• Aucun résultat trouvé

Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

N/A
N/A
Protected

Academic year: 2021

Partager "Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification"

Copied!
12
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/20706

http://doi.org/10.1016/j.jcp.2016.08.043

Magri, Luca and Bauerheim, Michaël and Nicoud, Franck and Juniper, Matthew P. Stability analysis of

thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification. (2016) Journal of

Computational Physics, 325. 411-421. ISSN 0021-9991

(2)

Stability

analysis

of

thermo-acoustic

nonlinear

eigenproblems

in

annular

combustors.

Part II.

Uncertainty

quantification

Luca Magri

a

,

b

,

,

Michael Bauerheim

c

,

Franck Nicoud

d

,

Matthew P. Juniper

b

aCenterforTurbulenceResearch,StanfordUniversity,CA,UnitedStates bCambridgeUniversityEngineeringDepartment,Cambridge,UnitedKingdom cCAPSLab,ETHZürich,Switzerland

dIMAGUMR-CNRS 5149,UniversityofMontpellier,France

a

b

s

t

r

a

c

t

Keywords: Thermo-acousticstability Uncertaintyquantification Annularcombustors Adjointmethods

Monte Carloand Active Subspace Identificationmethods are combined with first- and second-orderadjointsensitivitiestoperform(forward)uncertaintyquantificationanalysis of the thermo-acoustic stability of two annular combustor configurations. This method is appliedtoevaluate the risk factor,i.e.,the probability forthe systemtobe unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculationsbyasmuchastheMonteCarlosamples.

1. Introduction

Thermo-acousticoscillationsinvolvetheinteractionofheatrelease(e.g.,fromaflame)andsound.Inrocketandaircraft engines,aswellaspower-generationturbines,heatreleasefluctuationscansynchronizewiththenaturalacousticmodesin thecombustionchamber.Thiscancauselargeoscillationsofthefluidquantities,suchasthestaticpressure,thatsometimes lead to catastrophic failure. It is one of the biggest and mostpersistent problems facing rocket [1] and aircraft engine manufacturers[2].

The output ofany frequency-based stability tool is usually a map of the thermo-acousticeigenvalues in thecomplex plane(blacksquaresinFig. 1).Eachthermo-acousticmodemusthavenegativegrowthrateforthecombustortobelinearly stable. The designprocess is even morecomplex becauseof theuncertainty inthe thermo-acousticparameters p ofthe low-order thermo-acousticmodel. Forexample,the speed of sound, the boundary impedancesand the flamemodel are sensitivetopartlyunknownphysicalparameterssuchastheflowregime,manufacturingtolerances,fuelchanges,oracoustic andheatlosses. Asa consequence,eachmode actuallybelongstoan uncertainregionofthe complexplane(Fig. 1). This uncertainregionismeasuredbytheriskfactor[3],whichcorrespondstotheprobabilitythatthemodeisunstable.Although theprobabilisticestimation(uncertaintyquantification)ofthethermo-acousticstabilityisparamountforpractitioners,there areonlyafewstudiesintheliterature[4–6,3].

UncertaintyQuantification(UQ)ofthermo-acousticstabilitywasperformedinlongitudinalacademicconfigurations con-tainingoneturbulent flameinNdiayeetal.[6].Assumingthatonlytheflamemodelwas uncertain,i.e.,thegain andthe

*

Correspondingauthor.

E-mailaddress:lmagri@stanford.edu(L. Magri). http://dx.doi.org/10.1016/j.jcp.2016.08.043

(3)
(4)
(5)

ω

1

=



q

ˆ

+0

, δ

p

N

{

ω

0

,

p1

} ˆ

q0





ˆ

q+0

,

∂N {ω,p0} ∂ω





ω 0

ˆ

q0

 ,

(3)

where q

ˆ

+0 isthe adjoint eigenfunction,which issolution ofthe adjointeigenproblem

N {

ω

0

,

p0

}

Hq

ˆ

+0

=

0,in which

·,

·

represents aninner product andH isthecomplex transpose.Ifthe unperturbedeigenvalue

ω

0 is N-folddegenerate,and

ˆ

e0,iaretheN independenteigenfunctionsassociatedwithit,weobtainaneigenproblemforthefirst-ordereigenvaluedrift,

ω

1,andeigendirection,

α

j,asfollows



ˆ

e+0,i

,

N

{

ω,

p0

}

ω





ω0

ˆ

e0,j



ω

1

α

j

= −



ˆ

e+0,i

, δ

p

N

{

ω

0

,



p1

} ˆ

e0,j



α

j

,

(4)

for i

,

j

=

1

,

2

,

...,

N. Einstein summationis used,therefore, theinner products in equation (4) are thecomponents ofan

N

×

N matrix and

α

j are thecomponentsofan N

×

1 vector.Among the N eigenvalues drifts,

ω

1,outputted by (4), we select the one with largest growthrate,

ω

1i,because it causes the greatest change in the stability.In thermo-acoustics, degeneracy occursinrotationallysymmetric annular combustorsin whichazimuthal modeshave2-fold degeneracy(see, e.g.,[19]).

Thesecond-ordereigenvaluedriftreads

ω

2

= −

2



ˆ

q+0

,

∂N {ω,p0} ∂ω





ω 0

ω

1q

ˆ

1

+ δ

p

N

{

ω

0

,



p1

} ˆ

q1





ˆ

q+0

,

∂N {ω,p0} ∂ω





ω 0

ˆ

q0



2



ˆ

q+0

,

1 2 2N {ω,p0} ∂ω2





ω0

ω

2 1

ˆ

q0





ˆ

q+0

,

∂N {ω,p0} ∂ω





ω 0

ˆ

q0



.

(5)

Thecalculationoftheperturbedeigenfunctionq

ˆ

1,whichisnecessaryonlyforthecalculationofthesecond-ordereigenvalue drift,isdescribedin[17].

3. UncertaintyquantificationviastandardMonteCarlomethod

PartIofthispapershowedthatusingtheadjointmethodcandrasticallyreducethecomputationalcostofdeterministic sensitivity analysis. Asimilar approach can,thus, be used whenthe parameters are varied randomly.This section shows howtheadjointmethodcanprovideefficientUncertaintyQuantification(UQ)strategiestopredictthermo-acousticstability from aprobabilistic standpoint.We studytwo ofthe three configurationsof Part I,3 i.e., the weakly-coupledrotationally symmetric CaseA,andthe strongly-coupledrotationallyasymmetricCase C,whichisrelevanttoindustrialconfigurations

[20].AstandardMonteCarlomethod(MC)isintegratedwiththeadjointformulationforthecalculationoftheProbability Density Function(PDF) andRiskFactor(RF),thelatterof whichisdefinedastheprobability thatthe systemisunstable, givenaPDFfortheinputparameters[3]

RF

=

0

PDF

i

)

d

ω

i

.

(6)

In practical applications,theuncertainties are typically greatestin theflame parametersandacoustic damping.Here,we calculatehowthethermo-acousticgrowthrate,

ω

i,whichgovernsthestability,isaffectedby uncertainflameparameters.

Studyinguncertaintyquantificationfortheacousticdamping,forexamplethroughimpedanceboundaryconditions,isjust as straightforward [6,21]. We assume we knowthe maximum and minimum values of the uncertain flame parameters. Using the Principleof MaximumEntropy, we choosethe uniformdistribution forthe input parameters because itis the leastbiasedpossibledistributiongiventheavailableinformation[22].Notethat [6]haveshownthatthePDF shapehasa minoreffectontheriskfactorinthecasetheyconsidered.

By the standard MonteCarlo methodused by [3], M randomvalues of p, calledthe MonteCarlo samplingpMC, are

selected withrespect totheir PDFsandthenonlineareigenproblem (1)issolved M timestoprovide M eigenvalues.This meansthatwiththismethod,whichisthereferencesolution,wehavetosolveforM nonlineareigenproblems.TheMonte Carlo methodalways convergesto the final PDF but suffersfrom slowconvergence, being

O(

1

/

M

)

, whichcould be prohibitiveinlargesystemssuchastheHelmholtzequationincomplexgeometries.Thiscallsfortheadjoint-basedmethod. ToavoidthecomputationsoftheM samples,here

O(

104

)

,theMonteCarloanalysisisviewedasarandom perturba-tionaroundtheunperturbedstate.Consequently,theadjointsensitivitiesofSection2areappliedtoobtaintheeigenvalue drifts providing an efficientUQ strategy. Thus, therandom sequenceof parameters pMC is usedasa perturbationin the

first-ordereigenvaluedriftinequation(4),fordegenerateeigenproblems,orinequation(3)fornon-degeneratecases.Then, the perturbedeigenvectoriscalculatedbySVDandthesecond-order driftiscalculatedbyequation (5)foreach sequence

3 CaseBistherotationallysymmetricversionofCaseC.Theyhaveasimilarprobabilisticbehavior (notshown)andCaseBisnotreportedherefor

(6)

Table 1

Riskfactors(RF)calculatedbytheMonteCarlomethodasafunctionoftheMonte Carlo samples.MCisthestandardMonteCarlomethod,whichprovidesthebenchmark solution, andADstandsforadjoint.Thestandarddeviationoftheflameindicesand timedelaysis 5%.

MonteCarlo samples

RF via MC RF via 1st-order AD RF via 2nd-order AD

Case A 10,000 33.3% 40.3% 34.9% 20,000 33.9% 41.3% 34.2% 30,000 33.3% 40.6% 33.7% Case C 10,000 40.9% 34.7% 41.5% 20,000 40.8% 34.5% 41.3% 30,000 40.9% 34.6% 41.1% Table 2

Riskfactors(RF)calculatedbytheMonteCarlomethodasafunctionofthestandard deviationoftheflameindexandtimedelayuniformdistributions.MCisthestandard MonteCarlomethodandADstandsforadjoint.

Standard deviation

RF via MC RF via 1st-order AD RF via 2nd-order AD

Case A 1% 15.4% 14.7% 15.4% 2.5% 31.3% 33.2% 31.2% 5% 33.25% 40.3% 33% 10% 34.5% 43.2% 34.9% Case C 1% 18.3% 17.5% 18.3% 2.5% 35.4% 31.1% 35.3% 5% 40.9% 34.7% 40.4% 10% 42.2% 30.0 % 41.5%

ofrandomparameters. Theseareonlyvector–matrix–vector multiplicationsorlower-rank linearsystems.Importantly,the adjointmethodrequiresthecomputation ofonlyone nonlineareigenproblem(1)anditsadjoint,regardlessofthe Monte CarlosamplingM orthenumberofperturbedparameters.

First,we evaluatehowmanyMonteCarlosamplesare neededfortherisk factorstoconverge. Table 1showsthe con-vergence ofthe risk factorfor threeMonte Carlosamplingsof 10,000,20,000 and30,000 imposing a standarddeviation of5%ontheflameindicesandtimedelays.WechoosetheMonteCarlosamplingofM

=

10

,

000 forUQasacompromise betweenaccuracyandcomputationalcost.(Thediscrepancyof

0.6% inthe M

=

20

,

000 caseisduetothebinsizes and consequentnumericalintegrationerror.Ifwe weretorun multipleMonteCarlosimulations,theensembleaverageofthe discrepancywouldtendtozero.)

Secondly,we impose differentstandard deviations to theuniform distributions ofthe flameparameters andcalculate the growth-ratePDFs andrisk factors. Theresults are shownin Table 2. When thestandard deviations are smallerthan 2

.

5%,thefirst-orderadjointmethodprovidesaccurate predictions,althoughitbecomeslessaccurateforlargerdeviations. However,thesecond-orderadjointmethodprovidesaccuratepredictionsoftheriskfactoruptostandarddeviationsof10%, matchingsatisfactorilythebenchmarksolutionbyMC.

InFig. 3we depicttheeigenvalues viaMonteCarlosimulationsobtainedbyMC (first row),first-orderadjoint method (middlerow) andsecond-orderadjointmethod(bottomrow) forthe weaklycoupledCase A.Theclouds(leftpanels) are obtainedbyimposingauniformprobabilitydistributionbetween

±

0

.

1n0

,

±

0

.

1

τ

0,whichrepresenttheuncertaintiesofthe flameparameters(lastrowofTable 2forCaseA).ThePDFsoftheperturbedgrowthratesaredepictedintherightpanels. ThePDF shapeissatisfactorily predictedby thefirst-orderadjointmethod,however,toobtainaccuracyon theriskfactor thesecond-orderadjointformulationisnecessary.Forthiscase,theriskfactorpredictedbyMCis34.5%,byfirst-orderAD is43.2%andbysecond-orderADis34

.

9%.

ThesamequantitiesforCaseCareshowninFig. 4.Forthiscase,theriskfactorpredictedbyMCis42.2%,byfirst-order ADis30%andbysecond-orderADis41

.

5%.ThestronglycoupledconfigurationCismorepronetobeingunstableinpractice thantheweaklycoupledconfigurationA:Forthesamelevelofuncertaintyoftheflameparameters(10%),thegrowthrate isuncertainuptowithin

150s−1 inCase C,whereasitisuncertainuptowithin

20s−1 inCase A.

In general, the UQ analysis shows that the uncertainty present in the flame parameters can significantly affect the thermo-acoustic stability. Deterministic calculations of the eigenvalue (big dots in the left panels of Figs. 3, 4) are not sufficient for a robust thermo-acoustic stability analysis, i.e., systems that are deterministically stable can have a great probability ofbecomingunstable.Thisisbecausethermo-acousticsystemsarehighly sensitivetochanges insomedesign parameters,asshownin[17].Notethat othersources ofuncertainties,such aspartlyunknown acousticlosses,can affect thestability,althoughthisisnotconsideredhereforsimplicity.

(7)
(8)

Fig. 5. Partofthespectrumofthecovariancematrix,C.Thedominanteigenvectorsprovidethe Q directionsintheparameterspacealongwhichthe growthratevariesthemost.WerecognizethefirstQ=5 eigenvaluesasactivevariablesbecausetheyaredominantandlesssensitivetotheMonteCarlo sampling,Mcov.CaseAisshownintheleftpanelsandCaseCintherightpanels.

C

= E[∇

p

ω

i

(

p

ω

i

)

T

],

(7)

wherethecolumnvector

p

ω

i

= [∂

ω

i

/∂

p1

ω

i

/∂

p2

. . . ∂

ω

i

/∂

pNp

]

isthegrowthrate’ssensitivitywithrespecttothe

Np thermo-acousticparameters,and

E

istheexpectationoperator.Notethatthisvectorconsistsofpartialderivatives,

therefore,Np eigenvaluesneedtobecalculated.Tocomputethecovariancematrix,weperformaMonteCarlo

integra-tion[13],yielding C

1 Mcov M

cov j=1

[∇

p

ω

i

(

p(j)

)(

p

ω

i

(

p(j)

))

T

],

(8)

wherethevectorofparameters,p(j),isdrawnfromtherelevantuniformPDFofMcov MonteCarlosamples.Asfaras thenumberofcomputationsisconcerned, Mcov

×

N

p growthrates,

ω

i,arecalculatedby eitherfinitedifference(FD),

whichrequiressolving Mcov

×

Np nonlineareigenproblems,ortheadjointapproach(AD),whichrequiressolvingonly

onenonlineareigenproblemanditsadjointregardlessofthenumberofparametersandMonteCarlosamples. 2. Identificationoftheactivevariables. C issymmetricand,therefore,admitstherealeigenvaluedecomposition

C

=

W



WT

.

(9)

Basedontherelativeimportanceoftheeigenvalues

λ

j,weselecttheQ dominanteigenvectors,Wk.Thischoicemight

berathersubjectivedependingonthecase[13].Fig. 5showsthattherearegapsbetweenthefirstandsecond eigenval-uesaswellasbetweenthefifthandsixtheigenvalues.Thissuggeststhatfiveactivevariablesshouldbekept.Physically, thefirstgroup (

λ

1) isassociatedwithamean-flameeffect,whilethesecond group(from

λ

2 to

λ

5)corresponds toa symmetry-breakingsplittingeffect,asexhaustivelyexplainedby[3].

3. Developmentofsurrogatemodels. We develop algebraic surrogate models forthe growth rateas a function ofthe activevariables,WT kp,k

=

1

,

...,

Q ,byaleast-squaremethod

ω

iA S I

(

p

)

=

α

0

+

Q

j=1

α

jWTjp





Linear

+

Q

j=1 Q

k=j

α

jk

(

WTjp

)(

WkTp

)

+

Q

j=1 Q

k=j Q

l=k

α

jkl

(

WTjp

)(

WkTp

)(

WTlp

)





Quadratic and Cubic

.

(10)

The function

ω

i

(

p

)

A S I is also knownas the response surface andneeds MA S I Monte Carlosamples forleast-square

fitting, where MA S I isgreater thanthe numberofregressioncoefficients, N

reg.Here,we comparealinear regression

(9)
(10)

Fig. 7. 50,000MonteCarloexperimentsobtainedbyevaluatingthecubicleast-squaresurrogatemodelsbyASIwithQ=5 activevariables.Resultsfrom FD-based(firstrow);1st-orderAD-based(secondrow)and2nd-orderAD-based(thirdrow)surrogatemodels.CaseAisshownontheleftandCaseCon theright.Thestraightlineisthecorrectsolution,thehigherthescattering,thelargertheerror.

Thirdly,we discussthe complexity andaccuracyofthe surrogate models.Thesealgebraicmodels are computationally cheapprovidingthatthenumberofregressioncoefficientsissmall.Thisnumberisexactlygivenby

Nreg

=

1

+

Q

+ φ



2Q

+

3 2Q

(

Q

1

)

+

1 6Q

(

Q

1

)(

Q

2

)



,

(12)

where

φ

=

0 in linear regression and

φ

=

1 in cubic regression. The last column of Table 3 reports Nreg for the four

surrogatemodelsdeveloped.Ontheonehand,linearregressionischeapbecauseitrequiresonlyNreg

=

6 butthepredicted

risk factors andcoefficientsof determinationare unsatisfactory.This doesnot appreciablyimprove whenall the Q

=

38 (Nreg

=

39)variables areretained.Onthe otherhand,a cubicregressionisneededtoobtain goodpredictionsofthe risk

factor.Retainingallthevariables, Q

=

38,needs Nreg

=

10

,

660,whichmakes thedevelopmentofsuchasurrogate model

computationallytime-consuming.However,retainingonly Q

=

5 activevariablesrequiresthecalculationofonlyNreg

=

56,

whichsignificantlydecreasesthecomplexityoftheoriginalMonteCarloproblemkeepinghighaccuracyontheriskfactors. Insummary,thecubicregressionmodel4 basedonthefirstfiveactivevariablesprovidesanexcellentcompromisebetween computationalcostandaccuracy,alsowhenthegradientsareobtainedbytheadjointmethod.

Finally,toevaluatehowrobustthecalculationoftheriskfactoris,werun16setsofM

=

50

,

000 MonteCarlosimulations andcalculatethemeanandstandarddeviationsoftheresults,asshowninFig. 8forthecubicsurrogatemodelwithQ

=

5. Repeating thisprocedure severaltimes provides an estimation ofthe confidence interval ofthe risk factor. As shownin

Table 3, the first-adjoint method is unsatisfactorily accurate in the weakly coupled regime (RF

=

44

.

5% compared with RF

=

35

.

1% byMC)butinthestronglycoupledregime theestimationismore accurate(RF

=

46

.

2% comparedwithRF

=

43

.

1% byMC).However, Fig. 8 revealsthat the latterestimation is not robust becausethe interval of confidenceby the first-orderadjoint methodis

±

3.56% (paneld). Nevertheless,usingthe second-orderadjoint method(panelf) provides a reliableriskfactorbecausethemeanvalueRF

=

43

.

3% isinagreementwithFD(panelb)andthestandarddeviationissmall,

±

0.41%.Thisanalysisindicatesthat combininga second-orderadjointmethodwiththeASImethodtocompute surrogate modelsisarobustandaccuratemethodtopredictstabilitymarginsofannularcombustors.

4 QuadraticmodelsarenotconsideredherebecauseBauerheimetal.[3]showedthatmodeling thecubictermsappreciablyimprovestheaccuracyof

(11)
(12)

eigenproblemssolved isreducedbya factorequaltothenumberofMonteCarlosamplesneededto calculatethe covari-ance matrix,which, inthisstudyis 1,140. The surrogatemodel obtainedby cubicregression isfound to be an excellent compromisebetweencomputationalcostandnumericalaccuracy.

Thefirst-orderadjointframeworkisareliabletoolforuncertaintyquantificationaslongastherateofchangeof eigen-valueswithparameters is approximatelylineararound the operatingpoint inquestion and, when it isnot, thestandard deviationsofthesystem’sparametersarenot toolarge.Inthesescenarios, thesecond-orderadjointmethodprovedmore accurateandversatile.Theadjointframework isapromisingmethodfordesign toobtainquickaccurateestimatesofrisk factorsatverycheapcomputationalcost.

Acknowledgements

Theauthorsare gratefultothe2014CenterforTurbulenceResearchSummerProgram(StanfordUniversity)wherethe ideas ofthis work were born. L.M. andM.P.J acknowledge the European Research Council – Project ALORS 2590620 for financialsupport. L.M.gratefullyacknowledgesthefinancial supportreceived fromthe RoyalAcademyofEngineering Re-search FellowshipsScheme.L.M.thanksProf. WolfgangPolifke, Dr.Camilo Silva,Prof. JonasMoeck andGeorgMensah for fruitfuldiscussionsandinterestshowninthisstudy.

References

[1]F.E.C.Culick,Unsteadymotionsincombustionchambersforpropulsionsystems,RTOAGARDographAG-AVT-039,NorthAtlanticTreatyOrganization, 2006.

[2] T.C.Lieuwen, V.Yang,Combustioninstabilitiesingasturbineengines:operationalexperience,fundamentalmechanisms, andmodeling,American InstituteofAeronauticsandAstronautics,Inc.,2005,http://www.lavoisier.fr/livre/notice.asp?id=RAXW2KALXX6OWV.

[3] M.Bauerheim,A.Ndiaye,P.Constantine,S.Moreau,F.Nicoud,Symmetrybreakingofazimuthalthermoacousticmodes:theUQperspective,J.Fluid Mech.789(2016)534–566,http://dx.doi.org/10.1017/jfm.2015.730.

[4]G.Hagen,A.Banaszuk,Uncertaintypropagationinareducedorderthermo-acousticmodel,in:ProceedingsoftheIEEEConferenceonDecisionand Control,2004,pp. 2250–2255.

[5]M. Bauerheim,A.Ndiaye,P.Constantine,G.Iaccarino,S.Moreau,F.Nicoud,Uncertaintyquantification ofthermo-acoustic instabilitiesinannular combustors,in:CenterforTurbulenceResearch,SummerProgram,2014,pp. 209–218.

[6]A.Ndiaye,M.Bauerheim,F.Nicoud,Uncertaintyquantificationofthermoacousticinstabilitiesinaswirledstabilizedcombustor,in:ASMETurboExpo, GT2015-44133,2015.

[7] F.Nicoud,L.Benoit,C.Sensiau,T.Poinsot,Acousticmodesincombustorswithcompleximpedancesandmultidimensionalactiveflames,AIAAJ.45 (2) (2007)426–441,http://dx.doi.org/10.2514/1.24933,http://arc.aiaa.org/doi/abs/10.2514/1.24933.

[8]S. Evesque,W.Polifke,Low-orderacousticmodelling for annularcombustors:validationandinclusion ofmodalcoupling, in:ASMETurboExpo GT-2002-30064,2002.

[9] A.P.Dowling,Thecalculationofthermoacousticoscillations,J.SoundVib.180 (4)(1995)557–581,http://www.sciencedirect.com/science/article/pii/ S0022460X85701009.

[10] J.O’Connor,V.Acharya,T.Lieuwen,Transversecombustioninstabilities:acoustic,fluidmechanic,andflameprocesses,Prog.EnergyCombust.Sci.49 (2015)1–39,http://dx.doi.org/10.1016/j.pecs.2015.01.001.

[11]T.Chantrasmi,G.Iaccarino,ForwardandbackwarduncertaintypropagationfordiscontinuoussystemresponseusingthePadé–Legendremethod,Int. J. Uncertain.Quantificat.2 (2)(2012)125–143.

[12] M. Bauerheim, J.-F. Parmentier, P. Salas, F. Nicoud, T. Poinsot, An analytical model for azimuthal thermoacoustic modes in an annu-lar chamber fed by an annular plenum, Combust. Flame 161 (5) (2014) 1374–1389, http://dx.doi.org/10.1016/j.combustflame.2013.11.014, http://linkinghub.elsevier.com/retrieve/pii/S0010218013004276.

[13]P.G.Constantine,E.Dow,Q.Wang,Activesubspacemethodsintheoryandpractice:applicationstokrigingsurfaces,SIAMJ.Sci.Comput.36 (4)(2014) 1500–1524,arXiv:1304.2070v2.

[14]T.Lukaczyk,F.Palacios,J.J.Alonso,P.G.Constantine,Activesubspacesforshapeoptimization,in:10thAIAAMultidisciplinaryDesignOptimization SpecialistConference,2014,pp. 1–18.

[15]L.Magri,Adjointmethodsinthermo-acousticandcombustioninstability,Ph.D.thesis,UniversityofCambridge,2015.

[16]M.P.Juniper,L.Magri,M.Bauerheim,F.Nicoud,Sensitivityanalysisofthermo-acousticeigenproblemswithadjointmethods,in:CenterforTurbulence Research,SummerProgram,2014,pp. 189–198.

[17] L.Magri,M.Bauerheim,M.P.Juniper,Stabilityanalysisofthermo-acousticnonlineareigenproblemsinannularcombustors.PartI.Sensitivity,J.Comput. Phys.325(2016)395–410,http://dx.doi.org/10.1016/j.jcp.2016.07.032,http://www.sciencedirect.com/science/article/pii/S0021999116303278. [18]L.Crocco,S.-I.Cheng,Theoryofcombustioninstabilityinliquidpropellantrocketmotors,Tech.Rep.,January1956.

[19] N.Noiray,M.Bothien,B.Schuermans,Investigationofazimuthalstagingconceptsinannulargasturbines,Combust.TheoryModel.15 (5)(2011) 585–606,http://dx.doi.org/10.1080/13647830.2011.552636.

[20]G.Campa,S.M.Camporeale,A.Guaus,J.Favier,M.Bargiacchi,A.Bottaro,E.Cosatto,M.Mori,Aquantitativecomparisonbetweenalowordermodel anda3DFEMcodeforthestudyofthermoacousticcombustioninstabilities,in:ASMETurboExpoGT2011-45969,2011,pp. 859–869.

[21] C.F.Silva,L.Magri,T.Runte,W.Polifke,UncertaintyquantificationofgrowthratesofthermoacousticinstabilitybyanadjointHelmholtzsolver,ASME, J. Eng.GasTurbinesPower139 (1)(2016)011901,http://dx.doi.org/10.1115/1.4034203.

Figure

Fig. 5. Part of the spectrum of the covariance matrix, C. The dominant eigenvectors provide the Q directions in the parameter space along which the growth rate varies the most
Fig. 7. 50,000 Monte Carlo experiments obtained by evaluating the cubic least-square surrogate models by ASI with Q = 5 active variables

Références

Documents relatifs

To test directly whether cellular differentiation state, rather than mTOR activation state, controlled the cytokine profile of the colon, we used the Notch inhibitor DBZ to drive

Hydrogeological dynamic variability in the Lomme Karst System (Belgium) as evidenced by tracer tests results (KARAG Project).. Poulain, Amael; Rochez, Gaëtan;

Partially-intrusive Monte-Carlo methods to propagate uncertainty: ‣ By using sensitivity information and multi-level methods with polynomial chaos. expansion we demonstrate

A nonlinear stability analysis relying on the Flame Describing Function (FDF) is coupled to a numerical Helmholtz solver (AVSP) to analyze the different limit cycles observed in

With respect to the representation of the uncertainties affecting the parameters of the degradation process (epistemic uncertainty), possibilistic distributions seem

Uncertainty quantification using cloud computing for Monte Carlo parallelization.. Americo Cunha Jr, Rubens Sampaio, Rafael Nasser, Hélio Lopes,

The identification of modal parameters damping ratio (ζ) and natural frequency (ω n ) uses the underlying linear dynamics of the beam, obtained when input has low level of