• Aucun résultat trouvé

ALE simulations using Metafor

N/A
N/A
Protected

Academic year: 2021

Partager "ALE simulations using Metafor"

Copied!
26
0
0

Texte intégral

(1)

ALE

ALE simulations using Metafor

simulations using Metafor

s

s

u a o s us g

u a o s us g

e a o

e a o

1

Introduction

1.

Introduction

2.

Operator split

3.

Convection schemes

3.

Convection schemes

4.

Rezoning methods

5.

Contact with friction

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(2)

Introduction

Introduction

Introduction

Introduction

EULERIAN FORMALISM Undistorted mesh

Ideal for stationary processes

EULERIAN FORMALISM

y p

Free boundaries are difficult to follow

Free boundaries are computed

LAGRANGIAN FORMALISM

p automatically

History dependant materials are easier to handle

The mesh can be rapidly distorted The mesh can be rapidly distorted

Large amount of finite elements are needed for the simulation of stationary processes

(3)

ALE Formalism

ALE Formalism

Operator Split

Operator Split

ALE Formalism

ALE Formalism –

– Operator Split

Operator Split

Complex problem

2 coupled problems :

• Equilibrium of the body in motion

M ti f th h ( i i i ti f di t ti )

p

p

• Motion of the mesh (minimization of distortion,…)  too complicated & too slow

Simplified problem

Time increments are divided into 2 steps :

A w t A t A X           • LAGRANGIAN STEP

(Same as in Lagrangian formalism)

X

*

v v

w   : relative velocity

• REMESHING & CONVECTIVE STEP • Body is remeshed

• Values stored at the Gauss points/nodes are updated v *

: material velocity

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

Tel: +32 (0)4 366 91 85 Fax: +32 (0)4 366.91.41 Web: http://metafor.ltas.ulg.ac.be/ E-mail: r.boman@ulg.ac.be 3

*

(4)

ALE Formalism

ALE Formalism

Operator Split

Operator Split

Constitutive equation

ALE Formalism

ALE Formalism –

– Operator Split

Operator Split

q x w t jj      

 

 : stress tensor component, effective plastic strain, …

q : straining term and objectivity

terms.

1. Lagrangian step

2 Convective step

q t X     

2. Convective step

0       j j x w t

Well-known convection equation

j

MAIN DIFFICULTY :

 is not defined at the nodes of the mesh but at the Gauss points of each element (discrete values) e Gauss po s o eac e e e (d sc e e a ues)

(5)

Godunov update

Godunov update

Godunov update

Godunov update

• One FINITE VOLUME element around each Gauss point.One FINITE VOLUME element around each Gauss point. •  is assumed to be constant on each finite volume.

              

d x w d x w t i I i I

Weak form        t xi xi

i

i s c i i s f sign f V t

  

1 2 1 4 1 f

dS i s V t  2 1 

si S k k i w n dS f upwind parameter

Explicit time discretization V : volume of the cell s

i

i s c i i n s n s f sign f V t

   

  1 2 4 1 1

Explicit time discretization Vs : volume of the cell s s

: value of in the cell s

c i

: value of in the cells

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

Tel: +32 (0)4 366 91 85 Fax: +32 (0)4 366.91.41 Web: http://metafor.ltas.ulg.ac.be/ E-mail: r.boman@ulg.ac.be 5

i s V

2 1

(6)

Higher order convection scheme

Higher order convection scheme

Higher order convection scheme

Higher order convection scheme

• Constant reconstruction  Linear reconstruction

• An approximation of the gradient has to be computed using the data of the given cell’s neighborhood (Green-Gauss linear reconstruction)

i i i i i j j j j j d l n j

             1 1 2 1 1     

n using a trapezoidal rule

2ndorder scheme on

structured grids – 1st order

structured grids 1 order on unstructured grids

(7)

P

i

i i

P

i

i i

Preserving monotonicity

Preserving monotonicity

• The approximated gradient is used for the computation of the flux in the Godunov update equation.

• However this leads to oscillations and a limiter (Barth & Jespersen) has to be • However, this leads to oscillations and a limiter (Barth & Jespersen) has to be

introduced to preserve monotonicity (TVD scheme)

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(8)

Constant vs Linear Reconstruction

Constant vs Linear Reconstruction

Constant reconstruction Linear reconstruction

• MonotonicMonotonic • Needs complex TVD limiters • Fast (one loop over edges of the mesh)

Needs complex TVD limiters

• Rather slow or memory consuming

(gradients have to be stored or computed many times) • Good results on regular meshes (first order)

• Time dependent phenomenon's are smoothed (large artificial diffusion).

• Good results on all kind of meshes (up to second order)

• Less artificial diffusion (better results for smoothed (large artificial diffusion). Less artificial diffusion (better results for

time dependent problems)

 good scheme for stationary processes on regular meshes

(9)

Constant vs Linear Reconstruction

Constant vs Linear Reconstruction

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(10)

Basic rezoning strategies

Basic rezoning strategies

Basic rezoning strategies

Basic rezoning strategies

Nodes displacements are prescribed by the user. Methods depend on the CAD entity they belong to : Nodes on vertices

• Can be Eulerian, Lagrangian or boundary (see further) Nodes on edges

• Boundary curves are remeshed using a spline going though the Lagrangian positions of the nodes.

Nodes on sides

• 2D or 3D methods are used for interior curves

• Planar Boundary sides are remeshed a Transfinite Interpolation Mesher or smoothed using 2D smoothers (Laplacian, Giuliani, Isoparametric, etc).

• Curved boundaries are smoothed using a spline (see further)

Nodes on volumes

• 3D methods are used for interior sides

V l h d T fi it I t l ti M h th d i 3D th

• Volumes are remeshed a Transfinite Interpolation Mesher or smoothed using 3D smoothers (Laplacian, Giuliani).

(11)

Rezoning strategies

Rezoning strategies

Eulerian boundaries

Eulerian boundaries

Rezoning strategies

Rezoning strategies –

– Eulerian boundaries

Eulerian boundaries

• Allow to prevent the body from crossing a given surface.

f

• Boundary of a « quasi-Eulerian » region.

• Useful for stationary processes (rolling roll forming )

(rolling, roll forming, …)

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(12)

Rezoning strategies

Rezoning strategies

3D surfaces

3D surfaces

Rezoning strategies

Rezoning strategies –

– 3D surfaces

3D surfaces

Remarks about surface smoothing

Remarks about surface smoothing

• Traditional methods (Laplacian, transfinite meshers) need to be extended in the case of 3D surfaces

• Methods must be able to manage a non uniform & unstructured surface mesh • Methods must be able to manage a non uniform & unstructured surface mesh

(graded elements).

• Mixing methods is interesting.

Available 2D methods

Unstructured Graded

Laplacian smoothing

Weighted Laplacian smoothing

I t i thi Iso-parametric smoothing « Area-pull » method Equipotential smoothing Gi li i hi Giuliani smoothing

(13)

Extension to « 3D surfaces »

• Initial mesh • Tangent plane computation • 2D smoothing in this plane

• Projection on a spline surface

Blending methods

g p p

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

Tel: +32 (0)4 366 91 85 Fax: +32 (0)4 366.91.41 Web: http://metafor.ltas.ulg.ac.be/ E-mail: r.boman@ulg.ac.be 13

(14)

Contact with friction

Contact with friction

Contact with friction

Contact with friction

Issues

• Geometry : smoothing the contact boundary is difficult (how to deal with nodes in contact before remeshing and free after it?, …)g , )

• Physics : the contact history (friction) must be convected like the volumic GP values. For now, the gap is computed from the value of the friction force after rezoning.

(15)

ALE applications

ALE applications

1.

Coining

2.

Wire extrusion

3.

Extrusion

4.

Machining

5.

Rolling

6.

Roller leveling

7.

Roll forming

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(16)

C i i

f

li d i

l bl

k

i

ALE

C i i

f

li d i

l bl

k

i

ALE

• ALE formalism is used for avoiding mesh distortion

Coining of a cylindrical block using ALE

Coining of a cylindrical block using ALE

• Upper boundary nodes are constantly moved on the free surface to keep the boundary curved shape p

• Height of the workpiece is reduced by 60% • Results must be axisymmetric

(17)

Stationary wire extrusion using ALE formalism

Stationary wire extrusion using ALE formalism

Stationary wire extrusion using ALE formalism

Stationary wire extrusion using ALE formalism

• The ALE formalism is used for simulating this stationary process.

• The mesh is Eulerian (every nodes are moved back to their initial position after each step). This avoids to consider a very large Lagrangian mesh

large Lagrangian mesh.

• The problem is axisymmetric.

• The wire is pulled from the top through a rigid die.

• The penalty method is used for the contact between the die and the wire.

• After a brief transient state, the stationary state is reached.

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(18)

Backward extrusion using ALE

Backward extrusion using ALE

• A cylindrical piece of metal is pushed through a rigid tool.

• A very thin mesh is placed where the solid is y p supposed to go out.

• During the process, this flat mesh grows due to the convection and the main mesh shrinks.

• The shape of the mesh remains good and no remeshing is needed.

(19)

Machining using ALE

Machining using ALE

Machining using ALE

Machining using ALE

• A tool cuts and divides a piece of metal into two parts

• A guess of the final stationary shape of the chip is used as initial mesh.

• The final shape (chip’s width) is automatically computed by the ALE method

• The mesh is refined near the crack.

• The model could be highly g y improved with an appropriate cracking model.

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(20)

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

• Only the interesting part of the

problem is meshed, thanks to the ALE problem is meshed, thanks to the ALE formalism.

• The mesh is Eulerian in the rolling direction and Lagrangian in the

t di ti

transverse direction.

• The stationary state is reached by first clamping the sheet between the rolls and secondly making them rotate and secondly making them rotate around their axis.

• The rolls are rigid and the sheet is thick.

• The free surface of the sheet in the outlet zone is automatically computed using spline remeshing.

E l i ti f th G • Eulerian convection of the Gauss

points values is performed using a 1st order Finite Volume algorithm.

(21)

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

Cold Rolling process using ALE formalism

Comparison between ALE (above) and Lagrangian (below) formalisms

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(22)

Roller levelling

Roller levelling

Roller levelling

Roller levelling

• A sheet is driven through 3 cylinders. • ALE keeps a fine mesh between the cylinders. • Small contact areas require a fine mesh • CPU : 50min (ALE) vs 2 days (Lagrangian)

(23)

Roller levelling

Roller levelling -- springback

springback

• Part #1 : quasi-static problem

• Part #2 : springback modelling : loading and tools are removed in a second dynamic phase

dynamic phase.

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(24)

Roll forming

Roll forming

(25)

Roll forming

Roll forming –

– Lagrangian simulation

Lagrangian simulation

LTAS-MN²L – Institut de Mécanique B52/3 – 1, chemin des Chevreuils – B 4000 LIEGE

(26)

R ll f

i

R ll f

i

ALE i

ALE i

l i

l i

Roll forming

Références

Documents relatifs

Pesticides, biocides, détergents, médicaments et autres substances chimiques dans I'environnement. Elles sont invisibles, dans l'air, I'eau, le sol, ces centaines

Transport passif, transport actif et différents types de systèmes de transport 4.1 Critères thermodynamiques de classification des systèmes de transport.. 4.2

Si su equipo de calefacción y refrigeración no tiene un terminal C, consulte el manual del sistema o comuníquese con el fabricante para saber cuál es el terminal común de 24 VAC.. 4

moins créatifs nous assaillent, où les couleurs nous aveuglent, nous parlerons de ces techniques sobres, parfois ancestrales, mais toujours d'actualité qui sont

The EIA specification, in specif¥ing male connectors for data terminal equipment, envisions that each piece of data terminal equipmen~ will be connected to a

Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method.. Jean-Christophe Marongiu, Francis Leboeuf, Joëlle Caro,

■ including the notion of extension as an ab- stract primitive. The former approach is heavy. It requires a new release of the language to modify the metamodel as well as a consensus

Une étude réalisée par le Credoc montre que les technologies de l'information et de la communication sont toujours plus présentes dans la vie des Français: de l'informatique et