging

overthegapsbetweenthegrains/particlesareshownbyinsertsin(a).

sintering.Assuchfeaturesmaypossiblybeanartifactdueto theionmillingforTEMpreparation,theirpresenceintheSEM images(Fig.6b)negatesthispossibility.Itshouldbementioned thattheserod-shapematerialjetswerealsoobservedinHRSEM specimenswithoutcarboncoating;therefore,theycannotbea residueoranartifactofthecarboncoating.EDSpointanalysisin HRSEM,takenatseverallociatthebrokenspecimensurfaces, showedpeaksforY,Al,OandC(fromthecarboncoating)where noimpuritieswerefound.

In addition,the denser specimens sintered at1250◦C and

1300◦Cexhibitedseveralpartiallydensenano-clusters,within whichalignedandwell-organizedindividualoriginalparticles werepreservedatthefracturesurfaces(i.e.Fig.6c).Suchparticle alignmentmaybetheremnantofthestronglocalelectricfield duringtheSPSprocess.Thisobservedmicrostructureevolution andtheoveralldensificationbehaviorwillbediscussedbelow, withrespecttoparticlesurfacesofteningduetoplasmaandthe intensifiedlocalelectricfield.

4. Discussion

Aswasshownabove,theinitialshrinkageanddensification ofthenc-YAGcompactsstartedduetothepressureapplication at∼600◦C,after thejumptothistemperature wasstabilized (Fig.3).Shrinkageceasedonce the applied pressurereached itsmaximumvalue,irrespectiveoftemperature.Further shrink-agewasobservedonlyat∼950◦CintheARpowder,andthe shrinkage rate increased withtemperature. At first, a similar

shrinkageleadingto∼7%increaseindensitywasobservedat allpressures(Fig.4b),whichindicatesthatsimilardensification mechanisms occurred between600◦C and1100◦C. Between 1060◦Cand1200◦Ctheshrinkageexperienceddiscontinuity, again irrespectiveof theappliedpressure.FollowingtheDSC results,theshrinkageat∼950◦Ccanberelatedto crystalliza-tion/nucleationofthecubicYAGphase.18–20Thistemperatureis

alittlehigherthanmeasuredintheDSC(895◦C);however,the

temperaturesduringtheSPSprocessaremeasuredatthegraphite die, andmaybe higherbyseveraldegrees fromthe tempera-ture insidethenon-conductive compact.Therefore,apossible scenariofor theshrinkage startmaybe asthe following:The particlespackatthebeginningoftheprocessbyrearrangement duetotheapplied pressure,andgetjammed duetofrictional forcesbetweenthem.Increaseintheappliedpressureovercomes thefrictionalforces,hencealinearincreaseinthedensity(upto 14%).ThispersistsuntilcrystallizationofthecubicYAGoccurs, whichreleasesthejambysupplyingexothermicenergytothe particlesurfaces,andenablesfurthershrinkageofthespecimen underthepressure.

The discontinuity in the shrinkage between 1060◦C and 1200◦C should be related tothe Perovskite toGarnet phase

transformation,whichisaccompaniedby17%volume expan-sion,henceopposingtheramdisplacementandleadingtothe small oscillations recorded in the pressure. When the phase transition wenttocompletionfurtherfast shrinkageoccurred, whereby the shrinkage rate increased between 1200◦C and 1400◦C.Thehighestshrinkageratewasobservedat1380◦C,

(7)

Fig.6.(a)BrightFieldTEMand(b)HRSEMimagesfromthespecimensfabricatedat1100◦Cand1200C,respectively,showingthematerial-jetsconnecting

adjacentparticlesoverthegapsinthepartiallysinteredcompactafterSPSat100MPa.(c)Alignednano-particlesinpartiallydenseclustersleftat1300◦Cand

100MPaSPStreatment.

similartoanotherSPSstudyofnano-YAG,wherethemaximal ratewasrecorded at1400◦C.23 However,atthistemperature,

rod-shape amorphous materialjetswere absent.The material jets manifest that liquid was formedduring the process. The highshrinkagerateabove1200◦Ccanberelatedtotheviscous sliding/rotationofthenano-particles,theircoalescenceinto sub-grainclusters,followedbyhierarchicalcoalescenceandgrowth oftheclusters.7Inthisrespect,thehighdensificationrateshould beassociatedwithparticlesurfacesofteningduetotheplasma formation atthe cavities.Analysis of thegrain growth kinet-icsinnc-YAG wasconsistentwithdiffusionthrough aliquid layer.7Moreover,theactivationenergyshowedaclosevalueto theenthalpyoffusionofYAG,whichisequivalenttothe activa-tionenergyformaintainingtheliquidandiscomparabletothe activationenergyforgraingrowththroughaliquidlayer.7The tendencyfor nano-grainscoalescence byrotation/sliding dur-ingSPSwasobservedforg-Al2O324andsphericala-Al2O325

powders, and for SPS of SrTiO3 nano-powders with cubical

morphology.26Above1350◦CsignificantgraingrowthofYAG nano-particlesstarted,thekineticsofwhichdidnotfollow nor-malgraingrowthbehavior.7ThiswasconsistentwithotherSPS studiesonnano-YAGatthecorrespondingtemperaturerange.27 Thefactthatthemaximumshrinkageratewasat1380◦C,where thespecimensareverydense(above90%)maybeduetotheeasy super-coolednatureofliquidYAGbelowitsmeltingpoint.28,29 Therefore,theliquidformedatthelowertemperaturehasbeen preservedmetastableyathighertemperatures.

Recently, LiF particle compacts subjected to SPS exhib-itedmicrostructurewithpartiallymeltedgrainsandsignificant materialjets,confirmingthe existenceofspark andplasma.13 Similarmicrostructuralevidenceswerereportedfor TiB2,Cu

andTi-TiB2mixture.30Apreliminarymodel,developedforthe

evaluationoftheplasmaconditionsindielectricceramics,14was used toestimate the temperature range for plasma formation under100MPa appliedpressure inYAG (Fig.7). When suf-ficient surface conductivity is gained, spark andplasma may format the cavitiesbetween the particlesduetosurface dis-charges,aslongas themicrostructureisnotcontinuous, thus, as long as no plastic deformation has occurred. Since YAG crystalsareveryhardtodeformplastically,theonsettemperature forplasticdeformationunder100MPaissetaround1850◦C.31

Thisleavesthetemperaturerangewindowforplasmaformation todominateatlowertemperatures as lowas 500◦C(Fig.7).

Althoughtheplasma windowboundariesweredeterminedby thecriterionof10−9–10−5−1cm−1conductivity(Fig.7and Ref.[14]),its uppertemperature boundaryis limitedonlyby thelowertemperatureoftheplasticdeformationwindow. Con-sequently, plasma may be active also at temperatures above 900◦Cinthissystemprovidedinterparticlegapsexist. There-fore, YAG is one of the oxide candidates for which plasma formationis most probable before the densification proceeds bytheplastic deformation.Thisexplainsthe existenceof the observedamorphousmaterial-jetsbetweennano-particlesinthe partially dense microstructure, formed from surface melting

(8)

Fig.7.Plasticyield–plasmawindowsdiagramcalculatedforYAGpowderat

100MPa.

aftersparkingandplasmaformation.However,thelowerextent andfrequencytofind materialjetsinYAG, suchas the ones shownin Fig.6b compared toLiF,13 may be referred tothe highmeltingtemperatureofYAG(1970◦C)anditshighmelt

viscosity32 relative toLiF, as well as its nano-size particles. In thisrespect,severaldifferentinvestigations onSPSof alu-minarevealeddense microstructureswithnotracesof liquid. However,SEMimagesfromfracturesurfacesofa-alumina, sin-teredby one-steppressurelessSPS,exhibited atomicterraces atthegrainsurfacesexposedwithinthecavities,characteristic of the evaporation–condensationmechanism.33 The electrical resistivityandtheyieldstressofAl2O3andtheirchangewith

temperature,significantly dependonthe compositionandthe polymorphcontent.FollowingthedatausedforpureAl2O3,the

SPStemperaturewindowwasestimatedtostartat900◦Catthe pressureof100MPa.14

The well-organized particle clustersfound in the partially denseregionsintheotherwisedensecompacts(Fig.6c) empha-size the strong effect of the applied electric fieldin SPS. It appearsthat the electric fieldasserts forceswhichare strong enoughtorestrict thearrangementofawholegroupof nano-particles.Yet,suchanalignmentnecessitatessufficientmobility oftheindividualnano-particles.Thisispossibleduetosurface pre-meltingandthe presence of aviscouslayer atwhichthe nano-particlescanslideandrotatetofindtheirposition,while thefrictionalstressesrelax.

Finally,the necksformed inthe heattreated(HT)powder hinder significant rearrangement and sliding of the particles comparedtotheARpowder.Furthermore,increaseinthe par-ticle connectivity is expected to decrease the probability for surfacedischargesandplasmaformationduetothepresenceofa continuousandrigidskeleton.Thisinturnprovidesacontinuous pathfortheelectriccurrenttransfer;charginganddischargeat theparticlesurfaces,whicharenecessaryforsparkandplasma, arebarelyfeasibleinsuchamicrostructure.Thelackof corre-spondinghightemperatureshrinkageinHTpowderseemstobe amanifestationofthisphenomenon.

5. Conclusions

DensificationofYAGnano-powdersbytheSPSmethodwas investigated at differenttemperature andpressure conditions.

Densification first takes place by particle rearrangement due tothepressureappliedat600◦C.Aftercompaction,shrinkage startsintheARpowderduetocrystallizationandnucleationof amorphousYAGat950◦C,thoughitstagnatesduringthephase transformationofYAPtoYAGbetween1060◦Cand1200◦C. Therapiddensificationobservedabove1200◦Cwasrelatedto thedensificationbynano-particleslidingandrotation,assisted bysurfacesofteningduetotheplasma.Materialjets connect-ingovergapsbetweenthesphericalnano-particlesareevidence forliquidformationandtheprooffortheexistenceofsparking andplasma.Theoccurrenceofplasmawasexplainedbymeans of plasmaformation–plasticdeformationdiagram.Clustersof alignednano-particlespreservedinpartiallydenseregions,in theotherwisedensespecimens,revealedtheelectricfieldeffect duringtheprocess.Theliquidformedinthepartiallydense com-pactsmaybemetastableyretainedathighertemperaturesand assisttheenhanceddensification.Themorerigidskeletonand connectedmicrostructureoftheHTpowderleavesless possi-bilitiesforsurfacecharginganddischarging,andthereforethe effectsoftheplasmadonotoccur.

Acknowledgement

R.Marderacknowledgesthesupportofthefellowshipfrom theWomeninScienceprogramoftheIsraelMinistryofScience andTechnology.

References

1.MunirZA,QuachDV,OhyanagiM.Electriccurrentactivationofsintering: areviewofthepulsedelectriccurrentsinteringprocess.JAmCeramSoc

2011;94:1–19.

2.GrassoS,SakkaY,MaizzaG.Electriccurrentactivated/assisted sinter-ing (ECAS): a review of patents 1906–2008. SciTechnol Adv Mater

2009;10:053001.

3.YoshidaH,MoritaK,KimBN,HiragaK,KodoM,SogaK,Yamamoto T.Densificationofnanocrystallineyttriabylowtemperaturesparkplasma sintering.JAmCeramSoc2008;91:1707–10.

4.ColognaM,RashkovaB,RajR.Flashsinteringofnanograinzirconiain <5sat850◦C.JAmCeramSoc2010;93:3556–9.

5.ConradH,WangJ.EquivalenceofACandDCelectricfieldonretarding graingrowthinyttria-stabilizedzirconia.ScrMater2014;72–73:33–4.

6.TamariN,TanakaT,TanakaK,KondohI,KawaharaM,TokitaM.Effectof sparkplasmasinteringondensificationandmechanicalpropertiesofsilicon carbide.JCeramSocJpn1995;103:740–2.

7.ChaimR,Marder-JeackelR,ShenJZ.TransparentYAGceramicsby sur-facesofteningofnanoparticlesinsparkplasmasintering.MaterSciEngA

2006;429:74–8.

8.WuYJ,LiJ,ChenXM,KakegawaK.Densificationandmicrostructure ofPbTiO3ceramicspreparedbysparkplasmasintering.MaterSciEngA

2010;527:5157–60.

9.NarayanJ.Graingrowthmodelforelectricfield-assistedprocessingand flashsinteringofmaterials.ScrMater2013;68:785–8.

10.TokitaM.Mechanismofsparkplasmasinteringanditsapplicationto ceram-ics.NewCeram1997;10:43–53[inJapanese].

11.KumedaK,NakamuraY,TakataA,IshizakiK.Surfaceobservationofpulsed electriccurrentsinteredaluminaballs.JCeramSocJpn1999;107:187–9.

12.SteilMC,MarinhaD,AmanY,GomesJRC,KleitzM.Fromconventional acflash-sinteringofYSZtohyper-flashanddoubleflash.JEurCeramSoc

2013;33:2093–101.

13.MarderR,EstournèsC,ChevallierG,ChaimR.Plasmainsparkplasma sinteringofceramicparticlecompacts.ScrMater2014;82:57–60.

(9)

14.ChaimR.Electricfieldeffectsduringsparkplasmasinteringofceramic nanoparticles.JMaterSci2013;48:502–10.

15.MarderR, EstournesC,Chevallier G,KalabukhovS,Chaim R.Spark plasmasinteringofductileceramicparticles:studyofLiF.JMaterSci

2014;49:5237–45.

16.MarderR,ChaimR,ChevallierG,EstournesC.Effectof1wt%LiF addi-tiveonthedensificationofnanocrystallineY2O3ceramicsbysparkplasma

sintering.JEurCeramSoc2011;31:1057–66.

17.Laine RM,MarchalJ, SunH,PanXQ. A newY3Al5O12 phase

pro-ducedbyliquid-feedflamespraypyrolysis(LF-FSP).AdvMater2005;17: 830–3.

18.LiX,LiuH,WangJ,ZhangX,CuiH.Preparation and propertiesof YAGnano-sized powderfrom differentprecipitating agent. Opt Mater

2004;25:407–12.

19.RuY,JieQ,MinL,GuoqiangL.Synthesisofyttriumaluminumgarnet (YAG)powderbyhomogeneousprecipitationcombinedwithsupercritical carbondioxideorethanolfluiddrying.JEurCeramSoc2008;28:2903–14.

20.YamaguchiO,TakeokaK,HirotaK,TakanoH,HayashidaA.Formationof alkoxy-derivedyttriumaluminiumoxides.JMaterSci1992;27:1261–4.

21.AzisRS,HollandD,SmithME,HowesA,HashimM,ZakariaA, Has-sanJ,SaidenNM,IkhwanMK.DTA/TG,XRD,and27AlMASNMRof

yttriumaluminiumgarnet,Y3Al5O12bysol–gelsynthesis.JAustCeram

Soc2013;49:74–80.

22.KangSL.Sintering-densification,graingrowthandmicrostructure.Oxford: Elsevier;2005.

23.SuárezM,FernándezA,MenéndezJL,TorrecillasR.Transparentyttrium aluminiumgarnetobtainedbysparkplasmasinteringoflyophilizedgels.J Nanomater2009;2009:1–5.

24.ShenZ,XiongY,HöcheT,SalamonD,FuZ,BelovaL.Orderedcoalescence ofnanocrystals:apathtostrongmacroporousnanoceramics. Nanotechnol-ogy2010;21:205602.

25.Morales-RodríguezA,PoyatoR,Gallardo-LópezA,Mu˜nozA, Domínguez-RodríguezA.Evidenceofnanograinclustercoalescenceinsparkplasma sintereda-Al2O3.ScrMater2013;69:529–32.

26.HuJ,ShenZ.Graingrowthbymultipleorderedcoalescenceof nanocrys-talsduringsparkplasmasinteringofSrTiO3 nanopowders.ActaMater

2012;60:6405–12.

27.PalmeroP,BonelliB,FantozziG,SpinaG,BonnefontG,MontanaroL, ChevalierJ.Surfaceandmechanicalpropertiesoftransparentpolycrystalline YAGfabricatedbySPS.MaterResBull2013;48:2589–97.

28.NordinePC,WeberJKR,AbadieJG.Propertiesofhightemperaturemelts usinglevitation.PureApplChem2000;72:2127–36.

29.TangemanJA,PhillipsBL,NordinePC,WeberJKR.Thermodynamicsand structureofsingle-andtwo-phaseyttria–aluminaglasses.JPhysChemB

2004;108:10663–71.

30.ZhangZ,LiuZF,LuJF,ShenXB,WangFC,WangYD.Thesintering mech-anisminsparkplasmasintering–proofoftheexistenceofsparkdischarge.

ScrMater2014;81:56–9.

31.ChaimR,MarderR,EstournésC,ShenZ.Densificationandpreservation ofceramicnanocrystallinecharacterbysparkplasmasintering.AdvAppl Ceram2012;111:280–5.

32.Weber RJK, Felten JJ, Cho B, Nordine PC. Glass fibres of pure and erbium-orneodymium-doped yttria–aluminacompositions.Nature

1998;393:769–71.

33.SalamonD,ShenZ.Pressure-lesssparkplasmasinteringofalumina.Mater SciEngA2008;475:105–7.

Figure

Fig. 2. Bright field TEM images of the (a) AR and (b) HT powder. Necking between the nano-particles in the HT powder was observed.
Fig. 4. (a) Final densities of the AR powder specimens versus SPS temperature at 2 and 100 MPa
Fig. 5. HRSEM images of the fracture surface of YAG specimens densified by SPS at (a) 1200 ◦ C, (b) 1300 ◦ C and (c) 1400 ◦ C
Fig. 6. (a) Bright Field TEM and (b) HRSEM images from the specimens fabricated at 1100 ◦ C and 1200 ◦ C, respectively, showing the material-jets connecting adjacent particles over the gaps in the partially sintered compact after SPS at 100 MPa
+2

Références

Documents relatifs

We have seen in Sec. III A that the transmission of an iron atomic wire is affected by geometric or magnetic defects. Another strong effect arises since in practice the wire is

In this work, a 3D plant phenotyping approach, combining of a depth camera and a digital camera, used in a chamber environment is deployed to measure plant height, number

Methods assessment of self-tanning of a rapeseed meal fraction enriched in proteins and phenolic compounds.. Broudiscou, Oscar de Jesus Laguna, Jérôme Lecomte, Véronique Sole,

However, this pyrosequenc- ing-based study of fungal and bacterial communities in the human airway confirmed the recently reported bacterial diversity (including anaerobes) in

C'est bien connu : il serait obligatoire de connaître l'anglais, ne serait-ce que pour s'informer de la littérature scientifique dans son domaine. En effet,

Les résultats de ces travaux peuvent être utilisés dans le cas d’une distribution non-uniforme des sites actifs d’un catalyseur utilisé pour une réaction chimique opérant sous

ments complexes dans le contexte du pilotage de drones et de robots par des mouvements de l’opérateur détectés par des accéléromètres sur trois axes : la première basée sur