• Aucun résultat trouvé

Constraining mixing processes in 16CygA using Kepler data and seismic inversion techniques

N/A
N/A
Protected

Academic year: 2021

Partager "Constraining mixing processes in 16CygA using Kepler data and seismic inversion techniques"

Copied!
20
0
0

Texte intégral

(1)

CONSTRAINING MIXING PROCESSES IN 16CYGA USING KEPLER DATA AND SEISMIC INVERSION TECHNIQUES

Gaël Buldgen Pr. Marc-Antoine Dupret

Dr. Daniel R. Reese

University of Liège June 2015

(2)

GENERAL STRUCTURE OF THE PRESENTATION

1 State of the art;

2 Forward modelling of 16CygA (Seismic, spectro, interfero);

3 Inversions to further constrain 16CygA? (Mass and age);

(3)

THE 16CYG BINARY SYSTEM (A & B (+C+Bb) - 16CYGA

Kepler’s best in class! Solar-like binary system. 20 40 60 80 100 1400 1600 1800 2000 2200 2400 2600 2800 3000 F re q u en cy ν (µ H z) Frequency modulo 103.75 (µH z) ℓ= 0 Modes ℓ= 1 Modes ℓ= 2 Modes ℓ= 3 Modes 16CygA properties < ∆ν > (µHz) 103.78 Teff (K ) 5830 ± 50 Yf (dex) 0.24 ± 0.01 Fe H (dex) 0.096 ± 0.026 log g (dex) 4.33 ± 0.07 R (R ) 1.22 ± 0.02

Extensively studied: Metcalfe et al. 2012, Ramirez et al. 2009, Verma et al. 2014, Tucci-Maia et al. 2014, White et al. 2013, Davies et al. 2015, ...

(4)

POSITION OF THE PROBLEM

Chemical composition problem:

Metcalfe et al. 2012(AMP):Y0 = 0.25 ± 0.01 (Yf ≈ 0.20); Verma et al. 2014 (Glitches): Yf = 0.24 ± 0.01

⇒Y0≈ 0.28 − 0.30.

Verma et al. 2014, ApJ, 790, 138.

We consider: Yf ∈ [0.23, 0.25](Verma et al. 2014)  Z X  f ∈ [0.0209, 0.0235] (AGSS09 with Ramirez et al. 2009)

(5)

MODELLING STRATEGY

Five-step process

1 Compute reference models (Levenberg-Marquardt algorithm); 2 Carry outinversionsof acoustic radiusand mean density; 3 Improve the models - computenew reference models; 4 Carry outinversionsforcore conditions;

5 Buildmodels fitting this additional constraint.

A few comments...

Localminimization algorithm;

Dependency on solar mixture(here AGSS09) for XZ;

Dependencyof mass and age on thephysical ingredients of the models. Local behaviour assessed by starting from various initial conditions...

(6)

MODELLING RESULTS - FITTING PROCESS 1500 2000 2500 3000 0 2 4 6 8 10 12 S m a ll S ep a ra ti o n ˜ δν n ,l (µ H z )

Observed Frequency νobs(µHz) No diffusion Diffusion Observation ˜ δν0,2Dif f ˜ δν0,2N odif f ˜ δνObs 0,2 ˜ δν1,3Dif f ˜ δν1,3N odif f ˜ δνObs 1,3 Free parameters M , age, αMLT, X0, Z0. Diffusion treatment (Thoul et al. 1994) Constraints < ∆ν >, ˜δνn,l, Teff, Yf,  Z X  f. + check the values of R, log g and L after the fit.

(7)

MODELLING RESULTS - DIFFERENCES WITH PREVIOUS STUDIES 0.98 1 1.02 1.04 1.06 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 Mass (M⊙) A ge (G y ) Y=0.25, Z/X=0.0222 Y=0.24, Z/X=0.0209 Y=0.24, Z/X=0.0222 No diffusion Slow diffusion

Full treatment of diffusion

Impact of mixing + chemical composition!

Results:

M between0.97 and 1.07 M ;

Age between6.8 and 8.3 Gy; αMLT around 1.6 ≈ 1.7 (solar). Origin of the difference with

Metcalfe et al. 2012? ⇒ Yf Metcalfe Us et al. 2012 M (M ) 1.11 1.09 Age (Gy) 6.9 7.1

(8)

SEISMIC INVERSIONS - A BRIEF INTRODUCTION

In helioseismology

In asteroseismology

Sola Method Starting point: integral relations

Structure - Frequency relations (Gough & Thompson 1991)

Fit of a target using linear combinations of kernels Localized function (Gaussian) to obtain structural profiles

=

=

Related to corrections of an integrated quantity (Pijpers & Thompson1994) (Reese et al. 2012) (Buldgen et al. 2015)

(9)

INVERSION RESULTS - ACOUSTIC RADIUS AND MEAN DENSITY

Inversion

Reference Values

Inverted results

Inversion for the acoustic radius, τ and the mean density ¯ρ Good kernel fit;

Small Dispersion of the results;

Unable to reduce the dispersion of mass and age. But: ⇒ Can be used as supplementary constraints! Result: Improved reference models by also fitting τ and ¯ρ.

(10)

INVERSION TECHNIQUE - CORE CONDITIONS INDICATOR Goal: probing the core by probing the u0 = Pρ00 ∝ Tµ gradient.

0 0.1 0.2 0.3 0.4 0.5 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 Position x=r/R W ei g h te d ! d u d x " 2

Diffusion from Thoul et al. (1994) No diffusion

XC= 0.32

XC= 0.38

XC= 0.41

Improving models ⇒ Improving fundamental parameters! Definition: tu =R0Rf (r ) du 0 dr 2 dr Very sensitive to changes in core conditions.

See Buldgen et al. (submitted).

(11)

INVERSION RESULTS - CORE CONDITIONS INDICATOR

The sensitivity of the indicator allows us to constrain chemical composition and diffusion!

0.81 0.82 0.83 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 Mean density ¯ρ(g/cm3) In d ic at or tu (g 2/c m 6) Inversion results Reference values 0.021 0.0215 0.022 0.0225 0.023 0.0235 0.23 0.235 0.24 0.245 0.25 Yf (Z/X)f

(Z/X)f,A∈[0.0209 0.0235] (Ramirez et al. 2009)

(12)

INVERSION RESULTS - CORE CONDITIONS INDICATOR

How does it constrain mass and age?

0.967 0.98 1 1.02 1.04 1.06 1.08 7.5 8 8.5 Mass (M⊙) A ge (G y ) Initial Models Subbox Models M (M ) 0.96 − 1.0 Age (Gy) 7.0 − 7.4 Y0 (dex) 0.30 − 0.31 Z0 (dex) 0.0194 − 0.0199 L (L ) 1.49 − 1.56 R (R ) 1.19 − 1.20 Solar values: Y0= 0.2703, Z0= 0.0142

From 5% to 2% in mass and 8% to 3% in age! (Also 3% to 1% in radius, between 1.19 and 1.20 R ).

(13)

COMMENTS AND PERSPECTIVES

In conclusion:

Strong constraints on chemical mixing and composition; Reduction of mass and age dispersion ⇒ crucial for PLATO; Importance of Y constraints and incompatibility with GN93; Consistent independent modelling of 16CygB.

But let us not be mistaken:

Age is model-dependent (3% ⇒ Internal error!);

We need additional indicators (Convection, Opacity,...).

Philosophy: Inversions are a tool using seismic information that will, through synergies with stellar modellers, help us build more physically accurate descriptions of stellar structure.

(14)
(15)

APPENDICES 0 0.2 0.4 0.6 0.8 1 −50 0 50 100 Position r/R KA v g ,tu 0 0.2 0.4 0.6 0.8 1 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 Position r/R KC r o s s ,tu

(16)

APPENDICES

With Yf = 0.24, (Z /X )f = 0.0204

M = 0.96M Age = 7.23Gy

Depending on the assumed chemical composition, always less massive than 16CygA. tu serves as a consistency check but no gain in accuracy. 1 1.02 1.04 1.06 1.08 2 2.5 3 3.5 4 ¯ ρ(g/cm3) tu (g 2/c m 6) Reference models Inverted Values

(17)

GN93 MIXTURE

If one considers GN93, we obtainXZ

f ∈ [0.0287, 0.0316], the box is simply around different Z /X values.

slightly higher masses (1.03M ), slightly higher radii; slightly lower ages (around 6.8Gy);

Using tu :

The models reach values of tu = 3.01g2/cm6 if one considers the lowest metallicity with the higher helium content and diffusion.

(18)

APPENDICES 0 0.2 0.4 0.6 0.8 1 −10 −5 0 5 10 Position r/R KA v g ,¯ρ 0 0.2 0.4 0.6 0.8 1 0 20 40 Position r/R KC r o s s ,¯ρ 0 0.2 0.4 0.6 0.8 1 −5 0 5 Position r/R KA v g ,τ 0 0.2 0.4 0.6 0.8 1 −20 −10 0 Position r/R KC r o s s ,τ

(19)

APPENDICES 0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 3 3.5 Position r/R Tρ Tρ= 4πx2ρ˜ 0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 60 Position r/R Tτ Tτ=1 ˜ c 0 0.2 0.4 0.6 0.8 1 −20 −10 0 10 20 30 40 Position r/R Tt Tt=1 xd˜dxc 0 0.2 0.4 0.6 0.8 1 −0.5 0 0.5 1 1.5 2 Position r/R Ttu Ttu= f (x)!u dx "2 ¯ ρ=R0R4πr2ρdr ∝ (∆ν)2 τ=RR 0 1cdr ∝ (∆ν)−1 tu=R0Rf (r) !du dr "2 dr t =R0R1 rdrdcdr ∝νδν∆ν

(20)

APPENDICES 0 1 2 3 4 5 6 x 109 5 5.5 6 6.5 7 7.5x 10 65 Age (Gyr) tu (g 2) 0 1 2 3 4 5 6 x 109 −3 −2.5 −2 −1.5 −1x 10 −3 Age (Gyr) t (s − 1)

Références

Documents relatifs

&amp; By By using the using the Biomas Biomas multi multi - - agent system to agent system to s s imulate imulate transfers at territorial scale transfers at territorial

The creation of reference models for each sector constitutes a basis for the development of tools and methods to assist in the management of social and

Nonetheless, these methods also require the development of accurate and stable enough Finite Volume schemes in order to compute the mean values (i.e. mean density, mean velocity

(i) The numerical method which has been proposed herein, which combines the use of the three-phase approach and the relaxation procedure, enables to cope with both the three-phase

Therefore, extrin- sic anisotropy introduced by fi ne layering might explain the lithospheric anisotropy in PREM, in addition to the com- monly claimed intrinsic anisotropy; while

b) Corresponding reconstructed tree in which only extant species are present. This is the type of tree we usually work with because actual phylogenetic trees are usually obtained

Dans la mesure o` u plusieurs centaines de sc´enarios inflationnaires ont ´et´e propos´es dans la litt´erature, il semble naturel de commencer par ´etudier les plus simples, ` a

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des