• Aucun résultat trouvé

Stabilization of a premixed laminar flame on a rotating cylinder

N/A
N/A
Protected

Academic year: 2021

Partager "Stabilization of a premixed laminar flame on a rotating cylinder"

Copied!
10
0
0

Texte intégral

(1)

Any correspondence concerning this service should be sent to the repository administrator:

staff-oatao@listes-diff.inp-toulouse.fr

To link to this article : DOI:

10.1016/j.proci.2016.06.138

URL : http://dx.doi.org/10.1016/j.proci.2016.06.138

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID: 17717

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible.

To cite this version: Mejia, Daniel and Bauerheim, Michaël and Xavier,

Pradip and Ferret, Bernard and Selle, Laurent and Poinsot, Thierry

Stabilization of a premixed laminar flame on a rotating cylinder. (2017)

Proceedings of the Combustion Institute, vol. 36 (n° 1). pp. 1447-1455.

ISSN 1540-7489

(2)

Stabilization

of

a

premixed

laminar

flame

on

a

rotating

cylinder

D. Mejia

a,∗

, M. Bauerheim

b

, P. Xavier

a

, B. Ferret

a

, L. Selle

a,c

,

T. Poinsot

a,c

aUPS; IMFT (Institut de Mécanique des Fluides de Toulouse), Université de Toulouse; INPT, Allée Camille Soula,

F-31400 Toulouse, France

bLMFA, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69130 Ecully, France cCNRS, IMFT, Av. C. Soula, F-31400 Toulouse, France

Abstract

Thispaperinvestigatesthestabilizationofalaminarpremixedflameonarotatingcylinder.Experimentsand DNSarecombinedtoanalyzetheeffectsofrotationrateontheflowtopologyandflamestabilization.Both experimentandsimulationreveal thattheusualstabilizationpattern(twosymmetricflamerootsonboth sidesofthecylinder)isstronglyaffectedbyrotation.Theflamerootspositionontheupperandlowersides ofthecylinderaremodifiedwithincreasingrotationspeeds.Oneofthetwoflamerootsisquenchedovera longregion.Thedistancebetweentheflamerootsandtheflameholderchangeswiththerotationspeeduntil abifurcationtakesplace:atacriticalrotationspeed,theflamerootsmerge,andtheflamestabilizesupstream ofthecylinder.DNSresultsareusedtoexplaintheflametopologiesobservedexperimentally.

Keywords: Laminarflame;Experimentalcombustion;DNS;Rotatingcylinder

1. Introduction

Flowdynamicsbehindrotatingcylinders[1,2]is a classical topic in non reacting flows, where rotation can promote or mitigate hydrodynamic instabilities[3,4].Flamesstabilizedbehindrotating cylinders (FSBRC) havebeenmuchless studied. Nevertheless,FSBRCconfigurations(Fig.1)have practicalandtheoreticalinterests:(1)Newengine

Correspondingauthor.Fax:+33534322991.

E-mail address: dmejia@imft.fr(D.Mejia).

concepts, such as wave rotors [5] or constant-volume combustion chambers [6], are currently developed to increase combustion efficiency and reducepollutantemissionsofmoderngasturbines. Theyinvolverotatingvalves,whichintermittently open/close the combustion chamber inlet and outlet.Thesesituationsmayleadtoflameswhich anchor on these valves, and are pulled by them intothefeedingchamber,leadingtoflashback.

(2)Fromafundamentalpointofview,FSBRC constituteaconfigurationwhichchallengesour un-derstanding of flame/wall interaction and flame stabilization.In aFSBRC (cf.Fig. 1),the flame

(3)

Upper Flame

Lower Flame

Fig.1.SketchoftheIntrigsconfigurationwiththeparameterscontrollingtheflowtopology.

rootattheuppersideofthecylinderhasto stabi-lizeinaboundarylayerflowwhichpushesit down-stream,whiletheflamerootlocatedonthelower sideispulledupstreambythecylindermovement. Theflameroots(thepointswheretheflameanchors nearthecylinder)controlnotonlythemeanflame position,butalsoitsdynamicsasshownrecently forlaminar[7–9]andturbulentflames[10].

(3)Introducingrotationintheconfigurationof

Fig.1hasanothereffect:itbreaksthesymmetryof theflow.Symmetrybreakingcontrolsthedynamics ofmanynon-reactingflows[11]aswellas combus-tioninstabilities [12],sothatrotatingflame hold-ersmaybeusefulforcombustioninstabilities con-trol.TodescribeFSBRCs,itisusefultorecall re-sultsobtainedfornon-reactingcaseswheretheflow behindarotatingcylinderiscontrolledby(1)the ReynoldsnumberRe=ubd/ν,(2)therotationrate

α =ωd/(2ub),(3)theblockageratioθ =d/hand

(4)theeccentricity γ =(ych/2)/(0.5(hd ))=

(2yc/h−1)/(1−θ).Forafixedunconfined

cylin-derat zeroeccentricity(ω=0andγ =0),when acriticalReynoldsnumber,Rec≈40,isexceeded, vorticesareshedbehindthecylinder.Fora con-fined cylinder, the critical Reynolds number de-pendsontheblockageratio[13].However, when thecylinderis rotating,theVon Karmannstreet remainsonlyatlowrotationrates(α <2),andis inhibitedatlargerrotationrates(2<α <4).For thepresentstudy,onlyflame-holderslocatedatthe centerofastraightchannelwillbeconsidered,i.e.

γ =0.

Thesituation becomesmorecomplexin reac-tiveconditionssincetheflamecancouplewiththe vorticalflow.ChaandSohrab[14]studiedsucha casewheretherotationalaxisisnormaltotheflame front.Theyshowedthatrotationenhancesthe pre-mixedflamestabilization(blow-off andflashback limits).However,noreactivecasehasbeenstudied wheretherotationaxisisalignedwiththeflame.

Thispaperdescribesanexperimental investiga-tion of the stabilization of a 2D lean premixed methane–airflameonarotatingcylinderfor0<

α <5,atmoderateblockageratio(θ =0.235)and withouteccentricity(γ =0).Two-dimensional Di-rect NumericalSimulations (DNS)are also per-formedtoanalyzetheflametopologyand quench-ing,dependingontherotationrateα.Forafixed cylinder (α =0), a classical stabilization mecha-nism isobserved.Forlowrotationrates(α <4), thesymmetryof theflameisbrokenandtwo dif-ferentbehaviorsareobservedforthetwobranches of theflame.Atlargerotationrates(α >4),the flamestabilizesupstreamof thecylinder.The ge-ometryof theexperimentalbenchispresentedin

Section 2, and the numerical setup for DNS in

Section3,followed bytheexperimentalresultsin

Section 4.The stabilization mechanisms are pre-sentedanddiscussedinSection5.

2. Configuration

TheexperimentalbenchispresentedinFig.2:a leanpremixedlaminarmethane–airflameis stabi-lizedinthewakeofad=8mmstainlesssteel ro-tatingcylinder.Thecylinderhasbeengrindedand therugosityislessthan1µm.Theburner hasa constantcrosssectionofh=34mmbyl=94mm. Thereactantsarepremixedinaone-meterlong in-jection tube andequally distributed tosix injec-tors placedatthebottomof theinjection cham-ber.Theflowislaminarizedbyanarrayof small glassballsandtwohoneycombpanelsandpasses through thecooledplenum to ensurea constant fresh-gasestemperature.Finally,itentersthe com-bustionchamberwherethecylinderislocated.The rotatingcylinderisplacedinasealed-bearingcage anddrivenbyabrushlesselectricDCmotor.The enginespeedrangesfrom600to20,000rpm.The combustionchamberhasoneopticalaccessatthe front,andoneoneachlateralsides.Inthisstudy, onlyoneoperatingpointwasconsidered:8 =0.75 andub=1.07m.s−1.Theassociatedlaminarflame

speedandadiabatictemperatureares0

l =0.23m/s

(4)

CH4+Air Injection Chamber Cooled Plenum Combustion Chamber 138 200 158 37 1 mm Glass Balls 3 mm Honey Comb Panels 5 mm Water Cooling 8mm Rotating Cylinder (Flame Holder) Brushless DC Electric Motor Bearing Cage 3 Optical acces (Quartz) 34 Flame

Fig.2. Transversecut(left )andisometricview(right )oftheIntrigsburner.

afixedcylinder(α =0),theflameissteady.Flames areimagedonanintensifiedPCO-Sensicam cam-eraequippedwithaCH∗narrowband-passfilter

andaf/16180mmtelecentriclens[15].The cam-eraaxisisalignedwiththecylindercenterlineaxis (x).

3. Numericalsetup

To analyze experimental results, a DNS was also performed. The compressible code AVBP is used to solve the multi-species Navier–Stokes equations with realistic thermochemistry on un-structured meshes [16]. Numerics are based on atwo-stepTaylor–Galerkinfinite-elementscheme calledTTG4A,whichisthird-orderinspaceand fourth-order in time. A two-step mechanism for methane–air is used containing 6 species, based onthemethodologydescribedin[17],where adi-abatictemperatureandlaminar flamespeedhave beenvalidatedagainstadetailedchemicalscheme. Schmidt andPrandtl numbers areassumed con-stant. The NSCBCapproach [18] is usedto im-poseacousticboundaryconditions[19]atthe in-let(imposedvelocityu=0)andoutletboundary

(imposedpressurewithalengthcorrection,p=0).

Sidewallsaretreatedasno-slipwithaheatflux, ϕw=(TTwside)/Rw, corresponding to an

im-posedwalltemperature,Tside

w =300Kandaheat

resistance,Rw=10−2K.m2/W.Heatlossesarealso

appliedontherotatingcylinder,withthematerial

temperatureobtainedfromtheexperiment:Twcyl=

610K. The rotation isaccounted for by imposing a velocity~u(θ )=αub~eθatthesurfaceofthecylinder.

Thesimulationisperformedina2Dslicethatstarts attheinletoftheplenumandendsatthechamber outlet.Itcontains1.7millioncells,withaminimum cellssizeof100 µmand5cellsintheflamefront.

4. Experimentalresults

First,theglobaleffectofrotationontheflame topologyisstudiedbyusingseveralrotationrates fromα =0to5.Theflameisfirstignitedatα =0. Oncethermalequilibriumisreached,therotation rateisincreasedinsmallsteps.Threedifferentflame topologiescanbe identifiedinFig.3:forafixed cylinder(α =0,Fig.3top)theflameisstationary andsymmetric:thisflameshape isreferredtoas SymmetricStabilizedDownstream(SSD).Forlow rotationrates(α <4,Fig.3,center)theflame stabi-lizesdownstreamoftherotatingcylinder,and ex-periences astrong dissymmetry:the upper flame rootmoves clockwisealong the cylinder, but re-mainscloselyattached.Thelowerflamerootis al-mostquenchedandtheflamestartsproducinga no-ticeablelevelofCH∗emissiononlyfardownstream

ofthecylinder.Thisflametopologyisreferredto asAsymmetricStabilizedDownstream(ASD).For largerrotationrates(α >4,Fig.3bottom),a tran-sitiontakesplaceandtheflame movesupstream of the rotating cylinder: this situation is named

(5)

Fig. 3.The three FSBRC topologies observed experi-mentally:SymmetricStabilizedDownstreamflame(SSD,

top ),Asymmetric StabilizedDownstreamflame (ASD,

center ), and Asymmetric Stabilized Upstream flame (ASU,bottom ).

Fig.4. SketchoftheASDtypeflamewiththeparameters describingtheflametopology.

AsymmetricStabilized Upstream (ASU). In this configuration,theflamerootshavemergedanditis anewstabilizationregimewherethevelocity pro-filesandthevortexgenerationarecompletely dif-ferentfromtheclassicalstabilizationdownstream ofabluff-body.

Thecriticalrotationrateatwhichtheflame tran-sitionsfromASDtoASUiscalledα∗.Testsshow

thatα∗isgovernedbytheratiou

b/s0l.Morethan

100rotationrateshavebeentested,fromα =0to 5,leadingtoflametopologiessimilartoFig.3.In thepresentexperiment,theflametransitionsfrom ASUtoASDinanarrowrange:3.98<α∗<4.15.

When the flame is stabilized downstream, its topologycanbedescribedbythetwoflameroots positions.Inordertostudytheeffectofα,the po-larcoordinatesoftherootsaredefinedinFig.4:β

Fig.5. Flamerootanglesβ(top )anddistancesξ (bot- tom )functionoftherotatingrateα.(——-)upperflame, (---)lowerflame(seeFig.4forangleanddistance def-initions).DNSresultsfromSection5arepresentedas× fortheupperflameand,forthelowerflame.

istheanglebetweenthezaxisandtheflameroot, andξ,thedistancetothecenterofthecylinder.The upperandlowerrootsareidentifiedwithsubscripts 1and2,respectively.Intheexperimentalimages, theflamerootisdefinedasthelocationwherethe gradientoflightintensity(measuredthroughCH∗

emission)ismaximum[9,20,21].Figure5showsthe evolutionsoftherootslocationversusαforthe up-per andlowerflames.Eachcurvecorresponds to themeanvalueoffourdifferenttestsperformedon differentdays.Thecorrespondingerrorbaristhe standard deviationbetween thefourexperiments. SnapshotsoftheflameshapesareshowninFig.6, to be compared with DNS results in Section 5. Regarding theupperflame,ξ1 isalmostconstant

meaningthattheflameisalwaysanchoredtothe cylinder. However, its angle β1, consistently

de-creaseswhenαincreases.Forlowrotationsrates(α <1.5),theflamelocationisunchangedbutξ1then

decreasesrapidly.Forlargerotationrates(α >3.2), theupperflameisactuallyanchoredonthelower sideofthecylinder:theflamerootisdraggedinthe directionofthecylinderrotation.Thelowerflame exhibits a very distinct behavior (Fig.5): its an-choringangleislessaffectedbytherotationwhile itsdistancetothecylindervariesdrastically.ξ2

in-creasesrapidlyuntilamaximumvalueof1.5datα ≈1.3.With a furtherincrease of therotation rate, theflamealmostreattachestothecylinder,before transitioningtoanASUtypeflame.Onemay ques-tiontheexistenceof aflamebetweenthecylinder andtherootdefinedasthelocationofmaximum gradient of CH∗ intensity.However, its emission

levelbeingordersofmagnitudelowerthanthe re-mainderoftheflamefront,itisnotconsideredas aflamefront.Itisworthnotingthatfornonzero valuesof α,theupperflameismoreintensethan the lower flame.This resultsuggests thatthe re-actantsaremainlyconsumedbytheupperflame.

(6)

Fig.6.SnapshotsofnormalizedCH∗flameemissionand

normalizedDNSheatreleaseratefields,forfourdifferent rotationrates:α =0,1.91,3.65,and4.90.

Thismechanismwillbeaddressedinmoredetailsin

Section5.

5. DNSanalysisoftheASDquenchedflame Inthe ASD state, where the two flame roots remaindistinct,theresultsof Figs. 5and6raise multiplequestionsbecausetheflamestructures ev-idencedin all previousimages are very different

fromusuallaminarflames.Themostimportant is-sueistoidentifythemechanismsthatmayleadto theflamerootstructuresobservedontheupperand lowerbranches.Flamestretch,dilutionof the un-burntgasesbytheburntgasesandheatlossesto thecylinderarethethreeobviousphenomenathat mayexplainthesestructures.Atlowrotationrates, thelowerbranchquenchingdistanceismuchlarger thanusual.Suchaquenchedzonecanbeexplained eitherbyanexcessivestretch,dilutionorheatloss (oracombinationof thethree).These questions arenowaddressedvianumericalsimulation.DNS wereperformedforvariousrotationratesand es-sentiallyproducedthe sameresultsasthe exper-iment. Figure6 presents the flame topology ob-tainedbyDNScorrespondingtotheexperimental results.Theagreementisgood,βandξarewell pre-dicted(c.f.Fig.5).Inparticular,quenchinginASD flamesformoderaterotationrates,andupstream flamestabilizationforhigherrotationspeeds,are wellcaptured.Nevertheless,discrepanciesare ob-servedforα =1.91and3.65:whiletheupperflame is well described, the lower flame have the cor-rectdistanceξ2butnottherightangleβ2(β2DNS=

72° whileβ2E XP=56°,atα =3.65).This

discrep-ancymaycomefromthereducedkinetic mecha-nismusedintheDNSortheinabilityoftheCH∗

chemiluminescencetocapturelocal flame extinc-tions[22].

Oncevalidated,theDNScanbe usedfor de-taileddiagnostics,usingquantitiesvirtually impos-sibletoquantifyexperimentally.Here,theanalysis islimitedtothequenchedbranchofthetwoflame rootsatα =1.91 and3.65.These twocaseshave beenchosenbecausetheyhaveverydifferent stabi-lizations.Atthelowerrotationrateα =1.91,the lowerflameisfurtherdownstreamthanthecaseof higherrotationrate,α =3.65.

5.1. Flamestretch

Onemechanismthatcouldexplainthe quench-ingofthelowerflamebranchisstretch.Thiseffect issignificantforcounterflowflames[23],in partic-ularonflamespeedandquenchinglimits.Figure7

corresponds to asteady state axial velocity field withthecorrespondingstreamlines.The stream-linesshowthat,forbothcases,therotatingcylinder carriesburntgasesfromtheupperflametowards thelowerflame branch.The burntgasescoming fromtheupperflamemeetthefreshgasesand cre-ateacounterflow.Thestretchiscalculatedin trans-verseplaneoftheflamefront(ζ-directioninFig.7), ζisthecurvilinearabscissaedefiedasthemaximum oftheheatreleaserate,ortheprolongationofthe lowerflamefront.Thestretchκ,isdefinedas: κ(ζ )=−~n~n:∇·~u+sd(∇·~u) (1)

where~uisthevelocityfieldwithitsaxialcomponent

uandtheverticalcomponentv,~nisthedirection normaltotheflamefrontandsdisthedisplacement

(7)

-4.3 5.7 u ]s / m[

Fig. 7.DNS steady state 2D axial velocity field with thecorresponding streamlines forα =1.91(top ) and α =3.65(bottom ).

Fig.8. Stretch,κ,fromEq.(2)alongthelowerflame ab-scissaζofthelowerbranch,indicatedbyablackdashed lineinFig.7.Forboth,α =1.91(——-)and3.65(---). Theζcoordinateofthelowerflamerootarerepresented by(,)forα =1.91and(•)forα =3.65.

speed.ForastationaryflameEq.(1)becomes: κ(ζ )=∇t·~ut=tx2 ∂ux+txty µ ∂uy+ ∂vxt2 yvy (2)

where~tisthedirectiontransversetotheflamefront, as shown in Fig. 7. The values of stretch from

Eq.(2),forbothα =1.91and3.65,areplottedin

Fig.8.Forthelowrotationrate,stretchatthelower flameroot has avalue of κ ≈250s−1.The

criti-calstretch forthe methane–airflame quenching, atthisoperatingpoint,isfoundtobearoundκc=

4000s−1[24,25].Therefore,itisunlikelythatstretch

isresponsiblefortheflamequenching.Moreover,

Fig.8alsoshowsthatatthehigherrotationrate, theflamecanwithstandstretchlevelsof 750s−1,

givingfurtherindicationthatstretchisnotlikelyto beresponsibleforthelocalextinction.

Fig.9.DNSreducedfuelmassfractionfield,F α =1.91 (top )andα =3.65(bottom ).

5.2. Dilution

Another aspect that could explain the flame quenching of thelowerbranchisthedilution of theunburnt gasesbytheburntgases. An indica-torforthedilutionisthereducedfuelmass frac-tionF=YCH

4/Y

u

CH4,whichisbasedontheinitial

fuelmassfractionintheunburntsideYu

CH4.Fgoes

fromoneintheunburntgasestozerointheburnt gases. A2Dfieldof thereducedmassfractionis showninFig.9.Therotatingcylindercarriesburnt gasestowardsthelowerflamebranch.Theseburnt gasesimpacttheunburntgasesandcreatea stagna-tionpointbutnotsignificantdilutionisobserved. The border between thefreshandburntgasesis clearlyseen.Ontheotherhand,forhighrotation rates (α =3.65) someof the burntgasesare en-trainedallthewayaroundthecylinder.This phe-nomenacreatesadilutedzoneintheunburntgases of theupper flamewhereF<1.Itsuggeststhat thereexistacriticalrotationrate,atwhichtheupper branchburntgases,makeacompleterotationand mixbackwiththeincomingunburntgases. Unfor-tunately,thisphenomenondoesnotseemtoexplain thequenchingofthelowerbranchatlowrotation rates.

5.3. Heatlosses

The cooling of the burntgasesbythe “cold” cylinder couldalsoexplain thequenchingof the lower branch. The reduced temperature, 2 is displayed in Fig. 10. 2 =(TTu)/(TbTu)

is basedon the unburnt (Tu) andburnt mixture

temperatures (Tb=T

ad, i.e. the adiabatic flame

temperature). 2 goes from zero in the unburnt gasestooneintheburntgases.Thereduced tem-perature field showsthattheburntgases carried

(8)

Fig. 10.DNS reduced temperature field obtained for α =1.91(top )andα =3.65(bottom ).

from the upper flame are cooled as they travel along the “cold” cylinder walls (Twcyl=610 K).

For the low rotation rate (α =1.91) the region of lowtemperature(lessthantheadiabaticflame temperaturei.e. iso-contour2 = 0.8in Fig.10), isbiggerthaninthecaseofahigherrotationrate (α =3.65). This region of low temperature may explain why the lower branch is quenched, and itsuggeststhatthereisasignificantlylargerheat fluxfrom theburnt gasesto the cylinderat low rotationrates.IntheDNS,thecylinder tempera-tureisimposedandconstantforallrotationrates. This cylinder temperature, Twcyl, was measured

experimentallyforthedifferentrotationrates.The variationof Twcyl withαiswithintheuncertainty

ofthemeasurements±50°K.Anefforthasbeen focusedonreducingthisexperimentaluncertainty, aswellastheimplementationof thejoint resolu-tionofcombustionandheattransferinthesolid bycoupledsolvers.However,untilnow,thereason why thelow temperature region is larger at low rotationratesisstillnotwellunderstood.

5.4. Enthalpylosses

Aproperquantitytovisualizethiseffect com-bining dilution and cooling due to the rotating cylinder,istheenthalpylossL[26],definedas:

L=2 +F−1, (3)

Foradiabaticcaseswithaone-stepchemistryand aunitLewisnumber,L=0.Thefieldofenthalpy lossL isshowninFig.11forbothcases.As ex-pected,itgoes tozero farfromthecylinder and side-walls.Inthecaseofα =1.91enthalpylossis evenslightlylargerthanzerofortheupperflame, whereasmallheatingofthefreshpremixedgases

Fig.11. EntalphylossfieldL=2 +F −1,obtainedfor α =1.91(top )andα =3.65(bottom ).

Fig.12.ReducedheatreleaserateH(top )andenthalpy lossesL(bottom ),alongthelowerflameabscissaζofthe lowerbranch,indicatedbyawhitedashedlineinFig.11. Forboth,α =1.91(——-)and3.65(---).Theζ coor-dinatesofthelowerflamerootarerepresentedby(•)for α =1.91and(,)forα =3.65.

(initiallyatTu=300K)takesplacenearthe

cylin-der.Thiseffectisnotseeninthecaseα =3.65 be-causeathigher rotationratestheburntgasesare draggedupstreamofthecylinder(Fig.9bottom). Therefore,theeffectof dilution(reductionof F) overcomestheeffectofpreheating(increaseof2). Thisregionoflowenthalpyintheupperpartofthe cylinderexplainswhytheupperflamefrontisless intenseatα =3.65thanatα =1.91.

Toquantifytheeffectsduetoenthalpylosseson theflamequenching,thereducedheatreleaserate H=HR/HRmaxandtheheatlossesL,areplotted inFig.12,alongthecurvilinearabscissaeζofthe

(9)

lowerbranch.Enthalpylossreacheslargenegative values(−0.8)nearthebottomoftherotating cylin-der,indicatingamassiveeffectofheatlossesforthe lowerflame.Theflamerootisdefinedhereasthe locationofthemaximumoftheheat-release gradi-ent,thispointcorrespondtoavalueofL≈ −0.2, forboth,α =1.91and3.65.WhenLreaches val-uesof theorderof −0.2,flamequenchingcannot beavoided.Thelowerflamecanonlystartburning whenLincreasesagaindownstreamof the cylin-der.Thisinertmixturecorrespondstotheregion envelopedbytheisocontour−0.2inFig.11.This region ismuchlarger forα =1.91 than it is for α =3.65,whichexplainswhy,atlowrotationrate, thelowerflameispusheddownstream.

Figure9showedthatlittledilutiontakesplace onthelowerbranchofflame.Asaresult,this con-figurationisequivalenttohavinga1Dcounterflow flame,withunburnt gasesononeside andburnt gases with reduced enthalpy on the other side. Withthis analogy,fora given strainrate, if the enthalpyoftheburntgasesisreducedtothelimit ofL=−0.2therewillbeflameextinction.The re-ductionofburntgasesenthalpyismainlygoverned byheat lossesinduced bythe“cold” cylinder so thatflamequenchingiscontrolledbybothrotation rateand heat transfer. The reasonwhy the heat losstothecylinderismoreimportantforα =1.91 remainsunknown,butitisthesubjectofupcoming studies.

6. Conclusion

Thisarticledescribesthefirststudyofthe sta-bilizationofaleanlaminarpremixedmethane–air flameonarotatingcylinder.Fornon-reactiveflows, therotation of the cylinder is known to impact thedevelopmentofinstabilities.Forreactiveflows, bothexperimentandsimulationrevealunusual sta-bilizationpatterns,dependingontherotationspeed ofthecylinder.First,experimentsandsimulations areperformedatseveralrotationrates.Forthe up-perbranchaverygoodagreementforflow topol-ogyandflameshapewasfound.However,forthe lowerbranchtheangleβ2 isnotwellreproduced

bytheDNS.Thisdifferenceisduetothereduced kineticsmechanism usedin thisstudy. Computa-tionswithmoresophisticatedkineticmechanisms willbeconsideredinfuturestudies.Forlow rota-tionspeeds,flamequenchingappearsforthelower flamebranch.UsingDNSresults,thisquenching isfound to be controlled by heat losses: the ro-tation of the flame-holder carries low enthalpy burntproductsfromtheupperbranchtothelower branch,leadingtoflamequenching.Theenthalpy loss,ofthedraggedburntproducts,ismainlydueto theheatlossestothecylinder.Thereasonwhythe heatlosstothecylinderismoreimportantforlow rotationratesremainsunknown.However,thejoint resolutionofcombustionandheattransferinthe

solidbycoupledsolversisunderway.Thisshould giveabetterunderstandingof theinteraction be-tweenheattransferandrotationrate.Athigher ro-tationalspeeds,abifurcationappearsandtheflame stabilizesupstreamofthecylinder.Ongoingworks arebeing performedtocompare DNSdatawith experimentalvelocityfields,andtofurther under-standtheASUstabilizationmechanism.

Acknowledgments

The research leading to these results has re-ceivedfundingfromtheEuropeanResearch Coun-cil under the EuropeanUnion’s Seventh Frame-work Programme (FP/2007-2013)/ERC Grant AgreementERC-AdG319067-INTECOCIS. References

[1] S. Mittal, B. Kumar, J. Fluid Mech. 476 (2003) 303–334.

[2] S.Camarri,F.Giannetti,J.FluidMech.642(2010) 477–487.

[3] J.Guckenheimer,A. Mahalov,Phys.Rev.Lett.68 (1992)2257.

[4] R.Bourguet,D.L.Jacono,J.FluidMech.740(2013) 342–380.

[5] P.Akbari,R.Nalim,N.Mueller,J.Eng.GasTurbines Power128(2006)717–735.

[6] B. Robic, Constant-Volume Combustion (CVC) ChamberforanAircraftTurbineIncludingan In-take/ExhaustValveHavingaSphericalPlug,patent WO2014020275 A1 ,Snecma2014.

[7] K.Kedia,H.Altay,A. Ghoniem,Proc.Combust. Inst.33(2011)1113–1120.

[8] A.Cuquel,D.Durox,T.Schuller,C.R.Méc.341 (2013)171–180.

[9] D.Mejia,L.Selle,R.Bazile,T.Poinsot,Proc. Com-bust.Inst.35(3)(2015)3201–3208.

[10] M.Bauerheim,G.Staffelbach,N.Worth,J.Dawson, L.Gicquel,T.Poinsot,Proc.Combust.Inst.35(3) (2015)3355–3363.

[11] Z. Feng, P. Sethna, J. Fluid Mech. 199 (1989) 495–518.

[12] M. Bauerheim, P. Salas, F. Nicoud, T. Poinsot,

J.FluidMech.760(2014)431–465.

[13] M.Sahin,R.G.Owens,Phys.Fluids16(5)(2004) 1305–1320.

[14] J. Cha, S. Sohrab, Combust. Flame 106 (1996) 467–477.

[15] R.Price,I.Hurle,T.Sudgen,Proc.Combust.Inst.12 (1969)1093–1102.

[16] T.Schönfeld,M.Rudgyard,AIAAJ.37(11)(1999) 1378–1385.

[17] B.Franzelli,E.Riber,M.Sanjosé,T.Poinsot, Com-bust.Flame157(7)(2010)1364–1373.

[18] T.Poinsot,T.Echekki,M.G.Mungal, Combust.Sci. Technol.81(1–3)(1992)45–73.

[19] L.Selle,F.Nicoud,T.Poinsot,AIAAJ.42(5)(2004) 958–964.

[20] V.Kornilov,DynamicsandNonlinear Thermo-Acous-tic StabilityAnalysisof PremixedConicalFlames, TechnischeUniversiteitEindhoven,2006Ph.D. the-sis.

(10)

[21] D. Mejia, Wall-TemperatureEffects on Flame Re-sponsetoAcousticOscillations,INPToulouse,2014 Ph.D.thesis.

[22] H.N.Najm,P.H.Paul,C.J.Mueller,P.S.Wyckoff,

Combust.Flame113(1998)312–332.

[23] J.Buckmaster, D. Mikolaitis, Combust. Flame47 (1982)191–204.

[24]B. Coriton, M.D. Smooke, A. Gomez, Combust. Flame157(11)(2010)2155–2164.

[25]L. Tay-Wo-Chong, M. Zellhuber, T. Komarek, H.G.Im,W.Polifke, Flow Turbul. Combust. (2015) 1–32.Springer.DOI:10.1007/s10494-015-9679-0. [26]P.Simon, S.Kalliadasis, J.Merkin, S.K.Scott, J.

Figure

Fig. 1. Sketch of the Intrigs configuration with the parameters controlling the flow topology.
Fig. 2. Transverse cut ( left ) and isometric view ( right ) of the Intrigs burner.
Fig. 4. Sketch of the ASD type flame with the parameters describing the flame topology.
Fig. 6. Snapshots of normalized CH ∗ flame emission and normalized DNS heat release rate fields, for four different rotation rates: α = 0, 1.91, 3.65, and 4.90.
+3

Références

Documents relatifs

On n'est plus empêché de bouger pour des raisons punitives, mais pour éviter les contagions, c'est une mesure prophylactique, le mot devient une nécessité

The average level of gusA expression by the Pgst1 promoter in response to bacterial and fungal induction is much lower (15% and 8% respectively) than the constitutive expres-

The task group recognized that under fire test conditions, large quantities of smoke may be produced but concluded that the smoke pro- duced by electrical cables in

However, the applicability of this hypothesis for improved prediction of photosynthetic capacity and leaf nitrogen content depends on the accuracy at which we can determine

parenting support to improve the psychosocial health of parents all parents and children to determine whether the programmes were effective in improving psycho social

Citation: Remsberg, E., et al., An assessment of the quality of Halogen Occultation Experiment temperature profiles in the mesosphere based on comparisons with Rayleigh

The figure shows that by combining various snapshots across time/distance, RF-Capture is capable of capturing a coarse skeleton of the human body..

Version auteur - Acceptée pour publication A paraître dans Genèses, n° 108 (La Reproduction nationale – 2017)..