• Aucun résultat trouvé

Parametric uncertainty quantification in the presence of modeling errors: Bayesian approach and application to metal

N/A
N/A
Protected

Academic year: 2021

Partager "Parametric uncertainty quantification in the presence of modeling errors: Bayesian approach and application to metal"

Copied!
35
0
0

Texte intégral

(1)

UNCECOMP International Conference on Uncertainty Quantification in Computational Sciences and Engineering

Parametric uncertainty quantification in the presence of modeling errors:

Bayesian approach and application to metal forming

M. Arnst, B. Abello, R. Boman, and J.-P. Ponthot

(2)

Motivation

Data PDF of material properties Engineering

model PDF of formed shape

h[MPa] s[MPa] 1488 375 1485 403 1514 407 1500 377 . . . . 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

0.040 0.05 0.06 0.07 50 100 150 200 250 Angle [rad]

Probability density [1/rad]

(3)

Motivation

Data PDF of material properties Engineering

model PDF of formed shape

h[MPa] s[MPa] 1488 375 1485 403 1514 407 1500 377 . . . . 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

0.040 0.05 0.06 0.07 50 100 150 200 250 Angle [rad]

Probability density [1/rad]

Data Modeling errors due to data limitations Modeling errors due to modeling simplifications PDF of output variables

(4)

Outline

■ Motivation.

■ Outline.

■ Methodology.

■ Implementation.

■ Application to metal forming.

(5)
(6)

Methodology

Model problem

y

|{z}

output variables problem

=

g

|{z}

engineering problem

(

yxy

|{z}

input variables problem

)

Data PDF of input variables Engineering model PDF of output variables

x

obs1

x

obs2 .. . ρ X [−] y [−] ρ [−] Y

(7)

Methodology

Bayesian methodology

Modeling errors due to data limitations are represented by inference of a posterior PDF for the param-eters of the PDF for the input variables [Ghanem and Doostan, 2006; A, Ghanem, and Soize, 2010]:

ν

Y

k=1

ρ

postP

(p)

ν

Y

k=1

|

{z

}

posterior PDF

=

ν

Y

k=1

c

ν

Y

k=1

|

{z

}

normalization constant

×

ν

Y

k=1

ρ

priorP

(p)

ν

Y

k=1

|

{z

}

prior PDF

×

ν

Y

k=1 ν

Y

k=1

ρ

X

(x

obsk

|p)

ν

Y

k=1

|

{z

}

likelihood of parameters

This ultimately leads to error bounds on the results of the parametric uncertainty analysis.

Data PDF of input variables Engineering model PDF of output variables

x

obs1

x

obs2 .. . x [−] ρ X [−] x [−] y [−] y [−] ρ Y [−]

(8)
(9)

Implementation

Sampling from posterior PDF

■ Since the PDF of the input variables typically has multiple parameters,

p

= (p

1

, . . . , p

m

)

,

sam-pling from the posterior PDF is the challenging problem of samsam-pling from a multivariate PDF.

■ In [Ghanem and Doostan, 2006; A, Ghanem, and Soize, 2010], the sampling from the posterior PDF was effected by using Metropolis-Hastings and Gibbs Markov Chain Monte Carlo methods:

Givenp(t), 1. Generate Qt ∼ πP(q|p(t)) 2. Take P(t+1) = ( Qt with probability υ(p (t) , Qt) p(t) with probability 1 − υ(p(t), Qt) , where υ(p, q) = min ρ post P (q) ρpostP (p) πP (p|q) πP (q|p) ,1 ! .

These Markov Chain Monte Carlo methods can be tedious to implement:

◆ effectiveness of proposal PDF in case of Metropolis-Hastings transitions,

◆ effectiveness of method for sampling from conditional PDFs in case of Gibbs transitions,

◆ burn-in length,

(10)

Implementation

Sampling from posterior PDF (continued)

■ We replace the Metropolis-Hastings or Gibbs MCMC with an alternative, less tedious to implement,

MCMC method based on an Ito SDE that admits the posterior PDF as invariant PDF:

dP

(t) = V (t)dt

dV

(t) = −∇

p

φ(P (t)) −

1

2

f

0

V

(t)dt +

p

f

0

dW

(t)

,

with the potential

φ(p) = − log ρ

postP

(p),

and with the initial conditions

P

(0) = p

0 and

V

(0) = v

0

.

This method was introduced, although in another context, in [Soize, 2008]. It can be analysed mathematically and implemented numerically by using the available methods for Ito SDEs, and it has been shown to be very robust. We use the implicit backward-Euler time-stepping method.

(11)

Implementation

Nonintrusive projection method

■ Ghanem and Doostan[2006] used the intrusive projection method to propagate the uncertainties from the input variables through the engineering model to the output variables; A, Ghanem, and Soize[2010] used the Monte Carlo sampling method.

■ We use the nonintrusive projection method, which, for sufficiently smooth and low-dimensional problems, combines the efficiency of projection with the ease of implementation of sampling. In particular, the nonintrusive projection method can be implemented as a wrapper around the

engineering model, which must only be evaluated for a small number of values of its input variables.

■ Once the surrogate model is available, it is used as an efficient substitute for the engineering model in the sampling-based approximation of statistical descriptors of the output variables:

Y

= g(X) ≈ g

r

(X) =

r

X

|α|=0

(12)
(13)

Application to metal forming

Engineering problem

■ blanc Material properties

(h, s)

/

/

Model

y

= g(h, s)

/

/

Formed shape

y

■ Observed samples

(h

obs1

, s

obs1

)

,

(h

obs2

, s

obs2

)

, . . . ,

(h

obsν

, s

obsν

)

.

h

[MPa]

s

[MPa] 1488 375 1485 403 1514 407 1500 377 . . . . 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(14)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(15)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(16)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(17)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(18)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(19)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(20)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(21)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(22)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(23)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(24)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(25)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(26)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(27)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

(28)

Application to metal forming

Characterization of uncertainties

■ We select the bivariate gamma probability distribution

ρ

(H,S)

(h, s| h, σ

H

, s, σ

S

, ρ

|

{z

}

parameters of the PDF

) = ρ

Γ

(h|h, σ

H

)

|

{z

}

gamma marginal

ρ

Γ

(s|s, σ

S

)

|

{z

}

gamma marginal

σ c

Γ

(h; h, σ

H

)c

Γ

(s; s, σ

S

); ρ



|

{z

}

Gaussian copula

.

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(29)

Application to metal forming

Characterization of uncertainties (continued)

■ We estimate adequate values for the parameters of the bivariate gamma probability distribution by using the method of maximum likelihood as follows:

h,

σ

ˆ

H

, ˆ

s,

σ

ˆ

S

,

ρ) =

ˆ

solution of

max

(h,σH,s,σS,ρ)

l(h, σ

H

, s, σ

S

, ρ),

where the likelihood of the parameters

h

,

σ

H,

s

,

σ

S, and

ρ

is given by

l(h, σ

H

, s, σ

S

, ρ) =

ν

Y

k=1

ρ

(H,S)

(h

obsk

, s

obsk

|h, σ

H

, s, σ

S

, ρ).

300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

(30)

Application to metal forming

Nonintrusive projection method

300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

300 350 400 450 500 1300 1400 1500 1600 17000.04 0.05 0.06 0.07 s [MPa] k [MPa] a [rad]

0.040 0.05 0.06 0.07 50 100 150 200 Angle [rad]

Probability density [1/rad]

Propagation and sensitivity analysis of uncertainties

50 100 150 200 250

Probability density [1/rad]

0.25 0.5 0.75 1 1.25 Significance [−]

(31)

Application to metal forming

Bayesian methodology

■ Modeling errors due to the finite length of the data set are represented by inference of a posterior PDF for the parameters of the PDF for the hardening modulus and the yield stress:

ρ

post

(h, σ

H

, s, σ

S

, ρ) = c × ρ

prior

(h, σ

H

, s, σ

S

, ρ) ×

ν

Y

k=1

ρ

(H,S)

(h

obsk

, s

obsk

|h, σ

H

, s, σ

S

, ρ).

■ We use a noninformative prior PDF:

ρ

prior

(h, σ

H

, s, σ

S

, ρ) ∼

1

h

×

1

σ

H

×

1

s

×

1

σ

S

× sec(ρ)

2

.

This prior PDF is uniform on the linear space of values that is obtained by transforming the param-eters from their nonlinear space of values to a corresponding linear space of values through the bijections

log(h)

,

log(σ

H

)

,

log(s)

,

log(σ

S

)

, and

tan(ρ ×

π2

)

, respectively.

(32)

Application to metal forming

Bayesian methodology (continued)

■ Sampling from posterior PDF by using MCMC method based on Ito SDE:

0 2.5 5 7.5 10 x 104 1335 1415 1495 1575 1655 r[s] h [M P a ]

h.

0 2.5 5 7.5 10 x 104 0 20 40 60 80 r[s] σ H [M P a ]

σ

H. 0 2.5 5 7.5 10 x 104 360 378 396 414 432 r[s] s [M P a ]

s

. 0 2.5 5 7.5 10 x 104 3 15 27 39 51 r[s] σ S [M P a ]

σ

S. 0 2.5 5 7.5 10 x 104 −0.5 −0.35 −0.2 −0.05 0.1 r[s] ρ [-]

ρ

. 13350 1415 1495 1575 1655 0.09 0.18 0.27 0.36 h[MPa] ρ h [1 / M P a ]

h

. 0 20 40 60 80 0 0.3 0.6 0.9 1.2 σH[MPa] ρσ H [1 / M P a ]

σ

H. 3600 378 396 414 432 0.3 0.6 0.9 1.2 s[MPa] ρ s [1 / M P a ]

s

. 3 15 27 39 51 0 0.5 1 1.5 2 σS[MPa] ρσ S [1 / M P a ]

σ

S. −0.50 −0.35 −0.2 −0.05 0.1 50 100 150 200 ρ[-] ρρ [-]

ρ.

(33)

Application to metal forming

Bayesian methodology (continued)

■ Nonintrusive projection method:

300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

blanc 300 350 400 450 500 1100 1300 1500 1700 1900

Yield stress [MPa]

Hardening modulus [MPa]

300 350 400 450 500 1300 1400 1500 1600 17000.04 0.05 0.06 0.07 s [MPa] k [MPa] a [rad]

0.040 0.05 0.06 0.07 50 100 150 200 Angle [rad]

Probability density [1/rad]

■ Propagation and sensitivity analysis of uncertainties:

0.040 0.05 0.06 0.07 50 100 150 200 250 Angle [rad]

Probability density [1/rad]

Propagation. H S 0 0.25 0.5 0.75 1 1.25 Significance [−] Sensitivity analysis.

(34)

Conclusion

■ Modeling errors due to data limitations and modeling simplifications can affect parametric uncertainty quantification.

■ We revisited the Bayesian methodology, which allows modeling errors due to data limitations to be represented by inferring a posterior PDF for the parameters of the PDF for the input variables. This ultimately leads to error bounds on the results of the parametric uncertainty quantification.

■ The novelties introduced in this presentation concern the implementation:

◆ sampling from the posterior PDF by means of an MCMC method based on an Ito SDE,

◆ nonintrusive projection method.

■ We demonstrated the proposed framework on an application relevant to metal forming.

(35)

References

■ R. Ghanem and A. Doostan. On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data. Journal of Computational Physics, 217:63–81, 2006.

■ C. Soize. Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices. International Journal for Numerical Methods in Engineering, 76:1583–1611, 2008.

■ M. Arnst, R. Ghanem, and C. Soize. Identification of Bayesian posteriors for coefficients of chaos coefficients. Journal of Computational Physics, 229:3134–3154, 2010.

■ M. Arnst and J.-P. Ponthot. An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. International Journal for Uncertainty Quantification, 4:387–421, 2014.

Références

Documents relatifs

فارشإ :روتكدلا ملاسلا دبع يواز دادعإ ةبلطلا : لداع يداوعلا حبار يمشاه.. ومعن ليزج ىلع ركشلاو ،قحلاب قحلأا ويف اكرابم ابيط ادمح لله دمحلا. " ملسو ويلع ىلص لوسرلا

Figure 53 : Effets d’un traitement par rAAV9 sur les taux d’ARNm de différentes molécules impliquées dans le stress oxydatif dans un modèle d’ICC chez le rat Wistar Nous

Finally, regarding the optimization of exact algorithms for U min ante and U ante max by Dynamic Programming, the results are quite similar to U ante + min and U ante −max :

Rietveld refinements evidenced the continuous decrease of both Fe-(Se,S) bond length and Fe-(Se,S) height with sulfur content in Tl 1−y Fe 2−z (Se 1−x S x ) 2. As

Walker, la présente étude note une incompatibilité physique entre l’épinéphrine, la dopamine, la morphine, la nitroglycérine, le dimenhydrinate et la céfazoline avec le

Through a rigorous data treatment analysis, they suggested a five-part mechanism involving the adsorption of the proton and phospholipid species at the interface as

For the contact to recede on a gel substrate, the actual contact angle of the droplet with respect to the slope of the substrate ∆θ = θ drop − θ gel must correspond to the

In the present paper, we try to overcome the shortcomings associated with the use of multiple bibliometric measures by proposing a procedure to evaluate a global