• Aucun résultat trouvé

Polymer (PE) synthesis - scaling up to industrial scale

N/A
N/A
Protected

Academic year: 2021

Partager "Polymer (PE) synthesis - scaling up to industrial scale"

Copied!
82
0
0

Texte intégral

(1)

Polymer (PE) synthesis

Dr. Christophe Detrembleur

Center for Education and Research on Macromolecules (CERM)

University of Liège, Sart-Tilman B6a

(2)

Plan

1- Controlled radical polymerization vs conventional radical polymerization

2- 1

st

CRP mechanism: Reversible Termination

3- 2

nd

CRP mechanism: Atom Transfer Radical Polymerization

(3)

Classical radical polymerization

Classical radical polymerization

O O O O T O O 2 CH3 C CH3 NC N N C CH3 CH3 CN T CH3 C CH3 NC 2

Some free-radical initiators (R-R):

R-R 2 R

R

CH

2

-CHY

T or UV

R

+ CH

2

=CHY

1- Initiation

R

CH

2

-CH

Y

n CH

2

=CHY

R

CH

2

-CH-CH

2

-CH

Y

n

Y

2- Propagation

R

CH

2

-CH-CH

2

-CH

R

CH

2

-CH-CH

2

-CH

-

CH-CH

2

-CH-CH

2

-

R

n

2

n n

+

Y

Y

Y

Y

Y

Y

R

CH

2

-CH-CH

2

-CH

n

2

Y

Y

R

CH

2

-CH-CH

2

-CH

2 n

Y

Y

R

CH

2

-CH-CH

2

=CH

n

Y

Y

3- Terminations

Benzoyl peroxide (BPO) Azobisisobutyronitrile (AIBN)

(4)

Classical radical polymerization

Classical radical polymerization

Some free-radical initiators (R-R):

R-R 2 R

R

CH

2

-CHY

T or UV

R

+ CH

2

=CHY

1- Initiation

R

CH

2

-CH

Y

n CH

2

=CHY

R

CH

2

-CH-CH

2

-CH

Y

n

Y

2- Propagation

R

CH

2

-CH-CH

2

-CH

R

CH

2

-CH-CH

2

-CH

-

CH-CH

2

-CH-CH

2

-

R

n

2

n n

+

Y

Y

Y

Y

Y

Y

R

CH

2

-CH-CH

2

-CH

n

2

Y

Y

R

CH

2

-CH-CH

2

-CH

2 n

Y

Y

R

CH

2

-CH-CH

2

=CH

n

Y

Y

3- Terminations

(5)

Importance of the

Importance of the

«

«

classical

classical

»

»

radical polymerization

radical polymerization

Radical polymerization is

 tolerant towards numerous functions

(-COOH, -OH, -NH2,…).

 applicable to a broad range of vinyl monomers  can be applied to aqueous media (suspension,

emulsion, miniemulsion)

 highly reproducible (tolerant to impurities)

H

2

C CH

S

polymérisation

radicalaire

-CH

2

-CH-: substituent radical polymerization

Cl

CN

n

n

poly(ethylene)

poly(vinyl chloride)

n

poly(styrene)

n

poly(acrylonitrile)

Some examples of polymers produced by this technique: n

(6)
(7)

Controlled radical polymerization

Controlled radical polymerization

+

Conventional radical polymerization

Controlled radical polymerization

1- Initiation

2- Propagation : vp = kp [P°] [M]

3- Occurrence of irreversible termination reactions: vt= kt [P°]2

NO irreversible termination reactions, only initiation and propagation.

How to avoid the occurrence of irreversible termination reaction ? [P°] has to decrease →vp/vt ⇑⇑⇑⇑

Dormant species Active

(8)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

1- Control of the molecular weight

[M]0 = monomer concentration at the initial stage [I]0 = initiator concentration at the initial stage Mw(M) = molecular weight of the monomer

(9)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(10)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(11)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(12)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(13)

Criteria for a controlled radical polymerization

Mn = ([M]

0

/[I]

0

) × Mw(M) × conv

= (m

M

/n

I

) × conv

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(14)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

2- Resumption of the polymer chains

(15)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

2- Resumption of the polymer chains

T

At the end of the polymerization, the chains are end-capped by the controlling agent ⇒ The chains can be reactivated and initiate the polymerization of a vinyl monomer

(16)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

2- Resumption of the polymer chains

(17)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

2- Resumption of the polymer chains

(18)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(19)

Criteria for a controlled radical polymerization

M

n

(

g

/m

o

l)

Conversion (%)

5000 10000 15000 20000 20 40 60 80 100 25000 30000

(20)

Criteria for a controlled radical polymerization

L

n

([

M

]0

/[

M

])

)

Time (hr)

0.2 0.4 0.6 0.8 1 2 3 4 5 1.0 1.2

3- Kinetics is first order in monomer

6 7 8

V

p

= -d[M]/dt = k

p

× [M] × [P°]

By integration of v

p

:

(21)

Criteria for a controlled radical polymerization

L

n

([

M

]

0

/[

M

])

)

Time (hr)

0.2 0.4 0.6 0.8 1 2 3 4 5 1.0 1.2

3- Kinetics is first order in monomer

6 7 8

V

p

= -d[M]/dt = k

p

× [M] × [P°]

By integration of v

p

:

Ln([M]

0

/[M]) = k

p

× [P°] × t

(22)

Polydispersity: a criterium for CRP ?

Polydispersity = Mw/Mn = size distribution of the polymer chains.

For most of living and controlled polymerization processes, Mw/Mn →→→→ 1. If Mw/Mn = 1: all the polymer chains have the same length.

Mw/Mn →1: ONLY if the initiation rate is faster than the propagation rate !! A narrow polydispersity is NOT a criterium for « livingness » !!

M V 0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00 160.00 Minutes 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00 36.00 Mn ↑

(23)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(24)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(25)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(26)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(27)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(28)

CRP: a way to the macromolecular engineering

Homopolymer

Statistical copolymer

Alternated copolymer

Block copolymer

Star-shaped (co)polymer

Grafted (co)polymer

Gradient copolymer

1- Control of Mn Mn =

([M]0/[I]0) × Mw(M) × conv.

2- Control of the copolymer composition

3- Control of the architecture

(29)

Macromolecular engineering by CRP

Macromolecular engineering by CRP

Homopolymer Block copolymer Random copolymer Gradient copolymer

Graft copolymer

An star-shaped polymer AnBm star-shaped

copolymer A2B star-shaped copolymer ABC star-shaped copolymer More complex architectures:

(30)

X

P

n

P

n

k

act

k

deact

+

X

+M

k

p

O

N

R

R'

nitroxide radicals

R = Ph, CN, CO

2

Me,...

Ph

C

R

Ph

di- or triarylmethyl radicals

B

O

borinate radical

N

N

N

N

Ph

Ph

Ph

verdazyl radicals

N

N

N

Ph

Ph

Ph

Ph

triazolinyl radicals

(TMP)Co

organocobalt porphyrin

complexes

1st CRP mechanism: reversible termination

1st CRP mechanism: reversible termination

Co(acac)

2

(31)

The Nitroxide-Mediated Radical Polymerization (NMP)

+

O N

R

R'

O N

R

R'

nitroxide

Two main approaches for NMP:

Bimolecular system:

free radical initiator + nitroxide

N O O O O O

+

BPO TEMPO alkoxyamine

(32)

The Nitroxide-Mediated Radical Polymerization (NMP)

+

O N

R

R'

O N

R

R'

nitroxide

Two main approaches for NMP:

Bimolecular system:

free radical initiator + nitroxide

N O O O O O

+

BPO TEMPO N O O O N O O O N O O O n T > 100°C Styrene 95°C, 3.5h alkoxyamine Styrene alkoxyamine [TEMPO/BPO] ≈ 1.2

(33)

The Nitroxide-Mediated Radical Polymerization (NMP)

+

O N

R

R'

O N

R

R'

nitroxide

Two main approaches for NMP:

Bimolecular system:

free radical initiator + nitroxide

N O O O O O

+

BPO TEMPO

Unimolecular system: use of alkoxyamines

N O O O T N O O O initiator nitroxide alkoxyamine

(34)

>100oC O O O N O N O O O N O O n Alkoxyamine

Unimolecular system

Unimolecular system

=

Initiator and control agent Advantage of the unimolecular system:

⇒ improved initiator efficiency

⇒ control of the chain-ends structure

Hawker et al. J. Am. Chem. Soc. 1994, 116, 11185 Molecular weight calculation:

Mn, th. = × MWM × conv = (mM/nAlk) × conv

where mM is the weight (g) of monomer; and nAlkis the moles number of alkoxyamine

[M]0 [Alk]0

(35)

N O R R' Pn + kact kdeact N O R R' Pn

R and R’ govern the stability and reactivity of the nitroxide, but also kdeact et kact, and consequently, the equilibrium active/dormant species.

Importance of the nitroxide structure

Importance of the nitroxide structure

Some important nitroxides active in NMP:

(36)

O N + n 120oC Ph O N Ph Ph n

Polymerization time: 4-18 h

M

n

controlled up to 200000 g/mol

M

n,exp

M

n,th

M

w

/M

n

: < 1.1 until Mn ~ 75000 g/mol and

1.2-1.25 until Mn ~ 200000 g/mol

Styrene polymerization

(37)

Ph O N Ph + n CO2Bu O N Ph Ph O CO2Bu N Ph n 123oC + n 120oC CO2Bu Ph O N Ph

Poor control

(fast polymerization and

M

w

/M

n

1.5-2.2).

1 eq.

0.05 eq.

Polymerization time : 16h at 123oC et 48h at 95-100oC. Mn until 150000 g/mol Mn,exp ≈ Mn,th Mw/Mn : ≈ 1.05-1.30

A slight excess of free nitroxide is needed !

How to improve the control ?

Butyl acrylate polymerization

(38)

Monomers

- styrenes, acrylates, acrylonitrile, (meth)acrylic acid, isoprene,…

- NMP inefficient with vinyl chloride, vinyl acetate (and methacrylates)

Solvents

- Most often, the polymerizations are carried out in the bulk (T > 100°C) - Non polar solvents (xylene, toluene,…) with a low transfer constant. - Aqueous media (suspension, miniemulsion, emulsion)

O

O R O OR

CN OH

O styrene acrylate methacrylate acrylonitrile acrylic acid

where R = N O n OH Cl O O vinyl chloride vinyl acetate

Monomers and solvents

Monomers and solvents

isoprene

O

O R

(39)

SG1 based alkoxyamines

SG1 based alkoxyamines

Efficient for styrene and acrylate polymerizations without the use of excess nitroxides

preparation of

(40)

Dispersion

Bad pigment dispersion Good pigment dispersion

Use of polyelectrolytes

(polyphosphates, poly(carboxylic acids),…)

Electrostatic stabilisation Steric stabilisation

Utilisation de (co)polymères

Application: pigments stabilization

(41)

Application: pigments stabilization

Application: pigments stabilization

CO2Bu R O R O N R' R'' n + 130°C N R' R'' COn2Bu O O N m 130°C O N R' R'' m R CO2Bu O O N n pigment

(42)

Emulsion polymerization without any surfactant

Emulsion polymerization without any surfactant

MONAMS N O CH P O O O C H CH3 C O H3CO COOH SG1, 130°C, dioxane n N CH P O O O C H CH3 C O H3CO C H C O COOHn H H n = 21 Mw/Mn = 1.17 1- Preparation of PAA ChemComm 2005, 5, 614

(43)

Emulsion polymerization without any surfactant

Emulsion polymerization without any surfactant

MONAMS N O CH P O O O C H CH3 C O H3CO COOH SG1, 130°C, dioxane n N CH P O O O C H CH3 C O H3CO C H C O COOHn H H n = 21 Mw/Mn = 1.17 1- Preparation of PAA 2- Preparation of PAA-b-PS (and PAA-b-PnBuA) in emulsion

ChemComm 2005, 5, 614 N CH P O O O C H CH3 C O H3CO C H C O COOHn H H styrène, 120°C eau, NaOH N CH P O O O C H CH3 C O H3CO C H C O COOn -Na+ H H C HC Ph H m H

(44)

Emulsion polymerization without any surfactant

Emulsion polymerization without any surfactant

MONAMS N O CH P O O O C H CH3 C O H3CO COOH SG1, 130°C, dioxane n N CH P O O O C H CH3 C O H3CO C H C O COOHn H H n = 21 Mw/Mn = 1.17 1- Preparation of PAA 2- Preparation of PAA-b-PS (and PAA-b-PnBuA) in emulsion

ChemComm 2005, 5, 614 N CH P O O O C H CH3 C O H3CO C H C O COOHn H H styrène, 120°C eau, NaOH N CH P O O O C H CH3 C O H3CO C H C O COOn -Na+ H H C HC Ph H m H

(45)

Emulsion polymerization without any surfactant

Emulsion polymerization without any surfactant

MONAMS N O CH P O O O C H CH3 C O H3CO COOH SG1, 130°C, dioxane n N CH P O O O C H CH3 C O H3CO C H C O COOHn H H n = 21 Mw/Mn = 1.17 1- Preparation of PAA 2- Preparation of PAA-b-PS (and PAA-b-PnBuA) in emulsion

Styrène;

nBuA ChemComm 2005, 5, 614 N CH P O O O C H CH3 C O H3CO C H C O COOHn H H styrène, 120°C eau, NaOH N CH P O O O C H CH3 C O H3CO C H C O COOn -Na+ H H C HC Ph H m H

(46)

X

P

n

P

n

k

act

k

deact

+

+M

k

p

+ M

t

M

t

X

N N N N Cu X PPh3 Ru Cl PPh3 Cl PPh3 Br Ni Br PPh3 PPh3 Br Fe X PPh3 PPh3 PPh3 Pd PPh3 PPh3 PPh3 PPh3 Rh Cl Ph3P PPh3 PPh3 Re PPh3 O I O NMe2 NMe2 Ni Br Ru Cl PPh3 PPh3 (X = Cl, Br) Cu(I) Ru(II) Ni(II) Fe(II) Pd(0) Rh(I) Re(V) Ni(II) Ru(II)

2

2

ndnd

CRP mechanism: Atom Transfer Radical Polymerization

CRP mechanism: Atom Transfer Radical Polymerization

(47)

R-X R Mtn Mtn+1X Y R Y R Y X kact kad kdeact Mtn Mtn+1X R Y Y kp n R Y R Y X

Overall reaction:

R

-

X

+ n CH

2

=CHY

Mt

R

-(CH

2

-CHY)

n

-

X

n

Atom Transfer Radical Polymerization (ATRP)

Atom Transfer Radical Polymerization (ATRP)

How to carry out an ATRP experiment ?

R-X + Mt + ligand + monomer

ATRP

(48)

ATRP initiators

ATRP initiators

ATRP initiators = activated halogenoalcanes: α-haloketones, α-haloesters, α-nitriles, sulfonyl chlorides,…

Generally, use of initiators which mimic the structure of the dormant chains:

Molecular weight calculation:

Mn, th. = × MWM × conv = (mM/nRX) × conv

where mM is the weight (g) of monomer; and nRX is the moles number of initiator

[M]0 [RX]0

(49)

Br HO O Br O O Br O O O O Br O O Br H2N O O Br O N NH O O HO OH O O Br O HO OH N N N N NH2

Some ATRP functional initiators

(50)

Ligands for ATRP

Ligands for ATRP

Role of the ligands

1- Metal solubilisation in organic media

2- Adjusting the position and dynamics of the active/dormant species equilibrium

Types of ligands

Cu: bipyridines, iminopyridines, polyamines Ru: triarylphosphines, carbènes

Ni: triarylphosphine, Granel

Fe: trialkylphosphine, trialkylamine

X Pn Pn kact kdeact + +M kp + Mt Mt X NMe2 NMe2 Br P Ligands for CuI

(51)

Ligands for ATRP

Ligands for ATRP

X Pn Pn kact kdeact + +M kp + Mt Mt X

Some important Cu

I

(CuBr et CuCl) complexes

…and Cu

II

(CuBr

2

et CuCl

2

) complexes

Cu(I)/Ligand molar

(52)

ω

ω

-

-

chain end functionalization

chain end functionalization

(53)

Monomers and solvents

Monomers and solvents

Monomers

- styrenes, acrylates, methacrylates, acrylonitrile, (meth)acrylic acid,…

- ATRP inefficient with vinyl chloride, vinyl acetate and dienes because the radical is too reactive and poorly stabilized ⇒ C-X bond at the ω-chain-end is too stable.

Solvents

- Most often, the polymerizations are carried out in the bulk

- Non polar solvents (xylene, toluene,…) with a low transfer constant. - Aqueous media (suspension, miniemulsion, emulsion)

- Alcohols

O

O R O OR

CN OH

O styrene acrylate methacrylate acrylonitrile acrylic acid

where R = N O n OH Cl O O vinyl chloride

(54)

Halogen exchange in ATRP

Halogen exchange in ATRP

ATRP nBuA CO2Et CO2Et CO2Bu Br Br CO2Bu n n n ATRP MMA CO2Et CO2Et CO2Bu CO2Bu n n CO 2Me X m X CO2Me m Br-PnBuA-Br X-PMMA-PnBuA-PMMA-X

For preparing such copolymer, the halogen exchange is required.

(55)

CO2Et CO2Et CO2Bu Br Br CO2Bu n n n ATRP MMA CO2Et CO2Et CO2Bu CO2Bu n n CO 2Me X m X CO2Me m Conditions: toluene, 85°C, [MMA] = 4.67M, [Br-PnBuA-Br] = 4mM, [catalyseur] = 4mM

Halogen exchange in ATRP

(56)

Why is this halogen exchange useful ?

Without halogen exchange, MMA propagation is fast compared to initiation. Unreacted macroinitiator will thus be left at the end of the MMA polymerization.

With halogen exchange (Cl in place of Br), MMA propagation is decreased because C-Cl bond at the ω -chain end of PMMA is more stable than the C-Br bond. Initiation would thus be favoured compared to propagation.

CuBr

-Cl

CuCl (+CuCl2)

Halogen exchange in ATRP

Halogen exchange in ATRP

X Pn Pn kact kdeact + +M kp + Mt Mt X

(57)

Preparation of hydrosoluble block copolymers

Preparation of hydrosoluble block copolymers

PEO-b-PMADAME O O H3C O n O Cl O O N m O O H3C O n O Cl O O N m Br EtBr

(58)

Preparation of hydrosoluble block copolymers

Preparation of hydrosoluble block copolymers

O O H3C OH n Br O Br NEt3 PEO-OH O O H3C O n O Br O O N m CuCl/CuCl2 HMTETA 50°C O O H3C O n O Cl O O N m O O H3C O n O Cl O O N m Br EtBr PEO-b-PMADAME

(59)

Antibacterial copolymers

Antibacterial copolymers

CH2 C CH3 O O CH2 CH2 N C H3 CH3 n CH2 C CH3 O O CH2 CH2 N+ n C H3 CH3CH2 CH2 6CH3 Br Br CH2 7CH3 Quaternized

Quaternized poly(DMAEMA)poly(DMAEMA)

CH2 C CH3 O O CH2 CH2 NH n C C H3 CH3CH3 Poly(

Poly(TBAEMA)TBAEMA)

(60)

Antibacterial copolymers for LDPE

Antibacterial copolymers for LDPE

PEB O C O C CH3 CH3 C H2 CH CH3 C O O C H2 C H2 N H n C CH3 CH3 CH3 C H2 C H CH2 CH3 C H2 CH2 CH2 HC2 CH2 CH2 O n m C O C CH3 CH3 Br C H2 C C O O C H2 CH2 NH C CH3 CH3 CH3 CH3 PEB-Br TBAEMA PTBAEMA

PEB-b-Miscible with LDPE

⇒ Anchoring block to the LDPE

matrix

Antibacterial block CuCl, HMTETA Toluene

(61)

Antibacterial testings of LDPE bottels containing PEB

Antibacterial testings of LDPE bottels containing PEB

-

-

b

b

-

-

PTBAEMA

PTBAEMA

Control: LDPE, 4g, 0.5 cm × 0.5 cm pieces Antibacterial LDPE: LDPE+ 10 % PEB-b-PTBAEMA, 4 g, 0.5 cm × 0.5 cm pieces 3g, 0.5 cm × 0.5 cm pieces 2g, 0.5 cm × 0.5 cm pieces Time (min) 0 20 40 60 80 100 120 140 lo g (s u rv iv o rs ) (c e lls /m l) 0 2 4 6 8 10 LDPE (4g) LDPE + 10wt% PEB-b-PTBAEMA (2g) LDPE + 10wt% PEB-b-PTBAEMA (3g) LDPE + 10wt% PEB-b-PTBAEMA (4g) TEM images Image SEM Biomacromolecules 2006, 7(8), 2291-2296

(62)

Polymer/biomolecules biohybrides

Polymer/biomolecules biohybrides

Chem. Comm. 2004, 2026

6-7 polymer chains grafted onto lysozome

(63)

X

P

m

P

m

k

act

k

deact

+M

k

p

P

n

+

P

n

X

+

CH

3

I

1-phenyl ethyl iodide

S

C

Z

S

R

thiocarbonylthio compounds

Z = Ph

R = CH

2

Ph

3

3

rdrd

mechanism: degenerative transfert (DT)

mechanism: degenerative transfert (DT)

An atom or group of atoms is rapidly and reversibly transfered from a dormant chain to an active chain. During this transfer, the dormant chain becomes active, and the active chain becomes dormant.

For the polymerization to be controlled, the transfer has to be fast compared to propagation ! Some exemples of DT reagents:

(64)

Activating group

Leaving group

(initiating group)

RAFT agent + free radical initiator + monomer

RAFT

Only organic reagents

A wide range of monomers: methacrylates, acrylates, styrene, styrene sulfonate, vinyl benzoate,

2-hydroxyethyl methacrylate, acrylic acid, dimethylaminoethyl methacrylate, acrylamides, …

T: 60-100oC; polymerizations in bulk, solutions and aqueous (dispersed) media a Z = Ph, R = C(CH3)2Ph b Z = Ph, R = CH(CH3)Ph c Z = Ph, R = CH2Ph d Z = Ph, R = C(CH3)(CN)CH2CH2CO2Na e Z = Ph, R = C(CH3)2CN f Z = CH3, R = CH2Ph g Z = Ph, R = C(CH3)(CN)CH2CH2CH2OH h Z = Ph, R = C(CH3)(CN)CH2CH2CO2H

Reversible Addition

Reversible Addition

-

-

Fragmentation chain Transfer (RAFT)

Fragmentation chain Transfer (RAFT)

C

S

Z

S

R

How to carry out a RAFT experiment ?

(65)

I + M Pn Pn S C S R Z + Pn S C S R Z S Pn C S Z + R addition fragmentation R + M Pm initiation re-initiation Pm S C S Pn Z + Pm S C S Pn Z S Pm C S Z + Pn addition fragmentation + M + M 2 3 3 4 5 1

Overall process

Initiator + Monomer +

Z

C

S

S

R

R

P

x

S

C

S

Z

RAFT mechanism

RAFT mechanism

(66)

1) Importance of Z and R groups

Z = activating group

has to activate the RAFT agent for the addition of radicals

R = leaving group

has to be a good leaving “radicalar” group in order to promote the fragmentation in the good direction

Pn S C S R Z + Pn S C S R Z addition 2 1 C S S R Pn Z S Pn C S Z + R fragmentation 2 3

2) Choice of the RAFT agent = f(monomer)

How to choose the RAFT agent ?

How to choose the RAFT agent ?

C

S

(67)

Methacrylates

S C Ph S C(CH3)2CN S C Ph S CN CH3 CH2CH2CH2OH CH2 C CH3 C OCH3 O

Sterically hindered propagating radical with a moderate reactivity Pn S C S R Z + Pn S C S R Z S Pn C S Z + R addition fragmentation 2 3 1

Phenyl group Activated tertiary alkyl

group

In order to transform the active chain Pn° into dormant chain 3, the S-R bond (intermediate 2) has to break. If this S-R bond is too stable compared to S-Pn bond, the dormant species 3 will not form. No control will be observed.

How to choose the RAFT agent ?

(68)

Acrylates et acrylic acid

S C Ph S CH2Ph S C S CH2Ph N

Acrylamides

S C Ph S C(CH3)2Ph CH2 C H C OR O

Low steric hindrance and high reactivity of the propagating radical

How to choose the RAFT agent ?

(69)

1- Monomers with similar reactivities

How to prepare block copolymers by RAFT ?

How to prepare block copolymers by RAFT ?

S C S Ph C(CH3)2Ph CO2Bu AIBN Ph(H3C)2C CO2Bu S C Ph S n CO2Me AIBN Ph(H3C)2C CO2Bu n S C S Ph CO2Me m

(70)

S S Z A B + S S Z A B S S Z B + A

1- Monomers with similar reactivities

2- Monomers with different reactivities

How to prepare block copolymers by RAFT ?

How to prepare block copolymers by RAFT ?

S C S Ph C(CH3)2Ph CO2Bu AIBN Ph(H3C)2C CO2Bu S C Ph S n CO2Me AIBN Ph(H3C)2C CO2Bu n S C S Ph CO2Me m S C S Ph C(CH3)2Ph Ph AIBN Ph(H3C)2C Ph S C Ph S n CO2Me AIBN Ph(H3C)2C Ph n S C S Ph CO2Me m Ph(H3C)2C CO2Me S C Ph S n St AIBN Ph(H3C)2C CO2Me n S C S Ph Ph m CO2Me AIBN

(71)

S S Z A B + S S Z A B S S Z B + A

1- Monomers with similar reactivities

2- Monomers with different reactivities

How to prepare block copolymers by RAFT ?

How to prepare block copolymers by RAFT ?

S C S Ph C(CH3)2Ph CO2Bu AIBN Ph(H3C)2C CO2Bu S C Ph S n CO2Me AIBN Ph(H3C)2C CO2Bu n S C S Ph CO2Me m S C S Ph C(CH3)2Ph Ph AIBN Ph(H3C)2C Ph S C Ph S n CO2Me AIBN Ph(H3C)2C Ph n S C S Ph CO2Me m Ph(H3C)2C CO2Me S C Ph S n St AIBN Ph(H3C)2C CO2Me n S C S Ph Ph m CO2Me AIBN S S Z O O CH3

(72)

S S Z A B + S S Z A B S S Z B + A

1- Monomers with similar reactivities

2- Monomers with different reactivities

How to prepare block copolymers by RAFT ?

How to prepare block copolymers by RAFT ?

S C S Ph C(CH3)2Ph CO2Bu AIBN Ph(H3C)2C CO2Bu S C Ph S n CO2Me AIBN Ph(H3C)2C CO2Bu n S C S Ph CO2Me m S C S Ph C(CH3)2Ph Ph AIBN Ph(H3C)2C Ph S C Ph S n CO2Me AIBN Ph(H3C)2C Ph n S C S Ph CO2Me m Ph(H3C)2C CO2Me S C Ph S n St AIBN Ph(H3C)2C CO2Me n S C S Ph Ph m CO2Me AIBN

(73)

Difunctional RAFT agent

Other architectures by RAFT

Other architectures by RAFT

S S S Ph Ph S S Ph S S S Ph AIBN AIBN S Ph S S S Ph

(74)

Other architectures by RAFT

Other architectures by RAFT

S Ph S S S Ph S S Ph S S Ph S Ph S S Ph S S S Ph S S Ph AIBN

(75)

RAFT agents et MADIX agents

RAFT agents et MADIX agents

(76)

End

End

-

-

functionalization of (co)polymers

functionalization of (co)polymers

S S O O MMA AIBN, 60°C, 8h S S O O CH2 C CH3 CO2nCH3 Toluene AIBN in excess 80°C, 2.5 h O O CH2 C CH3 CO2nCH3 CN Mn = 13500 Mw/Mn = 1.18

Mechanism of

ω

-chain end functionalization:

S S O O CH2 C CH3 CO2CHn 3 AIBN en excès S O O CH2 C CH3 CO2CHn 3 S CN O O CH2 C CH3 CO2CHn-13 CH2 C CH3 CO2CH2 S S NC O O CH2 C CH3 CO2CHn-13 CH2 C CH3 CO2CH3 CN + CN Macromolecules 2005, 38, 2033

MMA/ RAFT agent /AIBN = 500/1/0.1

(77)

End

(78)

Preparation of polyelectrolytes

Preparation of polyelectrolytes

Angew. Chem. Int. Ed. 2006, 45, 5792 S C S Ph CN COOH O HN 70°C, water O NH O HN HOOC CN n O HN S Ph S m S O HN HOOC CN n Ph S NH3+Cl -HOOC N N COOH CN CN HOOC N N COOH CN CN 70°C, water NH3+Cl -NH3+Cl

(79)

-Synthesis of PEO

Synthesis of PEO

-

-

b

b

-

-

PAA

PAA

CH3O(CH2CH2O)45CH2CH2OH HOOC-C-S-C-S-C12H25 CH3 CH3 S DCC PEO-OOC-C-PAA-S-C-S-C12H25 CH3 CH3 S [PEO-AR] AA / DMF CH3O(CH2CH2O)45CH2CH2-OOC-C-S-C-S-C12H25 CH3 CH3 S [PEO-AR] 80°C 1.16 83-45 PAA-PEO E21-2 1.19 48-45 PAA-PEO E21-1 IP (GPC) DP (NMR) Ligand CODE

Polymerization conditions : [RAFT agent] : [AIBN] = 40: 1 [AA] = 4 M in DMF at 80°C.

(80)

Synthesis of PAA

Synthesis of PAA

-

-

b

b

-

-

PAMPEO

PAMPEO

n CH2=CH C=O HOOC-C-(CH2-CH)n-S-C-S-C12H25 C=O CH3 CH3 S C=O OH HOOC-C-(CH2-CH)n-(CH2-CH)m-S-C-S-C12H25 C=O PEO OCH3 CH3 CH3 S AR, AIBN DMF, 80°C PAMPEO DMF, 80°C OH OH 1.30 34-66 PAA-PAMPEO E21-24 1.35 34-110 PAA-PAMPEO E21-23 1.51 61-21 PAA-PAMPEO E21-11 1.25 61-11 PAA-PAMPEO E21-10 IP(GPC) DP(RMN) Ligand CODE

Polymerization condition : [RAFT agent] : [AIBN] = 80: 1 [AMPEO] = 0.5 M in DMF at 80°C.

HOOC-C-S-C-S-C12H25 CH3

CH3 S

(81)

Application to coatings

Application to coatings

Advantages: - Control of Mn

- No free surfactant ⇒ no migration of surfactant out of the coating - Functionnalization of the latex particles possible

- No organic solvent Macromolecules 2005, 38, 2191

1- Acrylic acid is polymerized in water (pH = 6) until DP ~ 5.

2- Butyl acrylate is slowly added in order to form amphiphilic PAA-b-PnBuA which forms micelles. Micelles are growing with the monomer conversion to form the latex.

(82)

Some criteria for the use of CRP at the industrial scale

Some criteria for the use of CRP at the industrial scale

Cheap CRP system

Cheap and readily available

starting products

Fast polymerization

Use of the existing reactors and lines

No purification and treatment of the final polymers

Same conditions as for conventional

technique

 Odorless polymers

 Colorless polymers

Polymers not contaminated by toxic residues

Références

Documents relatifs

L’objectif du premier travail était de « revisiter » la fonction régulatrice du tonus bronchique dans le cadre d’une pathologie respiratoire, l’objectif du

We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nançay radio telescope, the

Thus, the aim of this work is to correlate the relaxation time behavior close to T g with the cooperative motions during the  relaxation, by decreasing the dipolar

 لكش ىلع ليصافتلا لك ركذ عم ىدح ىلع نييوكت جمانرب لكل احرش مضت ةيلاولما لوادلجا 1 ضرع rapport de présentation ( ،نولخدتلما ،هفادهأ ،نييوكتلا طاشنلا عوضوم

Low loading of expandable graphite provides lower pHRR (lower than that of EVA/ATH at 65 wt%) Zinc carbonate is a superior synergist for conventional intumescent EVA

ي ناثلا لصفلا ةيعيبطلا ثراوكلا لىع ر يمأتلا راثآ لولأا بلطملا : ثراوكلا ىلع نيمأتلا لوبقب نمؤملا مازتلا ةيعيبطلا ي تلا دوقعلا

L’anomalie linéaire au nord est correspond à la façade ouest du bâtiment principal de l’abbaye du XVIII e siècle.. L’anomalie linéaire centrale correspond à la

Full length YabA and the C-terminal region (62–119), full length DnaA and an N-terminally truncated DnaA frag- ment (71–440), and DnaN proteins were expressed as fu- sions to the