• Aucun résultat trouvé

State complexity of the multiples of the Thue-Morse set

N/A
N/A
Protected

Academic year: 2021

Partager "State complexity of the multiples of the Thue-Morse set"

Copied!
97
0
0

Texte intégral

(1)

State complexity of the multiples of the

Thue-Morse set

Adeline Massuir

Joint work with Émilie Charlier and Célia Cisternino

Comprehensible seminar February 27th, 2019

(2)

Automata

Deterministic nite automaton (DFA) : A = (Q, q0, F , Σ, δ)

1 2 3

a b a, b

(3)

Denition

For each automaton A = (Q, q0, F , Σ, δ), the language accepted by A is the set L(A ) := {w ∈ Σ∗: δ (q0, w ) ∈ F } . 1 2 3 a b a, b b a L (A ) = a∗b∗ Denition

A regular language is a language accepted by a DFA.

(4)

Denition

For each automaton A = (Q, q0, F , Σ, δ), the language accepted by A is the set L(A ) := {w ∈ Σ∗: δ (q0, w ) ∈ F } . 1 2 3 a b a, b b a L (A ) = a∗b∗ Denition

(5)

Denition

For each automaton A = (Q, q0, F , Σ, δ), the language accepted by A is the set L(A ) := {w ∈ Σ∗: δ (q0, w ) ∈ F } . 1 2 3 a b a, b b a L (A ) = a∗b∗ Denition

A regular language is a language accepted by a DFA.

(6)

Product of automata

Given two regular languages L and M, is the language L ∩ M also regular ?

(7)

Product of automata

Given two regular languages L and M, is the language L ∩ M also regular ?

Product of automata

(8)

Product of automata

Given two regular languages L and M, is the language L ∩ M also regular ? Product of automata 1 2 3 A a b, c a, b b, c a a b a b

(9)

Product of automata

Given two regular languages L and M, is the language L ∩ M also regular ? Product of automata 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(10)

Complete automaton

Denition An automaton A = (Q, q0, F , Σ, δ) is complete if ∀q ∈ Q, ∀σ ∈ Σ, δ(q, σ) is dened. 1 2 0 1 0 1 1 2 0 1 1

(11)

Complete automaton

Denition An automaton A = (Q, q0, F , Σ, δ) is complete if ∀q ∈ Q, ∀σ ∈ Σ, δ(q, σ) is dened. 1 2 0 1 0 1 1 2 0 1 1

(12)

Accessible automaton

Let A = (Q, q0, F , Σ, δ) be an automaton. Denition A state q ∈ Q is accessible if ∃w ∈ Σ∗ s.t. δ (q0, w ) = q. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(13)

Accessible automaton

Let A = (Q, q0, F , Σ, δ) be an automaton. Denition A state q ∈ Q is accessible if ∃w ∈ Σ∗ s.t. δ (q0, w ) = q. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(14)

Reduced automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are distinguished if ∃w ∈ Σ∗ s.t.

(δ(q, w ) ∈ F and δ(p, w) 6∈ F ) or (δ(q, w) 6∈ F and δ(p, w) ∈ F ) .

The automaton A is reduced if all its states are two by two distin-guished. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(15)

Reduced automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are distinguished if ∃w ∈ Σ∗ s.t.

(δ(q, w ) ∈ F and δ(p, w) 6∈ F ) or (δ(q, w) 6∈ F and δ(p, w) ∈ F ) . The automaton A is reduced if all its states are two by two distin-guished. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(16)

Reduced automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are distinguished if ∃w ∈ Σ∗ s.t.

(δ(q, w ) ∈ F and δ(p, w) 6∈ F ) or (δ(q, w) 6∈ F and δ(p, w) ∈ F ) . The automaton A is reduced if all its states are two by two distin-guished. 1A 2A 3A 1B 2B 3B a b a b a b b a b b

(17)

Coaccessible automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

A state q ∈ Q is coaccessible if ∃w ∈ Σ∗ s.t.

δ(q, w ) ∈ F .

The automaton A is coaccessible if all its states are coaccessible.

1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(18)

Coaccessible automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

A state q ∈ Q is coaccessible if ∃w ∈ Σ∗ s.t.

δ(q, w ) ∈ F .

The automaton A is coaccessible if all its states are coaccessible.

1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(19)

Coaccessible automaton

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

A state q ∈ Q is coaccessible if ∃w ∈ Σ∗ s.t.

δ(q, w ) ∈ F .

The automaton A is coaccessible if all its states are coaccessible.

1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(20)

Automaton with disjoint states

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are disjoint if ∀w ∈ Σ∗,

δ(q, w ) ∈ F ⇒ δ(p, w ) 6∈ F and δ(p, w) ∈ F ⇒ δ(q, w) 6∈ F .

The automaton A has disjoint states if all its states are two by two disjoint. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(21)

Automaton with disjoint states

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are disjoint if ∀w ∈ Σ∗,

δ(q, w ) ∈ F ⇒ δ(p, w ) 6∈ F and δ(p, w) ∈ F ⇒ δ(q, w) 6∈ F . The automaton A has disjoint states if all its states are two by two disjoint. 1A 2A 3A 1B 2B 3B a b a b a b a b a b a b

(22)

Automaton with disjoint states

Let A = (Q, q0, F , Σ, δ) be an automaton.

Denition

Two states q, p ∈ Q are disjoint if ∀w ∈ Σ∗,

δ(q, w ) ∈ F ⇒ δ(p, w ) 6∈ F and δ(p, w) ∈ F ⇒ δ(q, w) 6∈ F . The automaton A has disjoint states if all its states are two by two disjoint. 1A 2A 3A 1B 2B 3B a b a b a b b a b b

(23)

Coaccessible + with disjoint states ⇒ reduced

(24)

Minimal automaton I

1A 2A 3A 1B 2B 3B a b a b a b a b a b a b 1 2 3 a b a, b b a

(25)

Minimal automaton II

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Theorem

An automaton is minimal if and only if it is accessible and reduced. One algorithm :

1 Eject non accessible states 2 Look for undistinguished states

(26)

Minimal automaton II

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Theorem

An automaton is minimal if and only if it is accessible and reduced.

One algorithm :

1 Eject non accessible states 2 Look for undistinguished states

(27)

Minimal automaton II

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Theorem

An automaton is minimal if and only if it is accessible and reduced. One algorithm :

1 Eject non accessible states 2 Look for undistinguished states

(28)

Minimal automaton II

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Theorem

An automaton is minimal if and only if it is accessible and reduced. One algorithm :

1 Eject non accessible states

(29)

Minimal automaton II

Theorem

For any regular language L, there exists a unique (up to isomorphism) minimal automaton accepting L.

Theorem

An automaton is minimal if and only if it is accessible and reduced. One algorithm :

1 Eject non accessible states 2 Look for undistinguished states

(30)

State complexity

Denition

The state complexity of a regular language is the number of states of its minimal automaton.

(31)

State complexity

Denition

The state complexity of a regular language is the number of states of its minimal automaton.

The state complexity of a∗bis 3.

(32)

What do we want to do ?

Recall

A regular language is a language accepted by a DFA.

Denition

Let b ∈ N≥2. A subset X of N is b-recognizable if repb(X )is regular.

It is equivalent to work with 0∗rep b(X ). Theorem

(33)

What do we want to do ?

Recall

A regular language is a language accepted by a DFA.

Denition

Let b ∈ N≥2. A subset X of N is b-recognizable if repb(X )is regular.

It is equivalent to work with 0∗rep b(X ). Theorem

Let b ∈ N≥2 and m ∈ N. If X ⊆ N is b-recognizable, so is mX .

(34)

What do we want to do ?

Recall

A regular language is a language accepted by a DFA.

Denition

Let b ∈ N≥2. A subset X of N is b-recognizable if repb(X )is regular.

It is equivalent to work with 0∗rep b(X ).

Theorem

(35)

What do we want to do ?

Recall

A regular language is a language accepted by a DFA.

Denition

Let b ∈ N≥2. A subset X of N is b-recognizable if repb(X )is regular.

It is equivalent to work with 0∗rep b(X ). Theorem

Let b ∈ N≥2 and m ∈ N. If X ⊆ N is b-recognizable, so is mX .

(36)

Theorem [Alexeev, 2004]

The state complexity of the language 0∗rep

b(m N) is min N≥0 ( m gcd (m, bN)+ N−1 X n=0 bn gcd (bn, m) )

(37)

Thue-Morse

0110100110010110 . . . 1001011001101001 . . .

Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈2 N} .

(38)

Thue-Morse

0110100110010110 . . . 1001011001101001 . . .

Denition

The Thue-Morse set is the set

(39)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . .

Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈2 N} .

(40)

Thue-Morse

0110100110010110 . . . 1001011001101001 . . .

Denition

The Thue-Morse set is the set

(41)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . .

Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈2 N} .

(42)

Thue-Morse

0110100110010110 . . . 1001011001101001 . . .

Denition

The Thue-Morse set is the set

(43)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . .

Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈2 N} .

(44)

Thue-Morse

0110100110010110 . . . 1001011001101001 . . .

Denition

The Thue-Morse set is the set

(45)

Thue-Morse

0110100110010110. . .

1001011001101001 . . .

Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1 ∈2 N} .

(46)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . .

Denition

The Thue-Morse set is the set

(47)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . . Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1∈2 N} .

(48)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . . Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1∈2 N} .

T

B 0

(49)

Thue-Morse

0110100110010110 . . .

1001011001101001 . . . Denition

The Thue-Morse set is the set

T = {n ∈ N : | rep2(n)|1∈2 N} . T B 0,3 0,3 1,2 1,2

(50)

Denition

Let p, q ∈ N≥2. We say that p and q are multiplicatively independent

if

pa= qb ⇒ a = b =0.

They are said multiplicativement dependent otherwise.

Theorem [Cobham, 1969]

Let b, b0 two multiplicatively independent bases. A subset of N

is both b-recognizable and b0-recognizable i it is a nite union

of arithmetic progressions.

Let b, b0 two multiplicatively dependent bases. A subset of N is

(51)

Denition

Let p, q ∈ N≥2. We say that p and q are multiplicatively independent

if

pa= qb ⇒ a = b =0.

They are said multiplicativement dependent otherwise.

Theorem [Cobham, 1969]

Let b, b0 two multiplicatively independent bases. A subset of N

is both b-recognizable and b0-recognizable i it is a nite union

of arithmetic progressions.

Let b, b0 two multiplicatively dependent bases. A subset of N is

b-recognizable i it is b0-recognizable.

(52)

The result

T = {n ∈ N : | rep2(n)|1 ∈2 N}

Theorem

Let m ∈ N and p ∈ N≥1.

Then the state complexity of the language 0∗rep

2p(mT ) is

2k + z p



(53)

The method

Automaton Language accepted

a a

AT ,2p (0, 0)∗rep2p(T × N)

Am,2p (0, 0)∗rep2p({(n, mn) : n ∈ N})

AT ,2p ×Am,2p (0, 0)∗rep2p({(t, mt) : t ∈T })

π AT ,2p×Am,2p 0∗rep2p(mT )

(54)

The method

Automaton Language accepted

a a

AT ,2p (0, 0)∗rep2p(T × N)

Am,2p (0, 0)∗rep2p({(n, mn) : n ∈ N})

AT ,2p ×Am,2p (0, 0)∗rep2p({(t, mt) : t ∈T })

(55)

The method

Automaton Language accepted

a a

AT ,2p (0, 0)∗rep2p(T × N)

Am,2p (0, 0)∗rep2p({(n, mn) : n ∈ N})

AT ,2p ×Am,2p (0, 0)∗rep2p({(t, mt) : t ∈T })

π AT ,2p×Am,2p 0∗rep2p(mT )

(56)

The method

Automaton Language accepted

a a

AT ,2p (0, 0)∗rep2p(T × N)

Am,2p (0, 0)∗rep2p({(n, mn) : n ∈ N})

AT ,2p ×Am,2p (0, 0)∗rep2p({(t, mt) : t ∈T })

(57)

The automaton A

T ,2p (0, 0)∗{rep2p(t, n) : t ∈T , n ∈ N} States T , B Initial state T Final states T Alphabet {0, . . . , 2p1}2 Transitions δT ,2p(X , (a, b)) =  X if a ∈ T X else.

(58)

The automaton A

T ,2p (0, 0)∗{rep2p(t, n) : t ∈T , n ∈ N} States T , B Initial state T Final states T Alphabet {0, . . . , 2p1}2 Transitions δT ,2p(X , (a, b)) =  X if a ∈ T X else.

(59)

The automaton A

T ,4 T B (0, 0), (0, 1), (0, 2), (0, 3) (3, 0), (3, 1), (3, 2), (3, 3) (0, 0), (0, 1), (0, 2), (0, 3) (3, 0), (3, 1), (3, 2), (3, 3) (1, 0), (1, 1), (1, 2), (1, 3) (2, 0), (2, 1), (2, 2), (2, 3) (1, 0), (1, 1), (1, 2), (1, 3) (2, 0), (2, 1), (2, 2), (2, 3)

(60)

Lemma

The automaton AT ,2p

is the minimal automaton of (0, 0)∗{rep2p(t, n) : t ∈T , n ∈ N},

is complete, is trim,

(61)

The automaton A

m,b (0, 0)∗{repb(n, mn) : n ∈ N} States 0, . . . , m − 1 Initial state 0 Final states 0 Alphabet {0, . . . , b − 1}2 Transitions δm,b(i , (d , e)) = j ⇔ bi + e = md + j

For all i, j ∈ {0, . . . , m − 1}, for all u, v ∈ {0, . . . , b − 1}∗,

δm,b(i , (u, v )) = j ⇔ b|(u,v )|i +valb(v ) = mvalb(u) + j .

(62)

The automaton A

m,b (0, 0)∗{repb(n, mn) : n ∈ N} States 0, . . . , m − 1 Initial state 0 Final states 0 Alphabet {0, . . . , b − 1}2 Transitions δm,b(i , (d , e)) = j ⇔ bi + e = md + j

For all i, j ∈ {0, . . . , m − 1}, for all u, v ∈ {0, . . . , b − 1}∗,

(63)

The automaton A

m,b (0, 0)∗{repb(n, mn) : n ∈ N} States 0, . . . , m − 1 Initial state 0 Final states 0 Alphabet {0, . . . , b − 1}2 Transitions δm,b(i , (d , e)) = j ⇔ bi + e = md + j

For all i, j ∈ {0, . . . , m − 1}, for all u, v ∈ {0, . . . , b − 1}∗,

δm,b(i , (u, v )) = j ⇔ b|(u,v )|i +valb(v ) = mvalb(u) + j .

(64)

The automaton A

6,4 0 1 2 3 4 5 (0, 0) (1, 3) (1, 0) (2, 3) (2, 0) (3, 3) (0, 1) (0,2) (0, 3) (0,0 ) (0,1 ) (1, 2) (1,1 ) (1, 2) (1, 3) (2,0) (2, 1) (2,2 ) (2, 1 ) (3 ,2 ) (3,3 ) (3, 0) (3 ,1 ) (3, 2 )

(65)

Proposition

The automaton Am,b

is accessible, is coaccessible, has disjoined states, is minimal,

is trim.

(66)

The product automaton A

m,2p

×

A

T ,2p (0, 0)∗{rep2p(t, mt) : t ∈T } States (0, T ), . . . , (m − 1, T ), (0, B), . . . , (m − 1, B) Initial state (0, T ) Final states (0, T ) Alphabet {0, . . . , 2p1}2

Transitions δT ,2p((i , X ), (u, v )) = (j , Y )

⇔2p|(u,v )|i +val 2p(v ) = mval2p(u) + j and Y =  X if val2p(u) ∈T X else. Remark

If i, X , v are xed, there exist unique j, Y , u such that we have a transition labeled by (u, v) from (i, X ) to (j, Y ).

(67)

The product automaton A

m,2p

×

A

T ,2p (0, 0)∗{rep2p(t, mt) : t ∈T } States (0, T ), . . . , (m − 1, T ), (0, B), . . . , (m − 1, B) Initial state (0, T ) Final states (0, T ) Alphabet {0, . . . , 2p1}2

Transitions δT ,2p((i , X ), (u, v )) = (j , Y )

⇔2p|(u,v )|i +val 2p(v ) = mval2p(u) + j and Y =  X if val2p(u) ∈T X else. Remark

If i, X , v are xed, there exist unique j, Y , u such that we have a transition labeled by (u, v) from (i, X ) to (j, Y ).

(68)

The product automaton A

m,2p

×

A

T ,2p (0, 0)∗{rep2p(t, mt) : t ∈T } States (0, T ), . . . , (m − 1, T ), (0, B), . . . , (m − 1, B) Initial state (0, T ) Final states (0, T ) Alphabet {0, . . . , 2p1}2

Transitions δT ,2p((i , X ), (u, v )) = (j , Y )

⇔2p|(u,v )|i +val 2p(v ) = mval2p(u) + j and Y =  X if val2p(u) ∈T X else. Remark

If i, X , v are xed, there exist unique j, Y , u such that we have a transition labeled by (u, v) from (i, X ) to (j, Y ).

(69)

The automaton A

6,4

×

A

T ,4

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B

(70)

Proposition

The automaton Am,2p×AT ,2p

is accessible, is coaccessible, has disjoint states, is minimal, is trim. (0, T ) → (i, T ) : rep2p(0, i) (0, T ) → (i, B) : rep2p(1, m + i) (0, B) → (0, T ) : rep2p(1, m) if p|z rep2p 2p−r, k2q+1  if z = qp + r with q ∈ N and r ∈ {1, . . . , p − 1}.

(71)

Proposition

The automaton Am,2p×AT ,2p

is accessible, is coaccessible, has disjoint states, is minimal, is trim. (0, T ) → (i, T ) : rep2p(0, i) (0, T ) → (i, B) : rep2p(1, m + i) (0, B) → (0, T ) : rep2p(1, m) if p|z rep2p 2p−r, k2q+1  if z = qp + r with q ∈ N and r ∈ {1, . . . , p − 1}.

(72)

Proposition

The automaton Am,2p×AT ,2p

is accessible, is coaccessible, has disjoint states, is minimal, is trim. (0, T ) → (i, T ) : rep2p(0, i) (0, T ) → (i, B) : rep2p(1, m + i) (0, B) → (0, T ) : rep2p(1, m) if p|z rep2p 2p−r, k2q+1  if z = qp + r with q ∈ N and r ∈ {1, . . . , p − 1}.

(73)

Proposition

The automaton Am,2p×AT ,2p

is accessible, is coaccessible, has disjoint states, is minimal, is trim. (0, T ) → (i, T ) : rep2p(0, i) (0, T ) → (i, B) : rep2p(1, m + i) (0, B) → (0, T ) : rep2p(1, m) if p|z rep2p 2p−r, k2q+1  if z = qp + r with q ∈ N and r ∈ {1, . . . , p − 1}.

(74)

The projected automaton π (A

m,2p

×

A

T ,2p

)

0∗rep 2p(mT ) = 0∗{rep2p(mt) : t ∈T } 0T 1T 2T 3T 4T 5T 0B 1B 2B 3B 4B 5B 0 1 2 3

(75)

The projected automaton π (A

m,2p

×

A

T ,2p

)

0∗rep 2p(mT ) = 0∗{rep2p(mt) : t ∈T } 0T 1T 2T 3T 4T 5T 0B 1B 2B 3B 4B 5B 0 1 2 3

(76)

Proposition The automaton π Am,2p×AT ,2p is deterministic, accessible, coaccessible. Proposition

In the automaton π Am,2p×AT ,2p, the states (i, T ) and (i, B)

(77)

Proposition The automaton π Am,2p×AT ,2p is deterministic, accessible, coaccessible. Proposition

In the automaton π Am,2p×AT ,2p, the states (i, T ) and (i, B)

are disjoined for all i ∈ {0, . . . , m − 1}.

(78)

The automaton π (A

6,4

×

A

T ,4

)

0T 1T 2T 3T 4T 5T 0B 1B 2B 3B 4B 5B 0 1 2 3

(79)

The automaton π (A

6,4

×

A

T ,4

)

0T 1T 2T 3T 4T 5T

0B 1B 2B 3B 4B 5B

0B

(80)
(81)

The automaton π (A

24,4

×

A

T ,4

)

(82)
(83)

The automaton π (A

24,4

×

A

T ,4

)

(84)
(85)

Recall

For m ∈ N, p ∈ N≥1, we write m = k2z with z odd.

For all n ∈ N, we set

Tn:=



T if n ∈ T B else.

Denition

For all j ∈ {1, . . . , k − 1}, we set

[(j , T )] := {(j + k`, T`) :0 ≤ ` ≤ 2z−1}

[(j , B)] :=

j + k`, T` :0 ≤ ` ≤ 2z−1 .

We also set

[(0, T )] := {(0, T )} and [(0, B)] :=  k`, T`:0 ≤ ` ≤ 2z−1 .

(86)

Recall

For m ∈ N, p ∈ N≥1, we write m = k2z with z odd.

For all n ∈ N, we set

Tn:=



T if n ∈ T B else.

Denition

For all j ∈ {1, . . . , k − 1}, we set

[(j , T )] := {(j + k`, T`) :0 ≤ ` ≤ 2z−1}

[(j , B)] :=

j + k`, T` :0 ≤ ` ≤ 2z−1 .

We also set

(87)

Recall

For m ∈ N, p ∈ N≥1, we write m = k2z with z odd.

For all n ∈ N, we set

Tn:=



T if n ∈ T B else.

Denition

For all j ∈ {1, . . . , k − 1}, we set

[(j , T )] := {(j + k`, T`) :0 ≤ ` ≤ 2z−1}

[(j , B)] :=

j + k`, T` :0 ≤ ` ≤ 2z−1 .

We also set

[(0, T )] := {(0, T )} and [(0, B)] :=  k`, T`:0 ≤ ` ≤ 2z−1 .

(88)
(89)

Denition

For all α ∈ {0, . . . , z − 1}, we set Cα:=  k2z−α−1+ k2z−α`, T` :0 ≤ ` ≤ 2α−1 . For all β ∈n0, . . . , lz p m −2o, we set Γβ := [ α∈{βp,...,(β+1)p−1} Cα. We also set Γl z p m −1 := [ α∈ nl z p m −1p,...,z−1 o Cα.

(90)

We can build a new automaton

which is accessible

(91)

We can build a new automaton which is accessible

reduced.

(92)

We can build a new automaton which is accessible

(93)

0H 1H 2H 3H 4H 5H

0L 1L 2L 3L 4L 5L

0

1

2 3

(94)

0

1 2

(95)

Theorem

Let m ∈ N and p ∈ N≥1. Then the state complexity of the language

0∗rep 2p(mT ) is equal to 2k + z p  if m = k2z with k odd. 2 × 3 + 1 2 =7

(96)

Theorem

Let m ∈ N and p ∈ N≥1. Then the state complexity of the language

0∗rep 2p(mT ) is equal to 2k + z p  if m = k2z with k odd. 2 × 3 + 1 2 =7

(97)

To go further

What about the language 0∗rep

2p(mT + r)

where r ∈ {0, . . . , m − 1} ?

Références

Documents relatifs

Bien que nous n'ayons pas obtenu des pourcentages de récupération aussi élevés que ceux rapportés dans la littérature, l'élution du SA-11 adsorbé sur les filtres

Conclusion •Traitements « passifs » ➙ récidives +++ •Traitements actifs ➙ modification structure tendon •Ondes de choc ➙ efficacité similaire focales ou radiales •PRP

C’est pourquoi, avec l’adoption de la loi Labbé sur l’interdiction des produits phytosanitaires dans les espaces publics d’ici 2016, et le Grenelle de l’Environnement

Niveau du blan Niveau du noir Retour ligne = 12µs Aller ligne = 52µs 0 30 100 (luminan e) Information Vidéo Informations de servi e.. Figure 18: Une ligne du signal de luminan e

Strengths and weaknesses of an Evidence-Based Practice course focused on information

le dessin que vous avez sélectionné dans notre banque d’image avec les références couleur de votre choix, Flotex panoramique pour associer côte à côte un maximum de 8 lés de

Second, the proposed methodology is applied to assess the performances of a contrast restoration method of daytime fog images grabbed using in-vehicle cameras.. It depends among

The difference in fatigue resulting from the contraction mode increased throughout the exercise: a third series/first series CONC work ratio showed values of 0.72 and