• Aucun résultat trouvé

SAFIR: Capabilities and examples of applications

N/A
N/A
Protected

Academic year: 2021

Partager "SAFIR: Capabilities and examples of applications"

Copied!
30
0
0

Texte intégral

(1)

SAFIR

®

Capabilities and examples of applications

(2)

2

SAFIR®

Table of content

1. What is SAFIR?

Description of the software Capabilities

Pre-processors and postprocessor User community

2. Examples of application

(3)

Description of SAFIR®

SAFIR is a computer program that models the behavior of building structures

subjected to fire. The structure can be made of a 3D skeleton of linear

elements such as beams and columns, in conjunction with planar elements such as slabs and walls. Volumetric elements can be used for analysis of details in the structure such as connections. Different materials such as steel,

concrete, timber, aluminum, gypsum or thermally insulating products can be

used separately or in combination in the model.

Process in a SAFIR analysis

1. The thermal attack from the fire is given as an input data 2. SAFIR computes the evolution of temperature in the sections

3. Then, SAFIR computes the mechanical response of the structure at elevated temperatures, taking into account the thermal elongations as well as the reduction of strength and stiffness in the materials

(4)

4

SAFIR®

Capabilities

1. The thermal attack from the fire may be represented by:

Temperature of the gas (standard fires are proposed, but the user can enter any time-temperature relationship)

Thermal flux from a local fire to a beam or ceiling (Annex C of EN 1991-1-2)

Thermal flux from a local fire to a column (RFCS project “LOCAFI”)

(5)

Capabilities

2. Calculation of temperature distributions in structures

subjected to fire

2D or 3D thermal calculations

Finite elements: triangular, quadrangular, prismatic (6-8 nodes) Transient calculation (temperature varies with time)

Predefined thermal material models proposed: concrete, steel, wood, aluminium, gypsum

Possibility to introduce other materials by specifying their

thermal properties (either constant or temperature dependent)

(6)

6

Capabilities

3. Calculation of the behavior of a structure under elevated

temperatures

2D or 3D structural calculations

Finite elements: truss, beams, shell, solid

Nonlinear mechanical properties that are temperature dependent

Large displacements

Predefined mechanical material models proposed: concrete, steel, wood, aluminium

SAFIR gives as a result the displacements of the nodes plus information about the support reactions, stresses, tangent modulus and effects of actions, as a function of time

4. Calculation of the torsional stiffness of a section

(7)

Pre-processors and postprocessor

1. Pre-processors

The general pre-processor GiD is favoured for use with SAFIR. GiD allows the generation of any input file for 2D or 3D, thermal or structural problem.

Note: GiD (http://www.gidhome.com/) is a commercial software developed independently to SAFIR.

The pre-processor Wizard allows the very fast creation of an input file for the 2D thermal analysis of a section based on a hot rolled steel H section.

2. Postprocessor

The postprocessor DIAMOND allows visualizing the structure and the results. It also allows plotting charts for the evolution of

various output variables during the fire, and exporting these charts to Excel.

(8)

SAFIR®

in the world

190 licenses sold37 countries 5 continents

Non linear finite element software for structures

(9)

User community

120 academic users

12 in USA (Princeton, Michigan State, ...)

Japan, Australia, China, Canada, U.K., ...

70 commercial users

18 in France

Switzerland, USA, U.K., Sweden, Australia, ...

Arup Fire, ArcelorMittal, Ingeni, ...

Scientific papers

SAFIR paper in AISC: 272 citations since 2005 (source:

Google Scholar)

http://hdl.handle.net/2268/2928

(10)

10

Examples of applications

(11)

2D thermal calculation

Protected steel beam heated on one side 1 225 nodes - 1 021 quadrangular elements

1 1 1 1 1 1111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Diamond 2011.a.2 for SAFIR

FILE: prot3board NODES: 1225 ELEMENTS: 1021 SOLIDS PLOT FRONTIERS PLOT CONTOUR PLOT TEMPERATURE PLOT TIME: 3600 sec 1041.90 900.00 800.00 700.00 600.00 500.00 400.00 300.00 200.00 100.00 20.10 SAFIR

(12)

12

2D thermal calculation

Radiation in internal cavity – shadow effect 201 nodes - 124 elements

Diamond 2011.a.2 for SAFIR

FILE: test_void2 NODES: 201 ELEMENTS: 124 SOLIDS PLOT TEMPERATURE PLOT TIME: 3600 sec 482.00 40.00 37.50 35.00 32.50 30.00 27.50 25.00 22.50 20.00 <Tmin SAFIR®

(13)

2D thermal calculation

Reinforced concrete column with hollow core 1097 nodes - 2012 triangular elements

(14)

14

2D thermal calculation

Reinforced concrete column with hollow core 1097 nodes - 2012 triangular elements

(15)

Y

Diamond 2009.a.5 for SAFIR FILE: hole9p NODES: 6183 ELEMEN TS: 5060 SOLIDS PLOT CONTOUR PLOT TEMPERATURE PLOT TIME: 1200 sec 736.80 500.00 450.00 400.00 350.00 300.00 250.00 200.00 150.00 100.00 50.00 20.00 Concrete beam

6 183 nodes - 5 060 solid elements

(16)

16

3D thermal calculation

Composite steel-concrete joint

31 502 nodes - 25 411 solid elements

(17)

2D structural calculation

Example of a frame structure

(18)

18

3D structural calculation

Case study by R. Fike and V. Kodur – Michigan State University, USA Partial model of an eight story steel frame office building

(19)

3D structural calculation

NRC report - part 2. H. Mostafaei, P. Leroux, P.-S. Lafrance

Hybrid Fire Testing for Performance Evaluation of Structures in Fire

X Y

Z

5.0 E-01 m

Diamond 2011.a.2 for SAFIR

FILE: 3d NODES: 2508 BEAMS: 1167 TRUSSES: 0 SHELLS: 0 SOILS: 0 DISPLACEMENT PLOT ( x 30) TIME: 7200 sec Z

Diamond 2011.a.2 for SAFIR

FILE: 3d NODES: 2508 BEAMS: 1167 TRUSSES: 0 SHELLS: 0 SOILS: 0 DISPLACEMENT PLOT ( x 30) TIME: 7200 sec SAFIR

(20)

20

3D structural calculation Flumilog test, INERIS France

2 624 nodes - 940 beam elements

X Y

Z

1.0 E+01 m

Diamond 2009.a.5 for SAFIR

FILE: Modelo_Def_3 NODES: 2624 BEAMS: 940 TRUSSES: 0 SH ELLS: 0 SOILS: 0 DISPLACEMENT PLOT ( x 1) TIME: 739.0464 s ec SAFIR®

(21)

3 892 nodes - 4 428 shell elements F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0F0F0 F0 F0F0 F0F0 F0 F0F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0F0F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0F0F0F0F0 F0 F0 F0 F0 F0F0F0F0F0F0 F0 F0 F0F0 F0 F0F0F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0F0 F0F0 F0 F0F0F0F0F0F0F0 F0 F0F0 F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0F0F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0F0F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0 F0 F0 F0 F0F0 F0F0 F0 F0F0F0F0F0F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0 F0 F0F0F0F0F0F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0 F0 F0 F0 F0 F0F0 F0F0 F0 F0F0F0F0F0F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0F0F0F0F0F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0 F0 F0F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0F0 F0 F0F0 F0 F0F0 F0 F0 F0 F0 F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0F0 F0 F0F0 F0F0 F0 F0F0 F0 F0F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0F0 F0 F0 F0 X Y Z X Y Z SAFIR®

(22)

22

3D structural calculation Cellular steel beam in fire

Z

(23)

3D structural calculation Cellular steel beam in fire

(24)

24

3D structural calculation

Structural Fire Analysis of a building with an arched concrete roof ICB

Snap-through collapse under fire when the steel tie rods fail

(25)

3D structural calculation

Plot of the membrane forces in the concrete shells

(26)

26

3D structural calculation

Full scale fire test – Ulster 27-02-2010 RFCS project (Vassart, et al., 2012)

(27)

F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 F0 0 200 400 600 800 1000 1200 0 20 40 60 80 100 120 140 160 T e m p e ra tu re [ ° C ] Time [min] Middle Lef t bottom corner Lef t top corner Right bottom corner Right top corner OZone model 1 1 1 11 11 1111 1 1 1 11 1 1 1 1 11 1 1 1 1 1 1 1 1 1 11111111111111 1111111111111111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 11 11 11 1 2 2 2 2 2 2 2222222222222222222222222222222 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 111 111111 1 1 1 1 1 1 1 1 1 111111111111 1 1 2 3

Full scale fire test – Ulster 27-02-2010 RFCS project (Vassart, et al., 2012)

-1,0 -0,8 -0,6 -0,4 -0,2 0,0 Deflection (m)

Ulster fire test Numerical simulation

(28)

28

Recent references in the literature

Gernay, T., & Franssen, J.-M. (2015). A plastic-damage model for concrete in fire: Applications in structural fire engineering. Fire Safety Journal, 71, 268–278. http://hdl.handle.net/2268/175163

Gernay, T., Millard, A., & Franssen, J.-M. (2013). A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation. International Journal of Solids and Structures, 50(22-23), 3659-3673.

http://hdl.handle.net/2268/153663

Tondini, N., & Franssen, J.-M. (2013). Implementation of a weak coupling approach between a CFD and an FE software for fires in compartment. V International Conference on Computational Methods for Coupled Problems in Science and Engineering, 185-192. http://hdl.handle.net/2268/172165

Gernay, T., & Franssen, J.-M. (2012). A formulation of the Eurocode 2 concrete model at elevated temperature that includes an explicit term for transient creep. Fire Safety Journal, 51, 1-9.

http://hdl.handle.net/2268/114050

Vassart, O., Bailey, C. G., Hawes, M., Nadjai, A., Simms, W. I., Zhao, B., Gernay, T., & Franssen, J.-M. (2012). Large-scale fire test of unprotected cellular beam acting in membrane action. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 165(7), 327–334. http://hdl.handle.net/2268/129307

Zaharia, R., & Gernay, T. (2012). Validation of the Advanced Calculation Model SAFIR Through DIN EN 1991-1-2 Procedure. Proceedings of the 10th International Conference ASCCS 2012, 841-848.

http://hdl.handle.net/2268/126520

Lopes, N., Vila Real, P., Simoes da Silva, L., & Franssen, J.-M. (2012). Numerical analysis of stainless steel beam-columns in case of fire. Fire Safety Journal, 50, 35-50. http://hdl.handle.net/2268/115161

(29)

Licenses

Academic license: 1000 € + taxes. Commercial license: 5000 € + taxes.

No limitation in time (the license can be used for unlimited duration)

One license is valid for multiple users (from a same institution and a same location/site)

Free updates during 1 year

Training sessions

Organized on demand

800 € per day, independent on the number of participants

Can be organized on site at the client’s. In this case, the client also covers the travel and accommodation cost, as well as one day at the rate of 800 € for

(30)

30

Surf on the web

SAFIR website: http://www.facsa.ulg.ac.be/cms/c_1584029/en/safir

Purchase online:

Academic: http://www.gesval.be/fr/catalogue/safir-academic

Commercial: http://www.gesval.be/fr/catalogue/safir-commercial

Contact us

safir@ulg.ac.be

More information

SAFIR

Références

Documents relatifs

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access and

A 14-days nutritional experiment (see Supplementary Materials for details) was then performed in Fischer 344 male rats to test the effect of different marinated or non-marinated

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

Un tel système a permis d’éteindre des incendies plus eficacement que les systèmes de gicleurs standards ou que les systèmes par brouillard d’eau, à la fois dans des

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Previous PHENIX measurements of punch-through charged hadrons in the muon arms in the rapidity range 1.4 &lt; |η| &lt; 2.2 were significantly improved through the capability of

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department

- Méthodes de recherches spécifiques en médecine générale. Par exemple : développement de standards pour les méthodes de recherche des généralistes, approche