• Aucun résultat trouvé

Process Design and Heat Integration for the Power - to - Methanol Route

N/A
N/A
Protected

Academic year: 2021

Partager "Process Design and Heat Integration for the Power - to - Methanol Route"

Copied!
13
0
0

Texte intégral

(1)

Process Design and Heat Integration for the

Power-to-Methanol Route

Léonard Grégoire, Giulini Davide, Villarreal-Singer Diego, Dumont Marie-Noëlle

Nice, ECCE 10, September 2015

(2)

Outline

1. Introduction

2. Model Description

3. Results

4. Heat Integration

5. Conclusions and Further Work

(3)

1. Introduction

3 Background:

Renewable Energy Storage with Liquid Fuels

 European Commission goals to reduce greenhouse gas emissions by 80% below 1990 levels by 2050, 20% by 2020 (Energy Roadmap 2050).

 Varying nature of renewable sources causes time imbalance between production and consumption.

 Need for energy storage at different time-scales:

 Second and minute scale for frequency regulation  Inter-seasonal scale: Power-to-gas, power-to-fuel

(4)

1. Introduction

Power-to-Methanol route

I. CO2 Capture

II. H2O/CO2 Co-Electrolysis

III. Methanol Synthesis and Purification

Methanol as liquid energy carrier  - easy and cheap long term energy storage (22.7 MJ/kg) - converted to electricity or fuel use

- CO2 neutral, if renewable sources are used

Léonard et al., 2015. Electricity storage with liquid fuels in a zone powered by 100%

(5)

2. Model Description

5

H

2

O/CO

2

Co-Electrolysis model

1. H2 + CO2 → H2O + CO 2. H2O → H2 + ½ O2

CO2 → CO + ½ O2 3. H2 + CO2 → H2O + CO

- Redlich-Kwong-Soave equation of state - Solid Oxide Electrolysis Cell at 850°C and 1.013 bar

- H2O/CO2/H2 feed ratio: 100/45/10 - Operation at thermoneutral point - H2O and CO2 utilization factor: 70% Outlet

Gas

Present Model Sun et al. (2012) Relative Molar Fraction [%] Molar Fraction [%] Error [%]

H2O 15.2 15.0 1.33

H2 39.7 40.0 0.75

CO 33.2 32.0 3.75

(6)

2. Model Description

6

Methanol Synthesis model

CO2 + 3 H2

CH3OH + H2O CO2 + H2

CO + H2O

Bos and Brilman, 2014. DOI:10.1016/j.cej.2014.10.059

Methanol Synthesis usually reaches low per-pass conversions:

- Strongly exothermic reaction (low temperature required)

- Need for high pressure (~50 bar)

- High recycle flow for industrial processes

Internal Condensation Reactor

- Internal liquid condensation and gas recirculation

- Leads to 100% conversion

- Small scale applications allow better heat management

(7)

2. Model Description

7

Methanol Synthesis model

DIST COL METRECOV DIST COND PRGSPLIT HT XREC FLASH COOLREAC FEEDHEAT MIX REACT OR BACKPRES REACIN REACOUT DIST IN DIST 1 WAT DIST 2 EXHAUST MET R2 REC PURGE R1 FLASHIN FP5 S1 METWAT 1. Methanol Synthesis

- Redlich-Kwong-Soave equation of state

- Simplified Reactor (equilibrium is achieved): 250°C; 50 bar - Side reactions neglected

- Condenser: 25°C; 50 bar - Recycle (2% purge) 2. Methanol Purification - NRTL model - Distillation column with 11 stages - 1.013 bar

(8)

2. Model Description

8

Global Model

R EQUIL 1RWGS HT 2 HT 1 MIXER SEP R STOIC 2ELECTR R EQUIL 3RWGS DIST COL METRECOV DIST COND PRGSPLIT HT XREC FLASH COOLREAC FEEDHEAT FCOMP1 MIX FCOMP2 ICFCOND KOD ICFHTX FEEDCOOL REACT OR HT XH2 BACKPRES 1IN 2IN LIQ1 F3 CO2 F2 H2O H2 2OUT O2OUT CATHOUT HOTSYNG LIQ3 REACIN REACOUT DIST IN DIST 1 WAT DIST 2 EXHAUST MET R2 REC PURGE R1 FLASHIN FP5 MF3 FP1 FP4 FP3 FP2 WAT IC MF2 WAT KOD S1 F1 METWAT

Sub-processes linked through 2 stages-compression with intermediate cooling. Models of the two parts are validated separately, according to experimental

(9)

3. Results

9  The H/C ratio achieved in the produced syngas is equal to 2.4.

The electrical energy consumed by the electrolyser 5584 kW, almost 53% of the sub-process total energy demand.

 Results are validated with a relative error of 3.75%.

 Methanol synthesis reactor reaches per-pass conversion of hydrogen up to 22.4% and overall conversion of 99.8%.

(10)

4. Heat Integration

Pinch Point Analysis

• Problem targeting:

6 cold streams – 7 hot streams • Minimum approach ΔT: 20°C • Pinch point: 245.2°C

• Minimum utility requirements Hot: 935.6 kW

Cold: 1563.3 kW

Heat Exchanger Network

• Maximum energy recovery design saves 73% of

energy required. • Above the pinch:

3 HE and 5 hot utilities • Below the pinch:

9 HE and 6 cold utilities

0 100 200 300 400 500 600 700 800 900 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Sh ifted Te m p e ratu re [ °C] Heat Flow [kW] Cold Composite Curve Hot Composite Curve

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 H e at Str e am N u m b e r Actual Temperatures [°C] Cold Hot Pinch Pinch 10

(11)

4. Heat Integration

Economic Evaluation

• Overall Heat Transfer Coefficient (U) preliminary estimation for each exchanger.

• Total Heat Transfer Area (A) estimation: 2657 m2. • Bare module cost (CBM) estimation using method described by Turton et al. (2013), updated with CEPC Index (April 2015): 6,292,835 €.

Q = U · A · ΔT

LMTD

· f

A

tot

= Σ

i

[Q

i

/ (ΔT

LMTD,i

· U

i

)]

C

BM

= C

0

· (B

1

+ B

2

f

m

f

p

)

Efficiency Assessment

• Process efficiency without HEN: 51.4%. • Process efficiency with HEN: 70.8%.

11

HHV

out_Met

– HHV

in_H2 η =

Q

in

+ P

el

+ P

comp Inlet H2 HHV (HHVin_H2) Outlet Methanol HHV (HHVout_Met) Electrical Power Input (Pel) 0.795 7.053 7.316 Hot Utilities without HEN (Qin) Hot Utilities with HEN (Qin) Compression Power Input (Pcomp) 4.265 0.936 0.590 MW

(12)

5. Conclusions and Further Work

12  An efficient process for CO2-neutral methanol production is proposed as

long-term energy storage.

 Production rate of 1 tonCH3OH/hr, corresponding to typical decentralized energy storage.

 Benefits from a heat exchangers network design, but high capital cost needed.

 Solid Oxide cells allow both electrolysis and fuel cell mode.

 A preliminary model is proposed, some further improvements are required: - Use of recycled H2 for the electrolyser

- Pressurized electrolyser

- Build a detailed reactor to implement methanol synthesis kinetics  Integration of carbon capture (Léonard, 2014) in the efficiency assessment.

(13)

Nice, ECCE 10, September 2015

Thank you for your attention!

Références

Documents relatifs

La plaque en aluminium est livrée avec un coussin de 30mm d’épaisseur haute- densité et d’une housse ignifugée et respirante. La position des troues de Ø 6.2mm sont identiques

Travaux relatif à la réalisation d'un réseau de chaleur DALKIA TRAVAUX 20-015 08/06/2020 4 ans Construction du conservatoire de musique et de danse de la. Ville de Rungis

Point eau froide Ø10/12 PER gainé pour LL/LV incluant 1patère et 1 robinet mural Cuisine pour Evier.. Points eau froide & chaude Ø10/12 PER gainé

[r]

- les avenants et décisions de poursuivre éventuels et tous les actes contractuels s’y référant, dans le cadre des crédits budgétaires inscrits pour cette opération. (Et

D’OFFRES OUVERT POUR LA FOURNITURE DE VEGETAUX DESTINES A LA PLANTATION SUR LES ESPACES VERTS DE LA VILLE DE LYON (DIRECTION DES ESPACES VERTS).. Le

Le présent avenant a pour objet de modifier l’annexe financière relative au plan de financement de l’opération 3 « Extension des réseaux d’eau potable et d’assainissement

Série ACCESS Pour un usage régulier sur chantier - Kit brouette : nous consulter Protection thermique - Équipé d’une sécurité de manque d’huile