• Aucun résultat trouvé

Simultaneous determination of insulin and its analogues in pharmaceutical formulations by micellar electrokinetic chromatography

N/A
N/A
Protected

Academic year: 2021

Partager "Simultaneous determination of insulin and its analogues in pharmaceutical formulations by micellar electrokinetic chromatography"

Copied!
7
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal

of

Pharmaceutical

and

Biomedical

Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Simultaneous

determination

of

insulin

and

its

analogues

in

pharmaceutical

formulations

by

micellar

electrokinetic

chromatography

Caroline

Lamalle

a

,

Anne-Catherine

Servais

a

,

Régis

P.

Radermecker

b

,

Jacques

Crommen

a

,

Marianne

Fillet

a,∗

aLaboratoryofAnalyticalPharmaceuticalChemistry,DepartmentofPharmacy,CIRM,UniversityofLiege,CHU,B36,B-4000Liege,Belgium bDepartmentofDiabetes,NutritionandMetabolicdisorders,CHUSartTilman,UniversityofLiege,Belgium

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16October2014 Receivedinrevisedform 17December2014 Accepted19December2014 Availableonlinexxx Keywords: Counterfeitmedicines Insulin

Micellarelectrokineticchromatography Qualitycontrol

Stability

a

b

s

t

r

a

c

t

AsimpleandefficientMEKCmethodwasdevelopedtosimultaneouslydeterminehumaninsulin,itsfive analogues,themaindegradationproductsandtheexcipientsusuallypresentininjectionformulations. Averyfastmethodwithatotalanalysistimeof3minwasthensuccessfullyvalidatedfortheanalysisof humaninsulinandthequalitycontrolofcommercialformulationswascarriedout.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Insulinisanimportanthormonesecretedbypancreatic␤-cells regulatingprincipallyglucosemetabolism.Currentlysynthesised by recombinant DNA technology, this hormone is commonly administered by subcutaneous injection for the treatment of insulin-dependent diabetes mellitus.Human insulin consistsof two peptide chains – A and B – containing 21 and 30 amino acid residues, respectively, and connected via two disulphide bridges(Fig.1).Ascanbeseeninthisfigure,thedifferentinsulin variantsarequitesimilarsincetheydifferonlybyonetothree aminoacids.Lispro,aspartandglulisinarerapid-actinganalogues that mimic postprandial insulin secretion.Glargin and detemir are long-acting analogues that mimic basal insulin secretion.

Abbreviations: ACN, acetonitrile; BGE,background electrolyte; CM-␤-CyD, carboxymethyl-␤-CyD; DNA, deoxyribonucleic acid; EOF, electroosmoticflow; HDAS-␤-CyD,heptakis(2,3-di-O-acetyl-6-O-sulfo)-␤-CyD;HDMS-␤-CyD,heptakis (2,3-di-O-methyl-6-O-sulfo)-␤-CyD;IS,internalstandard;N,numberoftheoretical plates,separationefficiency;OS-␥-CyD,octakis(2,3-dihydroxy-6-O-sulfo)-␥-CyD; pI,isoelectricpoint;SBE-␤-CyD,sulfobutylether-␤-CyD;TM-␤-CyD,heptakis (2,3,6-tri-O-methyl)-␤-CyD.

∗ Correspondingauthor.Tel.:+3243664345;fax:+3243664347. E-mailaddress:Marianne.fillet@ulg.ac.be(M.Fillet).

Protamineissometimesassociatedwithhumaninsulin,lisproor asparttoprovideanintermediateactionprofile[1].Theexcipients ofpharmaceuticalinjectionsaremainlymeta-cresolandphenol.

Diabetesisoneofthemostcommonmetabolicdiseasesinthe worldandtheprevalenceisincreasingeveryyear,especiallyfor type2diabetes.Alotofinsulinformulationsarethenproduced; theyareexpensiveandrequireaprescription.Thereforetheyare animportanttargetforcounterfeiting.Eveniftheproportionof counterfeitdrugsissuperiorindevelopingcountries,itisworth notingthatitisaffectingthewholeworldandmoreparticularlythe e-commerceinmoreeconomicallydevelopedcountries. Counter-feitedinsulinscontributetotherapeuticfailuresandinsomecases canalsoleadtodeath.Therefore,itisessentialforpublichealthto strengthenthecontrolofpharmaceuticalproductssuchasinsulin formulationsbydevelopingefficientandeasilyapplicablequality controlmethods.

Thedeterminationofinsulinhasbeenalreadydescribedinthe literaturebutmostpapersreportimmunochemicalmethodsfor themonitoringofbiologicalsamples[2–11].Someinstrumental analytical methods based onLCor CEwere alsodeveloped for theanalysisofpharmaceuticalformulationsbutonlyforhuman insulinquantificationinformulationswithoutprotamine[12–15]. Recently,CEandMEKCwereappliedtotheseparationofvarious insulinanalogues [16–18].Indeed,CEisanattractivetechnique http://dx.doi.org/10.1016/j.jpba.2014.12.038

(2)

Fig.1.Structureofhumaninsulinanditsanalogues.

withitswell-knownadvantagessuchassimplicity,highseparation efficiency,shortanalysistimeand lowsampleand solvent con-sumption.ItisconsideredasapowerfulalternativetoHPLCandis frequentlyusedfortheseparationoflargebiomolecules[19,20].

Theaimofthis workwastodevelop aneasyandfastMEKC methodforthesimultaneousdeterminationofhumaninsulin,its fiveanaloguesandtheexcipientsusuallypresentincommercial formulations.Astabilitystudywasalsoperformedanddegradation productscouldbeseparatedwiththesamemethod.Themethod wasshortened,adjustedandwasthenfullyvalidatedforhuman insulinanalysis.Itwasalsoappliedtothequalitycontrolof phar-maceuticalformulations,includingthosecontainingprotamine. 2. Materialsandmethods

2.1. Chemicalsandreagents

Acetic acid, ammonia, HCl (37%), ACN, SDS and ZnCl2 were

purchasedfromMerck(Darmstadt,Germany).Protamine,sodium

benzoate,glycerol,phenoland meta-cresolwere obtainedfrom Sigma-Aldrich(St.Louis,MO,USA).␥-CyDwasfromSigma-Aldrich. OS-␥-CyDwaskindlyprovidedbyProfessorG.Vigh(TexasA&M University, TX, USA). CM-␤-CyD, TM-␤-CyD and HDMS-␤-CyD werepurchased fromCyclolab (Budapest, Hungary).SBE-␤-CyD wasfromCyDexPharmaceuticals(Lenexa,KS,USA)andHDAS- ␤-CyDwasobtainedfromAntekInstruments(Houston,TX,USA).

Human insulin standard was obtained from Sigma-Aldrich. Different pharmaceutical formulations were also used: Humu-lineNPH®(humaninsulin)andHumalog®(insulinlispro)were obtained from Eli-Lilly (Indianapolis, IN, USA). Novomix 30® (insulinaspart)and Levemir®(insulindetemir)werepurchased from Novo Nordisk (Bagsvaerd, Denmark). Insuman Rapid® (humaninsulin),Apidra®(insulinglulisin)andLantus®(insulin glargin)wereobtainedfromSanofiAventis(Bridgewater,NJ,USA). Actrapid®andMixtard®(humaninsulins)werecollectedonthe internet.

Ultra-pure water was supplied by a Milli-Q equipment (Millipore, Bedford, MA, USA) and Chromafil® syringe filters

(3)

(0.20␮m) were purchased from Macherey-Nagel (Düren, Germany).

2.2. BufferandBGE

Thebufferwaspreparedbyaddingasolutionof50mMacetic acidtoasolutionof50mMammoniainordertoreachpH9.0.In thefinalconditions,theBGEwasmadebydissolving20mMSDSin thebuffer.Then,itwasmixedwithACN(13%v/v)andthesolution wasfilteredthroughasyringefilter.

ToprepareBGEwithotherreagentsmentionedinthestudy,the stepsweresimilarasmentionedabove.

2.3. Samplepreparation

2.3.1. BGEoptimizationandstabilitystudy

Pharmaceuticalformulations containing 100IU/ml of insulin were used for method development. This corresponds to 3.50mg/ml for human, lispro, aspart and glulisin insulins, 3.64mg/mlforglargininsulinand14.20mg/mlfordetemirinsulin. Human, lispro, aspart, glulisin and glargin formulations were diluted 80 fold in 0.01M HCl to obtain a concentration of approximately50␮g/ml(43.75or45.50␮g/ml).Unlessotherwise mentioned,detemirformulationwasdiluted160foldinthesame solvent(88.75␮g/ml).Themixtureofthe6insulinvariantswas alsopreparedasdescribedabove.Sodiumbenzoatewasselected asISandwaspreparedin0.01MHCl.Allanalysiswereperformed induplicate.

2.3.2. Validation

Calibrationandvalidationstandardsofhumaninsulinwere pre-paredin0.01MHCl,with100␮g/mlISand10%ACN.Calibration standardswerepreparedwithoutexcipientswhiletheexcipients (phenol,meta-cresol,glycerol,ZnCl2andprotamine)wereadded

inthevalidationstandards.Threequantificationlevelswere inves-tigated(80,100and120%),thetargetlevelof100%corresponding to4IU/ml(m=3).Fourreplicateswerepreparedateachleveland threeindependentserieswerecarriedout(k=3;n=4).

Calibrationstandardswereusedtosetupthecalibrationmodel forthemethodwhiletrueness,precision,accuracyandlinearity wereestimatedusingthevalidationstandards.

2.3.3. Qualitycontrol

Standardsolutionswerepreparedexactlylikecalibration stan-dards.Foursamplesolutionswerepreparedbydissolutionofthe pharmaceuticalformulationin0.01MHCltoobtainaconcentration of4IU/ml,takingintoaccounttheadditionofISandACN(n=4). For-mulationscontaininghumaninsulin(Actrapid®,InsumanRapid®) andhumaninsulinwithprotamine(Mixtard®,HumulineNPH®) contain100IU/ml.

2.4. Instrumentation

All the experiments were carried out on a HP3DCE system

(AgilentTechnologies, Waldbronn,Germany) equipped withan autosampler,anon-columnDADandatemperaturecontrol sys-tem(15–60◦C±0.1◦C).Chemstation(Hewlett-Packard,PaloAlto, CA,USA)wasusedforinstrumentcontrol,dataacquisitionanddata analysis.Fusedsilicacapillarieswereprovidedby ThermoSepara-tionProducts(SanJose,CA,USA).

2.4.1. BGEoptimizationandstabilitystudy

Electrophoreticseparationswerecarriedoutinuncoatedfused silicacapillarieswith50␮mi.d.and48.5cmtotallength(40cm effectivelength).Atthebeginningofeachworkingday,thecapillary waswashedwith1MNaOH,0.1MNaOHandwaterfor10mineach. Beforeeachinjection,thecapillarywassuccessivelywashedwith

1MNaOHfor2min,waterfor1minandwasthenequilibratedwith theBGEfor4min.Aftereachrun,thecapillarywaswashedwith 0.01MHClfor5minandwaterfor1min.Capillarywashcycleswere performedatapressureofapproximately1bar.Injectionswere madebyapplyingapressureof50mbarforaperiodof5s.During therun,theappliedvoltagewas20kVandthecapillarywas ther-mostatedat20◦C.Electropherogramswererecordedat200nm. 2.4.2. Validationandqualitycontrol

Toreduceanalysistime,theinjectionwasmadeattheshort cap-illaryend(8.5cmeffectivelength).Moreover,theoutletelectrode wasimmersedin0.01MHClaftereachinjection.

Validationdatawereprocessedusingthee.noval®3.0software (Arlenda,Liege,Belgium).

3. Resultsanddiscussion 3.1. Preliminarystudies

Abasicbuffercomposedof50mMammoniumacetate(pH9.0) wasselectedbecauseitinducedanimportantandstableEOFand itprovidedbetterpeakshapethanacidicbuffers.

Fig.2. Electropherogramofthesixinsulinformulations.(A)BGE:50mM ammo-niumacetatepH9.0.(B)BGE:50mMammoniumacetatepH9.0+50mMSDS+15% ACN.OtherconditionsaredescribedinSection2.3.1.Peaks:1=phenol,2=m-cresol, 3=aspart,4=human,5=lispro,6=glulisin,7=glargin,8=detemir.

(4)

Assomeformulations containedprotamine, thesample dis-solution medium was also optimised. Indeed, protamine is a basic and aliphatic protein which forms withinsulin and zinc a complex insoluble at neutral pH. An acidic pH was then requiredtosolubiliseprotamine,butalsoglargin.Asolutionmade of 0.01M HCl was finally chosen as dissolution and dilution solvent.

3.2. BGEoptimizationfortheseparationofhumaninsulinandits analogues

Fig.2Ashowstheelectropherogramofthemixturecontaining sixpharmaceuticalformulations(humaninsulinanditsfive ana-logues)undertheconditionsmentionedinthepreliminarystudies. Ascanbeseeninthisfigure,alltheanalogueswerenotseparated.As theirmolecularweights(∼5800Da)andpIs(∼5.5)arequitesimilar, theyhavealmostidenticalelectrophoreticmobilitiesandtheir sep-arationbyconventionalCEisnoteasy.Therefore,someadditives wereusedtoimprovetheseparation.

First,differentCyDwerechosentoinvestigatetheirselectivity towardsinsulinsaccordingtotheirsizeandtheirdifferent sub-stituents:␥-CyD,OS-␥-CyD,CM-␤-CyD,TM-␤-CyD,HDMS-␤-CyD, SBE-␤-CyDandHDAS-␤-CyD.TheCyDconcentrationstested(15 and30mM)areinagreementwiththosecommonlyusedinour laboratory.Themigrationprofilewasmodifiedbysomeofthem butthiswasnotsufficienttoobtainacompleteresolution(data notshown).

MEKCwastheninvestigated.SDSisthemostcommonlyused surfactant and was tested at different concentrations (35 and 50mM)inthepresence–ornot–ofanorganicmodifier(0–20% ACN).

Theadditionof50mMSDSledtotheseparationofthetwomajor excipients,phenolandmeta-cresol,butnotofallinsulins.Thesame observationwasmadewith10%ACNv/vaddedtotheSDSsystem. Goodresultswereobtainedwith15%ACNsincethesixinsulins werecompletelyseparatedwithin15min(seeFig.2B).Itisworth notingthatamultivariateapproachcouldnotbeappliedinthis studybecauseoftooextremeresponses(withon/offeffects)when afactorwasmodified.

Theseresultsare inaccordance withpreviousreports which indicatedthatsmallpeptidescouldbesuccessfullyseparatedby MEKC[21–24]andthattheadditionoforganicsolventwasrequired toseparatecloselyrelatedpeptideswithmorethan20aminoacid residues[25,26].Indeed, proteinsstronglyinteractwith surfac-tantsandtendtoformcomplexes.Theorganicsolventaddedto themicellarsolutioncanpreventthisinteraction.

Theoptimizedconditionledtothefollowing insulins migra-tionorder: aspart,human, lispro, glulisin, glarginand detemir. Indeed,withitsC14fattyacidchain,detemiristhemost hydropho-bicanalogueandthusinteractsmorestronglywiththesurfactant. Fortheothercompounds,aMEKCsystemwithanorganic modi-fiermakestheinterpretationverycomplexasalotofparameters areinvolvedinthemigrationbehaviour[27].Indeedthe interac-tionsdependonthelogPandthechargeoftheanalyte(possible ion-pair formation).However, thepresence of ACN in the BGE reduces the interactions with the micelles and the migration behaviourcanbesignificantlymodifiedfromoneanalytetothe others [27]. Attention can be paid to the resolution obtained betweenhumanandlisproinsulinswhichdifferonlybythe inver-sionoftwoaminoacids(Fig.1).Thissuggeststhatthesecondary structureof theproteincouldalsoplayan essentialrole inthe interactionwiththesurfactant,probablybecauseofdifferent expo-sitionsofhydrophobicsites.Theseparationofhumanandlispro insulins was also achieved thanks to the high peak efficiency (N≈150000).

3.3. Stabilitystudy

Astability studywascarriedout onthepharmaceutical for-mulationsstoredinarefrigerator(4–8◦C),atroomtemperature (20–25◦C)andat37±1◦Cduring3,7,14,21and28days.The per-centageofdegradationwasestimatedbycalculatingthepeakarea ratiobetweenthepossibledegradationproductandthesumofthe insulinandthepossibledegradationproduct.Nodegradationwas detectedafter28daysirrespectiveofthetemperature(datanot shown).

The insulin stability was also investigated in formulations diluted in 0.01MHCl and stored 24h, 48h and 6 days at the threepreviouslymentionedtemperatures(seeFig.3).No degra-dationwasobservedforthesampleskeptinrefrigerator.Asmall degradationwasdetectedforglulisinanddetemirstoredatroom temperaturebutonlyafter6days.Forthesamplesstoredat37◦C, degradationwasalreadyobservedafter24hforallinsulinsexcept aspartandglargin.ThissuggeststhatanacidicpHandaratherhigh temperature promote degradation. Degradation increased after 48hforthesameinsulinsandincreasedagainafter6daysforall insulinsexceptglargin.Thisexceptioncanbeexplainedbythefact thatthemaindegradationofinsulinoriginatesfromdeamidation atresidueA-21[28].Atthisposition,glarginhastheaminoacid GlyinsteadofAsn(Fig.1).Therefore,A-21deamidationcouldnot occurforglargininsulin.Fig.4demonstratestheselectivityofthe methodforimpuritydetection.

Thestabilityofhumaninsulinstandardwasalsostudiedafter dilutionin0.01MHClandstoragefor24h,48hand6daysatthe threepreviouslymentionedtemperatures.Despitetheabsenceof preservatives,thedegradationprofileofhumaninsulinstandard lookedquitesimilarcomparedtothatoftheformulation(seeFig.3). Insummary,samplesseemtoremainstableafter24or48hif storedatamaximaltemperatureof25◦C.

3.4. Methodvalidationforroutinequalitycontrolofformulations containinghumaninsulin

Todemonstratetheapplicabilityofourapproach forroutine analysis,amethodvalidationwascarriedoutforthequantification ofhumaninsulin.

Beforethevalidationand toreduceanalysistimeforroutine qualitycontrol,thepreviouslydevelopedmethodwasshortened. Theinjectionwasmadeattheshortcapillaryendleadingtoa 5-foldreductionoftheanalysistime.SmalladjustmentsoftheBGE composition(20mMSDSand13%ACN) wereprovided inorder toobtainsatisfactoryselectivitywiththedegradationproduct(cf. Fig.5A).10%ACNwasalsoaddedtothesamplestoguaranteethe stabilityofinsulinandpreventitsadsorption.

Itisworthnotingthatinthoseconditions,theseparationofthe 6insulinswithin3minwasalsoverygoodexceptthatbetween humaninsulinandlispro(Fig.5B).Itwasconsideredsufficientto performidentification,however,theinitialmethodcouldbeeasily appliedtoconfirmtheidentificationifindoubt.Selectivityofthe analyticalmethodwasassessedbyanalyzingreconstitutedblank solution(containingtheexcipientsincludedprotaminebutwithout insulin).Noendogenoussourceofinterferencewasobservedatthe migrationtimeofhumaninsulin.

Inordertoquantifyoneoftheseinsulins,sodiumbenzoatewas chosenasIS.Thenormalizedpeakarearatios(i.e.areasdividedby migrationtimes)betweentheactivecompoundandtheISwere calculated.

3.4.1. Selectionofthecalibrationmodel

Theacceptancelimitsweresetat±10%(cf.requirementofthe EuropeanPharmacopeaforHumanInsulinpreparations)andthe maximumrisk (1-␤) toobtainresultsoutside theseacceptance

(5)

Fig.3. Stabilitystudiesshowingthepercentageofdegradationasafunctionoftime.Pharmaceuticalformulationsdilutedin0.01MHCl.

limitswassetat5%.Differentregressionmodelswerefittedtothe calibrationstandardsandlinearregressionwaschosenasthemost appropriateresponsefunction(Fig.6).

3.4.2. Othervalidationcriteria

Table1presentsthevalidationresultsofhumaninsulin. True-nessofthemethodwasexcellentastheupperrelativebiasofthe methodwas1.272%.TheRSDvaluesforrepeatabilityand inter-mediateprecisionweresatisfactory(below3%),demonstratinga goodprecision.Themethodwasaccuratesincethelowerandupper

Fig.4. Effectof6daysstorageinHCl0.01Mandat37◦Conthesixinsulin for-mulations.BGE:50mMammoniumacetatepH9.0+50mMSDS+15%ACN.Other conditionsaredescribedinSection2.3.1.Peaks:*=degradationproduct.

tolerancelimitsdidnotexceedtheacceptancelimitsof10%over the consideredconcentration range. For all series, a regression linewasfittedtotheback-calculatedconcentrationsofthe vali-dationstandardsasafunctionoftheintroducedconcentrations. Theresultsattestingthemethodlinearity,namelytheregression

Fig.5. (A)Electropherogramofhumaninsulinwithitsdegradationproduct(2days storageinHCl0.01Mandat37◦C).Peaks:IS=sodiumbenzoate(IS),*=degradation

product,hum=humaninsulin.(B)Electropherogramofthesixinsulinformulations obtainedafteranalysisattheshortcapillaryend.BGE:50mMammoniumacetate pH9.0+20mMSDS+13%ACN.Peaks:1=phenol,2=m-cresol,3=aspart,4=human, 5=lispro,6=glulisin,7=glargin,8=detemir.Otherconditionsaredescribedin Sec-tion2.3.1.

(6)

Fig.6.Accuracyprofileofhumaninsulinobtainedbyconsideringlinearregression(range:3.2–4.8IU/ml).Plainline:relativebias,dashedlines:␤-expectationtolerance limits,dottedcurves:acceptancelimitsanddots:relativeback-calculatedconcentrations.

equationcorrespondingtothatrelationshipwiththecoefficientof determination,arepresentedinTable1.TheLODwasestimated at0.43IU/mlusingtheinterceptofthecalibrationmodelandthe residualvarianceoftheregression.Inthiscase,theLOQwasthe lowestconcentrationlevel,3.2IU/ml.

3.5. Qualitycontrolofhumaninsulinformulations

Aqualitativeandquantitativeanalysisoffourdifferent phar-maceuticalformulations(Actrapid®,Mixtard®,HumulineNPH® andInsumanRapid®)wascarriedoutaccordingtothevalidated method.Fourstandardsolutionsateachlevel(80,100and120%) andfoursamplesofeach formulationat4IU/mlwere indepen-dently prepared. To make the conversion from IU to mg and Table1

Validationresultsofhumaninsulin(k=3;m=3;n=4).

Day1 Day2 Day3

Responsefunction

Slope 0.1643 0.1594 0.1559

Intercept −0.04498 −0.01421 −0.005656

r2 0.9795 0.9739 0.9883

Level1 Level2 Level3

Trueness Relativebias(%) 1.272 0.4236 −0.06906 Precision Repeatability(RSD,%) 1.838 2.140 1.665 Intermediateprecision(RSD,%) 2.534 2.426 2.275 Accuracy

␤-expectationtolerancelimits(%) −5.877/8.421 −5.542/6.389 −6.445/6.307 Linearity Range(IU/ml) 3.2–4.8 Slope 0.9725 Intercept 0.1282 r2 0.9814 LOD(IU/ml) 0.43 LOQ(IU/ml) 3.2

k:numberofdaysofexperiments(series),m:numberofconcentrationlevels,n: numberofreplicatesperconcentrationlevelandperseries.

Table2

Analytical results for the quantification of human insulin in pharmaceutical formulations. Pharmaceutical formulations Concentration found(IU/ml) Percentageofthe claimedcontent(%) Repeatability (RSD,%) Actrapid® 3.90 97.3 1.34 Mixtard® 4.16 103.9 1.05 Humuline NPH® 4.29 107.2 0.91 Insuman Rapid® 4.02 100.5 3.84

thereforetoknowwhichweightofthestandardisneeded,theassay

inIU/mgandthelossondryingofthisstandardmustbetakeninto

account.

Theregressionequationwasusedtocalculatetheconcentration

ofthesamplesandthenthepercentageoftheclaimedcontent.The

meanofthepercentagesandtheRSDsaregiveninTable2.Allthe

testedformulationswereinsidethelimitsof90–110%. 4. Concludingremarks

Inthepresentstudy,MEKCwasusedtosimultaneouslyanalyse humaninsulinanditsfiveanalogues(lispro,aspart,glulisin,glargin anddetemir).AmethodwasdevelopedusingthefollowingBGE: 50mMammoniumacetatepH9.0,50mMSDSand15%ACN.Thesix insulinsandthetwomajorexcipientsofpharmaceutical formula-tionscouldbeseparatedwithin15min.Thismethodalsoexhibited selectivityregardingtheirprincipaldegradationproducts,sothat thesamplesstabilitycouldbestudiedasafunctionoftimeand temperatureofthestorage.

A fastmethodwith ananalysis time of 3minwas obtained byinjectingattheshortcapillaryendandbyusingthefollowing BGE: 50mM ammonium acetate pH 9.0, 20mM SDS and 13% ACN.Thismethodwasfullyvalidatedforhumaninsulinoverthe concentrationrangeof3.2and4.8IU/ml,withacceptancelimits of10%andariskof5%.Then,thequalitycontrolofformulations containinghumaninsulin,includingthose withprotamine, was successfully achieved. These investigations demonstrate the

(7)

interestingabilityofcapillaryelectrophoresisforquantificationof intactbiomolecules.

Acknowledgements

Manythanksare duetotheFondsNationaldela Recherche Scientifique(FNRS,Belgium)andtheFondsLéonFredericq(Liege, Belgium)fortheirfinancialsupport.

References

[1]S.Madsbad,Insulinandnewinsulinanalogueswithfocusontype2diabetes, in:C.E.Mogensen(Ed.),PharmacotherapyofDiabetes:NewDevelopments, Springer,US,2007,pp.53–65.

[2]W.Tong,E.S.Yeung,Determinationofinsulininsinglepancreaticcellsby cap-illaryelectrophoresisandlaser-inducednativefluorescence,J.Chromatogr.B: Biomed.Appl.685(1996)35–40.

[3]I.German,R.T.Kennedy,Rapidsimultaneousdeterminationofglucagonand insulinbycapillaryelectrophoresisimmunoassays,J.Chromatogr.B:Biomed. Sci.Appl.742(2000)353–362.

[4]V.Solinova,V.Kasicka,D.Koval,T.Barth,A.Ciencialova,L.Zakova,Analysis ofsyntheticderivativesofpeptidehormonesbycapillaryzone electrophore-sisandmicellarelectrokineticchromatographywithultraviolet-absorption andlaser-inducedfluorescencedetection,J.Chromatogr.B:Analyt.Technol. Biomed.LifeSci.808(2004)75–82.

[5]I.LePotier,G.Franck,C.Smadja,S.Varlet,M.Taverna,In-capillaryderivatization approachappliedtotheanalysisofinsulinbycapillaryelectrophoresiswith laser-inducedfluorescencedetection,J.Chromatogr.A1046(2004)271–276. [6]S.Descroix,I.LePotier,C.Niquet,N.Minc,J.L.Viovy,M.Taverna,In-capillary

non-covalentlabelingofinsulinandonegastrointestinalpeptidefortheir anal-ysesbycapillaryelectrophoresiswithlaser-inducedfluorescencedetection,J. Chromatogr.A1087(2005)203–209.

[7]M.Thevis,A.Thomas,P.Delahaut,A.Bosseloir,W.Schanzer,Qualitative deter-minationofsyntheticanaloguesofinsulininhumanplasmabyimmunoaffinity purificationandliquidchromatography–tandemmassspectrometryfordoping controlpurposes,Anal.Chem.77(2005)3579–3585.

[8]C.Guillo,M.G.Roper,Two-colorelectrophoreticimmunoassayfor simulta-neousmeasurementofinsulinandglucagoncontentinisletsofLangerhans, Electrophoresis29(2008)410–416.

[9]J.F.Dishinger,K.R.Reid,R.T.Kennedy,Quantitativemonitoringofinsulin secre-tionfromsingleisletsofLangerhansinparallelonamicrofluidicchip,Anal. Chem.81(2009)3119–3127.

[10]C. Guillo,T.M.Truong,M.G.Roper,Simultaneouscapillary electrophoresis competitiveimmunoassayforinsulin,glucagon,andisletamyloid polypep-tidesecretionfrommouseisletsofLangerhans,J.Chromatogr.A1218(2011) 4059–4064.

[11]C. Hess,A.Thomas, M.Thevis,B.Stratmann,W.Quester,D. Tschoepe,B. Madea,F.Musshoff,Simultaneousdeterminationandvalidated quantifica-tionofhumaninsulinanditssyntheticanaloguesinhumanbloodserumby

immunoaffinitypurificationandliquidchromatography–massspectrometry, Anal.Bioanal.Chem.404(2012)1813–1822.

[12]A.Kunkel,S.Günter,C.Dette,H.Wätzig,Quantitationofinsulinbycapillary electrophoresisandhigh-performanceliquidchromatography.Method com-parisonandvalidation,J.Chromatogr.A781(1997)445–455.

[13]P.Moslemi,A.R.Najafabadi,H.Tajerzadeh,Arapidandsensitivemethodfor simultaneousdeterminationofinsulinandA21-desamidoinsulinby high-performanceliquidchromatography,J.Pharm.Biomed.Anal.33(2003)45–51. [14]B.Deng,Z.Liu,G.Luo,H.Ma,M.Duan,Rapidquantitativedeterminationand assessmentofinsulininoilformulationbymicellarelectrokineticcapillary chromatography,J.Pharm.Biomed.Anal.27(2002)73–80.

[15]A.Staub,S.Rudaz,J.L.Veuthey,J.Schappler,Multipleinjectiontechniquefor thedeterminationandquantitationofinsulinformulationsbycapillary elec-trophoresisandtime-of-flightmassspectrometry,J.Chromatogr.A1217(2010) 8041–8047.

[16]K.Ortner,W.Buchberger,M.Himmelsbach,Capillaryelectrokinetic chro-matographyofinsulinandrelatedsyntheticanalogues,J.Chromatogr.A1216 (2009)2953–2957.

[17]M.Haunschmidt,K.Ortner,K.Hainz,E.Bradt,L.Sternbauer,W.Buchberger, C.W.Klampfl,Investigationsonthemigrationbehaviorofinsulinandrelated syntheticanaloguesinCZE,MEKCandMEEKCemployingdifferentsurfactants, Electrophoresis31(2010)1560–1564.

[18]H.H.Yeh,H.L.Wu,C.Y.Lu,S.H.Chen,Simultaneousdeterminationofregular insulinandinsulinaspartbycapillaryzoneelectrophoresisandapplicationin drugformulations,J.Pharm.Biomed.Anal.53(2010)145–150.

[19]N.F.Visser,M.vanHarmelen,H.Lingeman,H.Irth,On-lineSPE-CEforthe deter-minationofinsulinderivativesinbiologicalfluids,J.Pharm.Biomed.Anal.33 (2003)451–462.

[20]A.Staub,D.Guillarme,J.Schappler,J.L.Veuthey,S.Rudaz,Intactproteinanalysis inthebiopharmaceuticalfield,J.Pharm.Biomed.Anal.55(2011)810–822. [21]H.J. Liu, R.E. Strong, I.S. Krull, S.A. Cohen, Homogeneouspreparation of

fluorescent-derivatizedinsulinanditsapplicationtocompetitive chromato-graphicimmunoassays,Anal.Biochem.298(2001)103–111.

[22]H.Nishi,S.Terabe,Micellarelectrokineticchromatographyperspectivesindrug analysis,J.Chromatogr.A735(1996)3–27.

[23]B.Stanley,K.A.Mehr,T.Kellock,J.D.VanHamme,K.K.Donkor,Separationand determinationofcloselyrelatedlantibioticsbymicellarelectrokinetic chro-matography,J.Sep.Sci.32(2009)2993–3000.

[24]Y.Wu,J.Xie,F.Wang,Z.Chen,Separationofsmallmolecularpeptideswithsame aminoacidcompositionbutdifferentsequencesbycapillaryelectrophoresis, J.Sep.Sci.32(2009)437–440.

[25]T.Yashima,A.Tsuchiya,O.Morita,S.Terabe,Separationofcloselyrelatedlarge peptidesbymicellarelectrokineticchromatographywithorganicmodifiers, Anal.Chem.64(1992)2981–2984.

[26]C.Arcelloni,L.Falqui,S.Martinenghi,A.E.Pontiroli,R.Paroni,Capillary elec-trophoresisforsimultaneousquantificationofhumanproinsulin,insulinand intermediateforms,Electrophoresis19(1998)1475–1477.

[27]C.Lamalle,A.C.Servais,I.Fradi,J. Crommen,M.Fillet,Micellar electroki-neticchromatographysystemsfortheseparationofmixturesofchargedand unchargedcompounds,J.Sep.Sci.35(2012)1933–1939.

[28]J.Brange,L.Langkjaer,Chemicalstabilityofinsulin.3.Influenceofexcipients, formulation,andpH,ActaPharm.Nord.4(1992)149–158.

Figure

Fig. 1. Structure of human insulin and its analogues.
Fig. 2. Electropherogram of the six insulin formulations. (A) BGE: 50 mM ammo- ammo-nium acetate pH 9.0
Fig. 3. Stability studies showing the percentage of degradation as a function of time
Fig. 6. Accuracy profile of human insulin obtained by considering linear regression (range: 3.2–4.8 IU/ml)

Références

Documents relatifs

Theoretical Study of Fireflies Light Emitter and its Analogues: Color Modulation.. Madjid Zemmouche, Cristina Garcia-Iriepa, Romain Berraud-Pache,

Here is presented a detailed analysis of the photochemical and photophysical properties of all the possible chemical forms of oxyluciferin and their analogues in explicit water

Dans la ferme du futur, le paysan utilisera l’ informatique et surveillera à distance les robots , qui, à sa place, sauront s’occuper des vaches laitières et les traire, cueillir

Utlisez la droite gradu´ ee pour calculer chaque

Goverde M, Bazin A, Shykoff JA, Erhardt A (1999) Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaeni-

Both cases raise the question of whether an insurer must accept payment from a third party as the payment of the policyholder, even though it seeks to be relieved of its obligation

Ultra-rapid Lispro (URLi) reduces postprandial glucose excursions vs. Humalog® in patients with T1D at multiple meal-to-dose timing intervals. Danne T, von Schutz W, Lange K,

Semen is produced by different organs and constitutes a non-invasive biological sample that fits very well the exposure-effect biomarker paradigm discussed in this work, since it