• Aucun résultat trouvé

Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art

N/A
N/A
Protected

Academic year: 2021

Partager "Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins to Today’s State of the Art"

Copied!
79
0
0

Texte intégral

(1)

Titre:

Title

:

Single-Chamber Solid Oxide Fuel Cell Technology—From Its Origins

to Today’s State of the Art

Auteurs:

Authors

: Melanie Kuhn et Teko Napporn

Date: 2010

Type:

Article de revue / Journal article

Référence:

Citation

:

Kuhn, M. & Napporn, T. (2010). Single-Chamber Solid Oxide Fuel Cell

Technology—From Its Origins to Today’s State of the Art. Energies, 3(1), p.

57-134. doi:10.3390/en3010057

Document en libre accès dans PolyPublie

Open Access document in PolyPublie

URL de PolyPublie:

PolyPublie URL: https://publications.polymtl.ca/3398/

Version: Version officielle de l'éditeur / Published version Révisé par les pairs / Refereed Conditions d’utilisation:

Terms of Use: CC BY

Document publié chez l’éditeur officiel

Document issued by the official publisher

Titre de la revue:

Journal Title: Energies (vol. 3, no 1) Maison d’édition:

Publisher: MDPI URL officiel:

Official URL: https://doi.org/10.3390/en3010057 Mention légale:

Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal

This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

(2)

energies

ISSN 1996-1073

Review

Single-Chamber Solid Oxide Fuel Cell Technology—From Its

Origins to Today’s State of the Art

Melanie Kuhn 1,†,*, Teko W. Napporn 2,*

Received: 3 November 2009 / Accepted: 31 December 2009 / Published: 15 January 2010

Abstract:

Keywords:

(3)

2. Single-Chamber Solid Oxide Fuel Cells

(4)

Figure 1.

Air

Fuel

(a)

Cathode Anode

Fuel + air

(b)

Cathode Anode Electrolyte Electrolyte

(5)

Table 1. Advantages Challenges x x x x x x x x x x x x x x etc.

(6)

3. Origins of SC-SOFCs

3.1. Early works on single-chamber fuel cells

í

et al.

et al.

(7)

3.2. Dyer’s room-temperature single-chamber fuel cell í J Figure 2. §

H

2

+ O

2

substrate

dense Pt electrode

gas-permeable boehmite membrane

porous Pt electrode

(8)

etc.

3.3. Development of SC-SOFCs

(9)

4. Single-Chamber Operation 4.1. Background on SOFCs i.e. íÆ í íÆ í Æ ǻG E n F í nF G E ǻ ¸¸ ¸ ¹ · ¨¨ ¨ © §  p p p F RT E E / R R = í í T F E p í í ¸ ¸ ¹ · ¨ ¨ © § p p nF RT E p

(10)

H

H

H

H

H

H H G ǻ ǻ

H

ǻG ǻH H G nFE E E ǻ 

H

Ecell Er H H I I

H

H

I I M n F m I ˜ ˜ m F n M 4.2. Working principles of SC-SOFCs

(11)

Æ Æ íÆ í Æ Æ Æ R

(12)

Figure 3. et al.

e

-e

-CH

4

+ O

2

CO

2

H

2

O

CO

H

2

O

2

O

2-Cathode

Anode

Electrolyte

(13)

Æ Æ Æ Æ Æ Æ R ” R R R R 4.3. Fuel-air mixtures et al.

(14)

et al.

et al.

R •

4.4. Electrode selectivity and catalytic activity

(15)

G

G

et al.

et al.

G

(16)

et al. ǻ ǻ H m H m  H m ǻH m ǻH ǻH P P R ǻH et al. R R et al.

(17)

íÆ í íÆ í 4.6. Heat production et al. et al. Ň Ň et al.

(18)

R

4.7. Testing chamber design

(19)

Ň Ň

4.9. Flammability and explosion limits of methane-air mixtures

ǻ $ $  T  H . LFL LFL

(20)

ǻ $ $  T  H . UFL UFL LFL UFL LFL UFL ǻH T LFL UFL ǻH LFL UFL Figure 4. R R R R R LFL UFL R R / LFL LFL R  / UFL UFL R 

(21)

R R R ”R ” Figure 5. R R R 5. Development of SC-SOFCs

(22)

Figure 6.

5.1. Planar electrolyte-supported SC-SOFCs

et al. et al. R í et al. Ň Ň Ň ĮŇ R

(a)

(b)

(c)

(d)

Cathode

Anode

Electrolyte

Cathode

Anode

Cathode

Anode

Electrolyte

Electrolyte

Electrolyte

Cathode

Anode

(23)

Į í Į Ň ĮŇ í í Ň ĮŇ í í í í R í R í í et al. R Ň Ň

(24)

Ň Ň Ň Ň Ň D Ň R Ň Ň í Ň ĮŇ í Ň Ň R í et al. et al. R í et al. et al. Ň Ň í Ň Ň í et al. et al. et al. et al. í í Anode materials

(25)

í

R

D

(26)

R

Electrolyte materials

(27)

í í í í D et al. et al. Ň Ň í í R et al. P P í í

(28)

et al.

í R

í

(29)

et al. et al. í Ň Ň et al. R

(30)

Energies 2010 3 Table 2. Reference Year Electrolyte Electrolyte thickness (m m) Anode Cathode Gas mixture Tfurnace ( °C) OCV (V) Pma x (mW·cm −2 ) R R Į Į R R R R R D R R

(31)

Energies 2010 3 Table 2. Cont. Reference Year Electrolyte Electrolyte thickness (m m) Anode Cathode Gas mixture Tfurnace ( °C) OCV (V) Pma x (mW·cm −2 ) R R R R R R R R R

(32)

Energies 2010 3 Table 2. Cont. Reference Year Electrolyte Electrolyte thickness (m m) Anode Cathode Gas mixture Tfurnace ( °C) OCV (V) Pma x (mW·cm −2 R R R R R R R R R G R R

(33)

Energies 2010 3 Table 2. Cont. Reference Year Electrolyte Electrolyte thickness (m m) Anode Cathode Gas mixture Tfurnace ( °C) OCV (V) Pma x (mW·cm −2 ) R R T R R R R R G R

(34)

5.2. Planar anode-supported SC-SOFCs et al. et al. Anode materials et al. í Ň Ň R

(35)

et al. et al. Cathode materials í P R

(36)

í í R et al. í í í í

(37)

Electrolyte materials et al. D Ň Ň í etc. Ň Ň R et al. Ň Ň R R Û R R

(38)

í R R Ň Ň í í et al. P í P í R í

(39)

et al. í et al. et al. Ň Ň In-situ In-situ

(40)

Ex-situ í Ex-situ et al. in-situ in-situ ex- in-situ Ň Ň R R R Ň Ň í at al R í et al. Ň Ň

(41)

et al.

5.3. Fully porous SC-SOFCs

(42)

Energies 2010 3 Table 3. Reference Year Electrolyte Electrolyte thickness (P m ) Anode Cathode Gas mixture Tfurnace (°C ) OCV (V ) (mW· R R R R Rmi Rmi Rmi T R R mi R R R R R

(43)

Energies 2010 3 Table 3. Cont. R Rmi Rmi R R Rmi Rmi R R R R R

(44)

Figure 7. et al. Ň Ň í í

(a)

(b)

Cathode

Anode

Electrolyte

Fuel-air mixture

Cathode

Anode

Electrolyte

Fuel-air

mixture

(45)

í et al. et al. et al. P í R í í

(46)

Figure 8. P et al.

Anode

Electrolyte

Cathode

(47)

P í et al. Į R Figure 9. d w Į P í

CH

4

+ O

2

CO

2

H

2

O

O

2

O

2

e

-

e

-CO

H

2

d

w

w

Cathode Anode Electrolyte

(48)

w d P et al. Į R í í w d w d P

(49)

P P P í í P P

(50)

et al. R §

R R

R R

(51)

R R R R R P et al.

(52)

P P P P P et al. P P P P P P P P P P P

(53)

P P P et al. P í P R í P í í R

(54)

P í et al. í et al. et al.

(55)

5.5. Micro-tubular SC-SOFCs and other cell configurations et al. et al. R í et al.

(56)

Energies 2010 3 111 Table 4. Ref. Year Fabrication technique Gap size d (mm) Electrode width w (mm) Electrolyte Anode Cathode Tfurnace ( °C) Gas mixture OCV (V) Pma x or (for smallest P Į R Į R R R R R R R R R

(57)

Energies 2010 3 Table 4. Cont. Ref. Year Fabrication technique Gap size d (mm) Electrode width w (mm) Electrolyte Anode Cathode Tfurnace ( °C) Gas mixture OCV (V) Pma x or Ima (for smallest d and R R R í R R R

(58)

Energies 2010 3 Table 5. Ref. Year Fabrication technique Gap size d (mm) Electrode width w (mm) Electrolyte Anode Cathode Tfurnace ( °C) Gas mixture OCV (V) (mW·cm R R R R R R R R R R

(59)

6. Modeling of SC-SOFCs

6.1. Simulation of planar anode-supported SC-SOFCs et al. Ň Ň R R R P et al.

(60)

6.2. Numerical study of reaction mechanisms in SC-SOFCs et al.

6.3. Efficiency calculations for SC-SOFCs et al.

(61)

6.4. Performance modeling of planar electrolyte-supported SC-SOFCs et al.

et al.

6.5. Thermodynamic considerations of SC-SOFCs

R

Figure 10.

(62)

et al. R R Figure 11. R R R R R R R

(63)

6.6. Performance studies of SC-SOFCs with coplanar electrodes et al. P P P et al. Û E I P P P P P í 7. Applications

(64)

7.1. Microsystems and portable power applications

et al.

(65)

7.2. Energy harvesting applications

7.3. Sensor applications

et al.

et al.

(66)

8. Summary

(67)

References and Notes

J. Power Sources 2002 106

Dianyuan Jishu 2003 27

Dianyuan Jishu 2006 30

Solid State Ionics 2007 177

Electrochem. Solid-State Lett. 1999 2

Solid State Ionics 1998 113-115

Proceedings of ECS Transactions - 4th International Symposium on Solid Oxide Fuel Cells Key Eng. Mater.

2005 277-279

Solid State Ionics

2002 149

Solid State Ionics

2005 176

J. Fuel Cell Sci. Technol. 2006 3

Fuel Cells 2005 4

J. Power Sources 2008 175

Proceedings of the 192nd Meeting of the Electrochemical Society

Fuel Cells: Modern Processes For The Electrochemical Production Of Energy

(68)

J. Micromech. Microeng.2007 17

ECS Trans. 2006 1

Proceedings of The Electrochemical Society 208th ECS Meeting, Los Angeles J. Power Sources 2001 96

J. Power Sources 2004 126

Environ. Sci. Technol. 2006 40

Nature2005 435

Electrochem. Solid-State Lett. 2004 7

J. Electrochem. Soc. 2004 151 J. Electrochem. Soc. 2004 151 J. Ceram. Soc. Jpn. 2004 112 J. Electroceram. 2006 16 Proceedings of Advance Energy Sources and Conversion Techniques

Proceedings of the 15th Power Sources Conference

Acad. Sci. - C. R. 1961

252

Philips Res. Rep. 1965 20

Science 1990 247

(69)

Nature1990 345

Nature1990 343

Nature1990 346

Chem. Lett. 1993 7

Science and Technology of Ceramic Fuel Cells J. Electrochem. Soc. 2006 153

Fuel Cells and Their Applications

Science2000 288

Proceedings of ECS Transactions: 8th International Symposium on Solid Oxide Fuel Cells

Solid State Ionics 2004 175

J. Electrochem. Soc. 2000 147 J. Electrochem. Soc. 2007 154 Appl. Catal., A 2007 323 et al. Nature1990 344 J. Catal. 1994 146 J. Catal. 1991 132 Brennstoff-Chemie1955 36 J. Catal. 2004 223 Catal. Today 2004 91 Catal. Lett. 2003 86 Catal. Surv. Jpn. 2001 4 Catal. Lett. 1993 22

(70)

Electrochem. Solid-State Lett. 2002 5

J. Electrochem. Soc. 1995 142

Solid State Ionics 2000 127

Solid State Ionics 1995 82

Solid State Ionics 2006 177

Int. J. Hydrogen Energy 2009 34

Int. J. Hydrogen Energy 2009 34

Mater. Sci. Technol. 2006 1

Mater. Sci. Technol. 2007 2

Proceedings of the Electrochemical Society– Solid oxide fuel cells IX

Proceedings of the 9th CIMTEC-World Forum on New Materials, Symposium VII - Innovative Materials in Advanced Energy Technologies

ECS Trans.2007 7

Appl. Catal., A 2004 262

J. Electrochem. Soc.2002 149

Electrochem. Solid-State Lett. 2009 12

Solid State Ionics 2000 135

Electrochem. Commun. 2009 11

J. Korean Ceram. Soc. 2008 45

Catal. Commun. 2009 10

Catal. Today 2000

55

(71)

J. Electrochem. Soc. 2007 154

J. Power Sources 2008 183

J. Power Sources 2009 193

Electrochem. Solid-State Lett. 2007 10

J. Electrochem. Soc. 2001 148

J. Power Sources 2009 186

J. Power Sources 2009

J. Power Sources 2006 153

Electrochem. Solid-State Lett. 2004 7

Journal of the European Ceramic Society 2005 25

Proceedings of the 5th International Symposium on Ionic and Mixed Conducting Ceramics

Proceedings of the 6th European Solid Oxide Fuel Cell Forum Solid State Ionics 2005 176

Int. J. Hydrogen Energy 2009 34

J. Power Sources 2007 171

J. Electrochem. Soc.

2008 155

Understanding explosions Solid State Ionics 1995 81

(72)

Nippon Kagaku Kaishi 1994 7

Chem. Lett. 1994 3

Seramikkusu 1995 30

Ionics 1998 4

Denki kagaku oyobi kogyo butsuri kagaku 1996 64

J. Electrochem. Soc. 1997 144

J. Electrochem. Soc. 1999 146

Proceedings of the 6th FCDIC Fuel Cell Symposium

J. Electrochem. Soc. 2000 147

Solid State Ionics 2004 175

ECS Trans. 2007 7

Int. J. Hydrogen Energy

2008 33

ECS Trans. 2007 7

Proceedings of 207th Meeting of the Electrochemical Society J. Mater. Sci. 2001 36

J. Phys. Chem. Solids2008 69

Ceram. Eng. Sci. Proc. 2003 24

Ceram. Eng. Sci. Proc. 2003 24

Ceram. Trans. 2005 169

J. Electrochem. Soc. 2004 151

(73)

Proceedings of Electrochemical Society, Solid Oxide Fuel Cells IX: Materials

ECS Trans. 2006 1

J. Electrochem. Soc. 2007 154

J. Power Sources 2009 193

J. Fuel Cell Sci. Technol. 2006 3

J. Power Sources 2009

194

Seramikkusu 2001 36

Electrochem. Solid-State Lett. 2005 8

Ceram. Eng. Sci. Proc.

2006 27

Proceedings of the 7th European SOFC Forum Electrochem. Solid-State Lett. 2004 7

Electrochem. Solid-State Lett. 2008

11

Fuel Cells 2008 8

Chin. J. Catal. 2006 27

J. Power Sources 2006 162

Electrochem. Solid-State Lett.

2005 8

(74)

J. Micromech. Microeng. 2008 18 J. Electrochem. Soc. 2007 154 J. Power Sources 2009 194 Proceedings of the 1st European Fuel Cell Technology and Applications Conference

J. Power Sources 2007 169 Nature2004 431 J. Power Sources 2009 191 J. Power Sources 2007 167 Electrochim. Acta 2009 54

Proceedings of the 5th International Energy Conversion Engineering Conference Proceedings of the ASME International Mechanical Engineering Congress and Exposition

Solid State Ionics 2006 177

J. Power Sources 2008 179

J. Electrochem. Soc. 2006 153

J. Fuel Cell Sci. Technol. 2009 6

J. Power Sources 2009 191

J. Electrochem. Soc. 2009 156

(75)

IEEJ Trans. Electr. Electron. Eng.

2008 3

Proceedings of the 207th Meeting of the Electrochemical Society

Solid State Ionics 2004 174

Solid State Ionics1996 91

J. Electrochem. Soc. 2007 154

J. Power Sources 2008 177

J. Power Sources 2007 171

Proceedings of Electrochemical Society - SOFC IX, J. Electroceram. 2006 17

J. Power Sources 2006 154

Proceedings of the 7th European SOFC Forum

J. Electroceram. 2006 17

(76)

Electrochem. Solid-State Lett. 2006 9

ECS Trans. 2007 7

Microelectron. Int. 2008

25

Solid State Ionics 2009

submitted

J. Am. Ceram. Soc. 2004 87

IEEJ Trans. Electr. Electron. Eng. 2008 3

J. Electrochem. Soc. 2009

156

Solid State Ionics 2006 177

Sens. Actuators, B 2006 118

J. Am. Ceram. Soc. 2005 88

Proceedings of Electrochemical Society - SOFC IX

Mater. Res. Soc. Symp. Proc. 2007 972

Mater. Res. Soc. Symp. Proc.2009 1179

(77)

J. Power Sources 1999 79

Fuel cell systems explained J. Power Sources 2006 161

Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute: Western States, Central States, Eastern States

Proceedings of Electrochemical Society - SOFC IX J. Electrochem. Soc. 2007 154

Proceedings of the 8th European SOFC Forum J. Electrochem. Soc. 2008 155

ECS Trans. 2007 7

Proceedings of Electrochemical Society - SOFC VII

Electrochem.2001 69

Chem. World 2005 2

(78)
(79)

Figure

Figure 1. Air Fuel (a) CathodeAnode Fuel + air (b) CathodeAnodeElectrolyteElectrolyte
Table 1.  Advantages  Challenges  x x x x x x x x x x xxxx etc.
Figure 3.  et al. e -e-CH4+ O2CO2H2OCOH2O2O2-CathodeAnodeElectrolyte
Figure 7.  et al. Ň Ň í í(a)(b)CathodeAnodeElectrolyteFuel-air mixtureCathodeAnodeElectrolyteFuel-airmixture
+2

Références

Documents relatifs

[r]

If a candidate bene…ts from an absolute advantage, our results are close to Ansolabehere and Snyder (2000); when an equilibrium exists, a candidate with an absolute advantage

La carte des UAP est un moyen de connaissances "géo-agronomiques" d’un territoire donné : type et dé- limitation d’unités spatiales agronomiques, analyse des

Pour répondre aux attentes de préservation de la biodiversité, de valorisation des atouts de la caatinga, et de ce fait protéger les surfaces encore disponibles de caatinga, l’en-

رزﺎﻣ مﯾﻠﻗإ ﻲﻫ ﺔﯾﻓارﻐﺟ مﯾﻟﺎﻗأ ﺔﺛﻼﺛ ﻰﻟإ ﺔﯾﻠﻘﺻ مﯾﺳﻘﺗ نﻛﻣﯾ و (Zal di Mazara) سطوﻧ مﯾﻠﻗإ و (Zal di Noto) شﻧﻣد مﯾﻠﻗإ و (Zal di Democh) اذ مﯾﺳﻘﺗﻟا اذﻫ نﺎﻛ

Also at Department of Physics, California State University, Sacramento; United States of

Alikhanyan National Science Laboratory (Yerevan Physics In- stitute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy

Considerando-se os baixos níveis de contaminação utilizados, nossos dados não são surpreendentes e corroboram os estudos que utiliza- ram rações contaminadas com 10,0mg FB 1