• Aucun résultat trouvé

Accuracy of tree stem circumference estimation using close range photogrammetry: Does point-based stem disk thickness matter?

N/A
N/A
Protected

Academic year: 2021

Partager "Accuracy of tree stem circumference estimation using close range photogrammetry: Does point-based stem disk thickness matter?"

Copied!
7
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Trees,

Forests

and

People

journalhomepage:www.elsevier.com/locate/tfp

Accuracy

of

tree

stem

circumference

estimation

using

close

range

photogrammetry:

Does

point-based

stem

disk

thickness

matter?

Hospice

A.

Akpo

a ,∗

,

Gilbert

Atindogbé

a

,

Maxwell

C.

Obiakara

b

,

Madaï A.

Gbedolo

a

,

Finagnon

G.

Laly

a

,

Philippe

Lejeune

c

,

Noël

H.

Fonton

a

a Laboratoire d’études et de Recherche en Statistiques et Biométrie Appliquée, Université d’Abomey-Calavi, Cotonou, Benin b Department of Botany, University of Ibadan, Ibadan, Nigeria

c Unit of Forest and Nature Management, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium

a r t i c l e

i n f o

Keywords: Circumference Photogrammetry Agisoft PhotoScan Point clouds Stem disk Benin

a b s t r a c t

Thereisanincreaseintheuseofphotogrammetricpointcloudsfortreeattributemensuration.Stemdiameter andcircumferencecanbeestimatedfrompointcloudsusingstemdisksofvaryingthicknessesalongthebole. However,thereisadearthofinformationontheeffectofthethicknessofpointcloud-basedstemdiskson theaccuracyofdiameterandcircumferenceestimations.Inthisstudy,weoutlinedaGIS-basedprocedurefor analysingStructurefromMotion-derivedphotogrammetricpointcloudswithaviewtoprovidinganoptimaldisk thicknessforaccuratecircumferenceestimates.Geo-referencedpointcloudswerecreatedfromphotographsof 30treesbelongingtofivesavannaspecies.Foreachtree,20horizontalstemdisks,withincreasingthicknessesof 1to20mmweremadeatbreastheightusingtheopensourceQGISsoftware.Theresultingcross-sectionswere manuallydelineatedanddigitised.Thedifferencebetweenreference(manuallymeasured)andpointcloud-based circumferencesatbreastheightwasexpressedasmeanabsolutepercenterror(MAPE)andcomparedacrosstree species,sizeanddiskthickness.Wefoundsignificanteffectsofspeciesidentity,treesizeanddiskthicknesson MAPE.Astemdiskof7mminthicknessprovidedconsistentlylowerMAPEvalues(<6%).Thissuggeststhat theaccuracyoftreestemcircumferenceestimationsfromphotogrammetricpointcloudsdependsonstemdisk thickness.

1. Introduction

There is increased interest in the application of photogrammet-ric point clouds in forest inventories based on individual trees (Morgenroth and Gomez, 2014 ;Miller et al., 2015 ;Surový et al., 2016 ), andentiresampleplots(Liang et al., 2014 ;Mikita et al., 2016 ;Mokro š et al., 2018a ).Therelativelynew,user-friendlyandreliableapproach which combines Structure from Motion and Multi-View Stereopho-togrammetry,SfM-MVS(Szeliski, 2010 )toproducehigh-quality tridi-mensionalpointcloudshasformedthebasisofthese studies,inline withthecontextofprecisionforestry.Iglhaut et al. (2019) have sum-marisedtheprinciplesandpracticalconsiderationsunderpinning the useofSfM-MVSinforestbiometryandhighlighteditspotentialbenefits forthisfield.

Althoughanumberofsoftwarepackageshavebeendevelopedfor theimplementationofSfM-MVSalgorithmsatvaryingfinancialcosts (Bemis et al., 2014 ),AgisoftMetashape(AgisoftLLCSt.Petersburg, Rus-sia),formerlyknownasAgisoftPhotoScanseemstobeamuchprized

Correspondingauthor.

E-mail addresses: hosakpo@yahoo.fr (H.A. Akpo), gilbert.atindogbe@fsa.uac.bj (G. Atindogbé), mc.obiakara@gmail.com (M.C. Obiakara),

gbedolomadai@gmail.com(M.A.Gbedolo),gabinlaly@gmail.com(F.G.Laly),p.lejeune@ulg.ac.be(P.Lejeune),hnfonton@gmail.com(N.H.Fonton).

tool. Previous studies have shown its suitability for the generation of tridimensionaltree models(e. g.,Morgenroth and Gomez, 2014 ; Miller et al., 2015 ;Surový et al., 2016 ; Mikita et al., 2016 ; Mokro š et al., 2018b ; Roberts et al., 2018 )However,there hasbeen afocus ondiameterestimationtothedetrimentofotherimportanttreestem attributesassuggestedbythelimitednumberofstudiesonstem circum-ference(Mikita et al., 2016 ;Surový et al., 2016 )andtaper(Fang and Strimbu, 2017 ).Moreover,becausestemsareoftenassumedtohavea circularcross-section,whichisscarcelyso,circumferencemaybeamore descriptiveandreliablebiophysicalattributethandiameter,especially for irregularlyshapedtrees (West, 2015 ).Thus,theuse ofSfM-MVS pointcloudsforthesolepurposeofdiameterestimationmay under-estimatethepotentialsofthistechnique,whichisinherentlynot con-strainedbyirregulargeometricalobjects(Bauwens et al., 2017 ).

A few researchershave estimated tree stem circumferencesfrom SfM-MVS-derivedpointcloud(Mikita et al., 2016 ;Bauwens et al., 2017 ; Mokro š et al., 2018a ).Themethodologicalapproachusedinthese stud-iesisbasedonhorizontalcross-sectionalstemdiskscreatedina

tridi-https://doi.org/10.1016/j.tfp.2020.100019

Received27May2020;Receivedinrevisedform27July2020;Accepted28July2020 Availableonline5August2020

2666-7193/© 2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

Table1

Tape-measuredestimatesofbreastheightcircumferenceofsampletrees.

Metric Species Mean SD CV% Minimum Maximum

A. leiocarpa 135.40 78.70 58.14 46.50 275.00 B. costatum 127.30 60.30 47.36 44.00 198.00 CBH (cm) S. birrea 130.50 72.80 55.79 51.00 239.00 T. laxiflora 131.10 53.30 40.63 61.50 202.00 V. paradoxa 125.60 53.90 42.93 43.70 195.00 Total 130.10 60.40 46.62 43.70 274.90

CBH:Breastheightcircumference,SD:Standarddeviation,CV:Coefficientof vari-ation(n=6).

mensionalpointcloudatknownstemheights.However,Theaccuracy ofthisapproachdepends onthestemdiskthicknessandpointcloud density(Kore ň et al., 2017 ).Itisnotclearwhatthicknessproduces ac-curatecircumferenceestimates.Previousanalysesofpointcloudshave beenimplementedmanually(Surový et al., 2016 ),andautomatically (Mikita et al., 2016 ;Bauwens et al., 2017 ;Mokro š et al., 2018a )ina varietyofpointcloudprocessing packages.Forexample,toevaluate thecircumferenceatbreastheightusingpointcloudsobtainedwithin forestplots,Surový et al. (2016) createdcross-sectionaldisksusing De-vdeptEyeshot.Theseworkersreportedresultsclosetothosemeasured inthefield.However,stemdiskthicknessunderlyingtheseresultswas notspecifiedintheirstudy.Mikita et al. (2016) estimatedbreastheight fromforeststandsbymeansofmethodsforautomaticstemdelineation basedoncircle-fittingalgorithmsandconvexhulls,andreportedmore robustresultswithconvexhullforstemdisksof1cm.Inanotherstudy, Bauwens et al. (2017) usedanovelapproachtoestimatecrosssections ofbuttressedtropicaltreesatdifferentstemheights.First,theycreated stemskeletonsbymanuallydigitisingthecontoursofsuccessive,2 cm-thickdisksmadealongthestemaxis.Then,theyautomaticallyderived circumferencesfromconvexhullssimulatingtapemeasurementsaround buttressedtreesbysuperimposingthepreviouslycreatedtreeskeletons toSfM-MVSpointclouds.Similarly,Mokro š et al. (2018b) applied con-vexhullalgorithmsto2cm-thickstemdisks offourspeciesin aGIS softwaretodeterminebreastheightdiameter.Thesomewhatarbitrary useofthesamestemdisksthicknessbytheseauthors,thoughin differ-entcontexts,i.e.,temperatetrees(Mokro š et al., 2018b )andtropical trees(Bauwens et al., 2017 )underscorestheneedforacomprehensive assessmentoftheoptimalpointcloud-basedstemdiskthicknesstobe usedforaccuratestemcircumferencemeasurements.

Althoughtreestemcircumferencemaybealessbiasedmetric com-paredtodiameter,thereisapaucityofstudiesfocusingonthe estima-tionofthis metricfromphotogrammetricpointclouds.Furthermore, species-specificdifferenceshavenotbeenexploredinthiscontext.In thisstudy,wesoughttoidentifythestemdiskthicknessforwhich accu-ratebreastheightcircumferencescanbederivedbasedon photogram-metricpointclouds.

2. Materialsandmethods

2.1. Sitedescription

ThisstudywasconductedinthebufferareaoftheWNationalPark (11° 26′−12° 25′N;2° 48′−3° 05′E)inNorthernBenin.Thisarea islocatedwithintheSudaniantropicalclimatezone.Itischaracterized byamosaicofopenforestsandsavannas.Here,rainfallvariesbetween 600mmto700mm,andaverageannualtemperatureisabout40°C. Temperatureislowest(12°C−25°C)fromNovembertoMarch,during theharmattan(Zakari et al., 2015 ).

2.2. Manualandimagedataacquisition

Theexperimentwasbasedonthefivemostabundanttreespeciesin thestudyarea;namelySclerocaryabirrea,Bombaxcostatum,Anogeissus

leiocarpa,TerminalialaxifloraandVitellariaparadoxa.Foreachspecies, six treeswererandomlyselected,eachwithinbreastheightdiameter ranges(DBH)of10−20cm,20−30cm,30−40cm,40−50cm, 50−60cmand>60cm.Stemcircumferencewasmeasuredatbreast height(1.3m)usingagraduatedtape.Thismeasurementlevelwas spec-ifiedbyaredlinedrawnaroundthestem.Breastheightcircumference ofthesampledtreesaregiveninTable 1 .

Imagesweretakenat15° intervalsonafullcirclearoundeachtree usingaCanon77DdigitalcameraequippedwithaCanonEF50mm f/1.8STMlens.Adistanceof1mwasmaintainedbetweenthestemand thecamera.Ateachshootingposition,highlyoverlappingphotographs werecapturedfromthebaseofthetreetothetop.Thecamerawasheld inportraitorientationtoensureamaximumcoverageofthestem.The operatorendeavouredtocaptureverticallyoverlappingimages,parallel tothestemfromthebaseupbeforemovingtothenextshootingposition. Imageswereacquiredatthehighest resolution(6000×4000pixels) withtheapertureprioritymode(f/3.2)toavoidblurriness.Thecamera wassettothelowestISOvalue(100)tominimizenoiseinimages.A 1.5mruler,whichserved asscalewasverticallypinnedtothestem priortoimageacquisition.

2.3. Imageprocessing

ImageswereprocessedintodensepointcloudsusingAgisoft Photo-ScanProfessional0.9.1(AgisoftLCC,St.Petersburg,Russia),which im-plementsSfM-MVSalgorithms.ThemainstepsinthePhotoScan work-flow include1)photoalignment,at theend ofwhich asparsepoint cloudiscreated,2)sparsepointclouddensification,3)polygonalmesh modelgenerationand4)digitalelevationmodelconstruction.However, duetolimitedprocessingpower,onlythefirsttwostepsofthemodel buildingworkflowwereimplemented.AtthesestagesPhotoScan simul-taneouslyandautomaticallyidentifiesmatchingpointsinasetof over-lappingimages,estimatescameralocationsforeachimageand gener-atesatridimensionaldensepointcloudmodel.Thehighestaccuracywas selectedforphotoalignmenttoobtainthebestestimatesofcamera po-sitions.Becauseweusedanun-calibratedcamera,thepairpre-selection mode,whichcontrolsfeaturematchingacrossimagepairswassetto "Generic".KeypointandTiepointlimitswereleftattheirdefaultvalues (40,000and1000,respectively).Thetridimensionalsparsepointcloud modelresultingfromthisstepwasdensifiedusingrecommended set-tings(https://www.agisoft.com/ ).Finally,todeterminethegeographic coordinatesof individualpointsinthemodel,aspatialscalewas as-signedtoitbasedonthemajordivisionsoftheruler.Thismanualscaling procedureisdescribedindetailbyMokro š et al. (2018a) .Modelswere carefullycleanedbymanuallyremovingallpointsthatsignificantly de-viatedfromtheexternallimitsofthetree(Fig. 1 ).Thefinalmodelwas exportedtoXYZformatforstemcircumferencedelineationusingaGIS software.

2.4. Stemcircumferenceestimation

We usedtheopen sourcesoftware QGIS2.18(https://www.qgis. org/ )forpointcloudprocessingandcircumferenceestimation.There

(3)

Fig.1. AphotographofBombaxcostatum(leftpanel)anditsscaledtridimensionalmodel(rightpanel).

areseveralstemcross-sectiondelineation methodsdepending onthe noiseinthepointcloud,outliersandcomputationalpower.Automatic circle-fittingandconvexhullmethodshavebeenusedformoreorless regularstemcrosssections(e.g.Mikita et al., 2016 )butremainlargely untestedinirregularlyshapedstems.Textfilescontainingthespatial co-ordinatesofphotogrammetricpointswereimportedinQGISand“cut” atbreastheightbyfilteringallpointforwhichZ≈1300mm.Additional cutsweremadeinordertocreateasetof20diskswithincreasing thick-nesses(i.e.,1300≤Z≤1301,1300≤Z≤1302,…,1300≤Z≤1320). Then,eachdiskwasmanuallydigitisedintoamultipleconvexpolygon. Owingtotheirregularnatureofmoststemcontours,wechoseto de-lineatestemcross-sectionsmanually.Weinteractivelycreatedpolygons tocloselyreconstructstemcross-sectionalcontoursbyzoomingin on successivepointsandconnectingthemwithasegment(Fig. 2 ).Finally, diskcircumferencewasmeasuredforeachpolygoninQGIS.

2.5. Dataanalysis

Thedifferencebetweenfield-measuredbreastheightcircumferences andthoseestimatedfrompointcloudswasassessedbymeansofthe rel-ativebias(B%)andpercentrootmeansquareerror(MAPE%)asdefined inEqs. (1) and(2) ,respectively.

𝐵 =100 × [ 1 𝑛 𝑛𝑖=1 ( 𝐶𝑖̂𝐶𝑖 ̂𝐶𝑖 )] (1) 𝑀𝐴𝑃𝐸=100 × [ 1 𝑛 𝑛𝑖=1 || || | 𝐶𝑖̂𝐶𝑖 ̂𝐶𝑖 || || | ] (2)

where Ĉ and Care the reference (tape-measured) and point cloud-derivedcircumferencesrespectively,andnthenumberoftrees.

Theeffectofspeciesidentity,DBHrangeanddiskthicknessonMAPE wasassessedusingmixedmodelsinthelme4package.Speciesidentity wastakenasrandomfactorwhilefixedfactorswereDBHrangeanddisk

thickness.Meanabsolutepercenterrorvalueswere𝑎𝑟𝑐𝑠𝑖𝑛𝑒(√𝑥) trans-formedpriortoanalysis. Significanceof fixedfactorinteractions and randomfactorwasassessedusingthelmerTestpackage.Datawere anal-ysedusingRversion3.2.

3. Results

3.1. Optimaldiskthickness

Weobtainedaveryhighrate(571outof600)ofusefuldisksatmost DBHrangesexceptforthelastone(>60cm)inT.laxiflorawhereslicing failed(Table 2 ).The30−40cmbreastheightDBHrangeinB.costatum

producedonly11disksoutoftheexpected20.Meanabsolutepercent errorsvariedgreatlyacrossspecies,DBHclassrangeanddiskthickness, andtherewasasignificantthree-wayinteractionofthetestedfactorsas showninTables 3 and4 .

Thevariationinbiaisinrelationtospeciesdiametrerangeandstem diskthicknessisshowninFig. 3 .Therewasanexponentialdecreasein biaisfordiskthicknessesbetween1−4mm,1−5mmand1−6mm inAleiocarpaandT.laxiflora,V.paradoxaandB.costatum,andS.birrea

respectively.Then,biaisdecreasedasymptoticallybetween5−20mm, 6−20mmand7−20mminAleiocarpaandT.laxiflora,V.paradoxaand

B.costatum,andS.birrearespectively.Inthesecondphase,MAPEvalues werebelow6%whilebiasvaluesacrossDBHrangeswerelessthan2%. Meanabsolutepercenterrorandbiaswerelowestwithadiskthickness of7mmregardlessofspeciesandbreastheightdiametreranges.

3.2. Referenceandpointcloudbasedcircumferencesatbreastheight

Reference and point cloud-derived circumference estimates for 7mm-thickstemsectionsarecomparedinFig. 4 .Regardlessofspecies anddiametersize,referencevalueswerealmostsimilartovalues ob-tainedinQGIS.

(4)

Fig.2. Digitisedstemcross-sectionsofthestudyspecies.Thereddots arepointcloudsobtainedwithastemdiskof7mminthickness.

Table2

Numberofstemdisksinrelationtobreastheightdiameterandspecies

Breast height diameter ranges (cm)

Species [10–20[ [20–30[ [30–40[ [40–50[ [50–60[ [60- ∞[ Total A. leiocarpa 20 20 20 20 20 20 120 B. costatum 20 20 11 20 20 20 111 S. birrea 20 20 20 20 20 20 120 T. laxiflora 20 20 20 20 20 0 100 V. paradoxa 20 20 20 20 20 20 120 Total 100 100 91 100 100 80 571 4. Discussion

Treebreastheightdiameterisafundamentalvariableinforest mea-surementsandinventories.Allometricequationsusingthisvariableare animportantelementinforestgrowthmodelsforimprovedmonitoring andmanagementstrategies(Burkhart and Tomé, 2012 ).The conven-tional,directapproachforcircumferencemeasurementsbymeansofa graduatedtapemaymisestimatethismetric,especiallyintreeswith ir-regularlyshapedstems.Fortunately,thislimitationcanbeovercomeby meansofSfMphotogrammetry(Bauwens et al., 2017 ).Ourstudy

ex-ploitedtheadvantagesofthistechniqueinconjunctionwithanopen sourceGISsoftwaretoprescribetheoptimumstemdiskthicknessfor whichcircumferenceestimationfrompointcloudmodelsisadequate.

Theeffectofthethicknessofpointcloud-basedstemdisksontree cir-cumferenceestimationhasbeenrecognized(Kore ň et al., 2017 );while thinnerstemdisksmaynotcaptureausefulnumberofpointsfor circum-ferenceestimation(Forsman et al., 2016 ),thickerdiskscanleadto inac-curaciesincircumferenceestimationduetoverticalchangesbolesize. Althoughoptimaldiskthicknesswasspecies-dependentinourstudy,we recordedconsistentlylowerbiasandmeanabsolutepercenterrorvalues

(5)

Fig.3. Variationoftherelativebiasinrelation tostemslicethicknessfor7mmthickness.

Table3

AnalysisofvariancesummarytestingthevariationinMAPEthat isexplainedbyspeciesidentity,breastheightdiameterrange,disk thicknessandtheirinteractions.

Source of variation Df 𝜒2 P value

Species 1 13.177 < 0.001

Species × Disk thickness 1 0.000 1.0000 Species × Disk thickness × DBH range 1 25.788 < 0.001

Table4

Analysisof variancesummary forlinearmixed models testingthevariationinMAPEthatisexplainedbyspecies identity,breastheightdiameterrange,diskthicknessand theirinteractions.

Source of variation df F P value Disk thickness 19 17.283 < 0.001

Diameter range 5 7.272 < 0.001

Disk thickness × DBH range 95 0.959 0.589

with7mm-thickstemdisksacrossthefivestudyspecies.Previousworks ontemperate(Surový et al., 2016 )andtropicaltrees(Bauwens et al., 2017 ;Mikita et al., 2016 )werebasedon1and2cm-thickdisks.Thicker disks(5cm)atbreastheightwereappliedonpointcloudderivedfrom forestplotsofFagussylvatica(Mokro š et al., 2018a ).Thisdifferencemay beexplainedbypointclouddensityorspeciesidentity,andsuggeststhat thickerdisksmaybemoresuitableforplotlevelsstudiesthanwhen in-dividualtreesareconsidered.Reliablestemdelineationdependsmore

onthenumberofpointincludedinadisk(Kore ň et al., 2017 ).Moreover, itisnoteworthythatdependingonspecies,stemdisksmorethan7 mm-thickmayprovidebettercircumferenceestimatesgiventheasymptotic trendofrelativebiasinrelationtodiskthicknessreportedinthisstudy. However,thickerdisksmayalsoleadtomisleadingstemcircumference estimatesduetodigitizationerrors.Ineffect,forthickerdisks(for exam-ple17mm),weobtainedclustersofpointsthatmadedigitisationmore difficultevenintheabsenceofoutliers.Thiswouldbeadrawbackto automaticstemdelineationmethodsasadditionalstepsaimedatpoint cloudfilteringmayberequiredforoptimalresults(Kore ň et al., 2017 ). Thus,thepresenceofaclusterofpointsinherenttothickerdisksmay leadtooverestimationsofstemcircumference.

Thisstudyshowedthatregardlessofspeciesanddiametersize, cir-cumferencesestimatedfrompointcloudswerealmostsimilartothose measuredonthefiledwithatape.Thisisinagreementwiththe find-ingsofBauwens et al. (2017) whoshowedthattherewasnosignificant differenceincross-sectionalbaseddiameterestimationsofbuttressed, rainforesttreesusingbothmethods.Theseresultshighlightthe robust-ness ofSfM-MVSphotogrammetry formeasuringirregulartree stem. Theaccuracyofpointcloud-basedcircumferenceanddiameter estima-tionswasalsoinvestigatedbyMokro š et al. (2018a) .Withtheirmanual GIS-basedcircumferencedelineation,theseauthorsfoundnosignificant differences betweendestructivelyobtainedandphotogrammetric val-ues(bias0.66cm).However,thisbiaswasfoundtoslightlyincrease (0.86cm)usinganautomaticstemdelineationmethodspecifically de-velopedfromthemanualmethod.Inarelatedstudy,higherbiaseson stemcircumference(1.87cm)werereportedbySurový et al. (2016) . Similarly,rootmeansquareerrorsvaryingfrom4.41cmto5.98cm werereportedbyMokro š et al. (2018a) basedonacircle-fitting

(6)

algo-Fig.4.Comparisonofphotogrammetricallyestimated reference andpoint coud-derived circumferencesat breastheightforastemdiskof7mm.

rithmtoestimateDBHofEuropeanbeechesattheplotlevel.Although moreuncertaintiesmaybeassociatedwithautomaticstemdelineation methods,theirsupportingalgorithmswouldimprovewithadvancesin pointcloudcleaningprocedures.

Oneobviouslimitationoftheapplicationof SfM-MVS photogram-metryinforestryisthatthistechniqueisdependentonstudysystem. Sofar,mostsuccesseswithresultscomparabletoLIDAR-based applica-tionshavebeenrecordedinmanagedtemperateforestsplotsinwhich lightningconditionsandmobilityaregenerallypropitiousforimage ac-quisition(Liang et al., 2014 ;Mokro š et al., 2018b ; Piermattei et al., 2019 ),orontreeswithinurbanareas(Morgenroth and Gomez, 2014 ; Roberts et al., 2018 ) asopposed totropicalforests(Bauwens et al., 2017 ).Tothebestofourknowledge,theworkofBauwens et al. (2017) is thefirstapplicationofSfM-MVSinextremeforestconditions.Theirmain finding,illustratedbyarelativelylowsuccessrate(79%)inrendering photographedtrees highlightsthechallengesin imageacquisitionin suchconditions.Inourcase,imagecapturewaseasilyconductedfrom alldefinedanglesaroundtreesbecauseofthesparselyvegetatednature oftropicalsavannas,anddesertsinthestudyofHuang et al. (2018) . 5. Conclusion

Thisstudyidentifiedtheoptimalhorizontalstemdiskthicknessfor estimatingtreecircumferencefromphotogrammetricpointclouds.Our resultssuggestthatadiskof 7mm inthicknessprovidedlessbiased estimatesofstemcircumferenceinsavannatrees.Thisvaluewasnot

affectedbytreespeciesandsizetherebyunderscoringtherobustness ofSfM-MVSphotogrammetryinforestbiometry.Owingtoitsaccuracy, theproposedmanual methodisrecommendedforsmallsamplesizes givenitsinherentlyhigherpost-processingtimescomparedwith auto-maticmethods.However,manylimitationsremaintobeovercomefor awidespreadapplicationofthistechnique.

DeclarationofCompetingInterest

Wehavenocompetingintereststodeclare. Funding

ThisresearchwasfundedbytheInternational Foundation for Science (GrantNo:I-1-D-6066-1 ).

References

Bauwens, S., Fayolle, A., Gourlet-Fleury, S., Ndjele, L.M., Mengal, C., Lejeune, P., 2017. Terrestrial photogrammetry: a non-destructive method for modelling ir- regularly shaped tropical tree trunks. Methods Ecol. Evol. 8 (4), 460–471. doi: 10.1111/2041-210X.12670 .

Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Ban- gash, H.A., 2014. Ground-based and UAV-based photogrammetry: a multi-scale, high- resolution mapping tool for structural geology and paleoseismology. J. Struct. Geol. 69, 163–178. doi: 10.1016/j.jsg.2014.10.007 .

Burkhart, H.E., Tomé, M., 2012. Modeling Forest Trees and Stands. Springer, Netherlands doi: 10.1007/978-90-481-3170-9 .

Fang, Rong, Strimbu, Bogdan, 2017. Stem measurements and taper modeling using pho- togrammetric point clouds. Remote Sens. 9 (7), 716. doi: 10.3390/rs9070716 .

(7)

Forsman, M., Börlin, N., Holmgren, J., 2016. Estimation of tree stem attributes using ter- restrial photogrammetry with a camera rig. Forests 7 (12), 61. doi: 10.3390/f7030061 . Huang, H., Zhang, H., Chen, C., Tang, L., 2018. Three-dimensional digitization of the arid land plant Haloxylon ammodendron using a consumer-grade camera. Ecol. Evol. 8 (11), 5891–5899. doi: 10.1002/ece3.4126 .

Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., Rosette, J., 2019. Structure from motion photogrammetry in forestry: a review. Curr. For. Rep. 5 (3), 155–168. doi: 10.1007/s40725-019-00094-3 .

Kore ň , M., Mokro š , M., Bucha, T., 2017. Accuracy of tree diameter estimation from terres- trial laser scanning by circle-fitting methods. Int. J. Appl. Earth Observ. Geoinf. 63, 122–128. doi: 10.1016/j.jag.2017.07.015 .

Liang, X., Jaakkola, A., Wang, Y., Hyyppä, J., Honkavaara, E., Liu, J., Kaartinen, H., 2014. The use of a hand-held camera for individual tree 3d mapping in forest sample plots. Remote Sens. 6 (7), 6587–6603. doi: 10.3390/rs6076587 .

Mikita, T., Janata, P., Surový, P., 2016. Forest stand inventory based on com- bined aerial and terrestrial close-range photogrammetry. Forests 7 (12), 165. doi: 10.3390/f7080165 .

Miller, J., Morgenroth, J., Gomez, C., 2015. 3D modelling of individual trees using a hand- held camera: accuracy of height, diameter and volume estimates. Urban For. Urban Green. 14 (4), 932–940. doi: 10.1016/j.ufug.2015.09.001 .

Mokro š , M., Liang, X., Surový, P., Valent, P., Čer ň ava, J., Chudý, F., Tunák, D., Salo ň , Š ., Mergani č, J., 2018a. Evaluation of close-range photogrammetry image collection methods for estimating tree diameters. ISPRS Int. J. Geoinf. 7 (3), 93. doi: 10.3390/ijgi7030093 .

Mokro š , M., Výbo šť ok, J., Toma š tík, J., Grznárová, A., Valent, P., Slavík, M., Mergani č, J., 2018b. High precision individual tree diameter and perimeter estimation from close- range photogrammetry. Forests 9 (11), 696. doi: 10.3390/f9110696 .

Morgenroth, J., Gomez, C., 2014. Assessment of tree structure using a 3D image anal- ysis technique —a proof of concept. Urban For. Urban Green. 13 (1), 198–203. doi: 10.1016/j.ufug.2013.10.005 .

Piermattei, L., Karel, W., Wang, D., Wieser, M., Mokro š , M., Surový, P., Kore ň , M., Toma š tík, J., Pfeifer, N., Hollaus, M., 2019. Terrestrial structure from motion photogrammetry for deriving forest inventory data. Remote Sens. 11 (8), 950. doi: 10.3390/rs11080950 .

Roberts, J. W., Koeser, A. K., Abd-Elrahman, A. H., Hansen, G., Landry, S. M., Wilkinson, B. E., 2018. Terrestrial photogrammetric stem mensuration for street trees. Urban For. Urban Green. 35, 66–71. doi: 10.1016/j.ufug.2018.07.016 .

Surový, P., Yoshimoto, A., Panagiotidis, D., 2016. Accuracy of Reconstruction of the Tree Stem Surface Using Terrestrial Close-Range Photogrammetry. Remote Sens. 8 (2), 123. doi: 10.3390/rs8020123 .

Szeliski, R., 2010. Computer Vision: Algorithms and Applications, 1st ed. Springer-Verlag, London doi: 10.1007/978-1-84882-935-0 .

West, P.W., 2015. Tree and Forest Measurement, 3rd ed. Springer International Publishing doi: 10.1007/978-3-319-14708-6 .

Zakari, S. , Tente, B.A.S. , Yabi, I. , Toko, I.I. , 2015. Evolution Hydroclimatique, Perceptions Et Adaptation Des Agroéleveurs Dans L’extrême Nord Du Bénin (Afrique de L’ouest), pp. 399–405 .

Figure

Fig. 1. A photograph of Bombax costatum (left panel) and its scaled tridimensional model (right panel).
Fig. 2. Digitised stem cross-sections of the study species. The red dots are point clouds obtained with a stem disk of 7 mm in thickness.
Fig. 3. Variation of the relative bias in relation to stem slice thickness for 7 mm thickness.
Fig. 4. Comparison of photogrammetrically estimated reference and point coud-derived circumferences at breast height for a stem disk of 7 mm.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Besides, as stressed above, geophysical fields typically involve specific non-Gaussian marginal distributions and power spectral densities. In the reported experiments, we consider

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

waters from shallow regions around Bahrain, not captured by the field data, become warmer throughout the water column. In autumn, surface waters are cooled down to tempera- tures of

J. or cabbage maggot is an important pest for Brassicaceous crops. There are currently no registered chemical control agents for its control in Slovenia. Fungal control agents

This study compared gastric pH and residual gastric volumes after 1 vs 2 h of pre-anaesthetic clear fluid fasting in children undergoing general anaesthesia.. Compared with

Thrombocytopenic coagulopathy Kasabach-Merritt phenomenon is associated with kaposiform hemangioendothelioma and not with common infantile hemangioma... Hémangiome chez l’enfant