• Aucun résultat trouvé

Assessment of climate change effects on groundwater resource in transient conditions

N/A
N/A
Protected

Academic year: 2021

Partager "Assessment of climate change effects on groundwater resource in transient conditions"

Copied!
2
0
0

Texte intégral

(1)

Assessment of climate change effects on groundwater resource in

transient conditions

P. Goderniaux1, S. Wildemeersch2, S.Brouyère2, A. Dassargues2

1

Hydrogeology, Applied Geology, University of Mons, Mons, Belgium

2Group of Hydrogeology and Environmental Geology – Aquapôle, University of Liège,

Liège, Belgium

A sophisticated transient weather generator (WG) in combination with an integrated surface-subsurface hydrological model (HydroGeoSphere) are used for producing a stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and assess impacts on groundwater resources in a probabilistic way.

The modelling approach, involving the catchment-scale fully integrated surface-subsurface model, is described in Goderniaux et al. [2009]. Biased-corrected climate change scenarios are applied as input of the hydrological model to quantify their impact on groundwater resources. In Goderniaux et al. [2011], the integrated model is used in combination with a stochastic daily weather generator (WG). This WG allowed generating a large number of equiprobable climate change scenarios representative of a full transient climate between 2010 and 2085. These scenarios enabled to account for the transient nature of the future climate change, and to assess the uncertainty related to the weather natural variability. The downscaling method considers changes in the climatic means, but also in the distribution of wet and dry days.

This new methodology is applied for the unconfined chalky aquifer of the Geer catchment in Belgium. A general decrease of the mean groundwater piezometric heads, has been calculated. The approach allowed also to assess different uncertainty sources: (1) the uncertainty linked to the calibration of the hydrological model, using 'UCODE_2005'; (2) the uncertainty linked to the global and regional climatic models (GCMs and RCMs), by using a multi-model ensemble; (3) the uncertainty linked to the natural variability of the weather, by using stochastic climate change scenarios. 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of 6 different RCMs. Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. The WG ability to simulate transient climate change enabled the assessment of the likely timescale and associated uncertainty of a specific impact. This methodology constitutes a real improvement in the field of groundwater projections under transient climate change conditions as it enables water managers to analyse risks and take decisions with full knowledge of projected impact and their degree of confidence.

References

HS02 Hydrologic Non-Stationarity and

Extrapolating Models to Predict the Future

June 26 – 27, 2015

(2)

- Blenkinsop, S., C. Harpham, A. Burton, P. Goderniaux, S. Brouyère, and H. J. Fowler, 2013, Downscaling transient climate change with a stochastic weather generator for the Geer catchment, Belgium, Climate Research, 57(2), 95-109. - Brouyère, S., G. Carabin, and A. Dassargues, 2004, Climate change impacts on

groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium,

Hydrogeol. J., 12, 123-134.

- Dassargues A., Radu J.P., Charlier R., 1988, Finite elements modelling of a large water table aquifer in transient conditions, Advances in Water Resources, 11(2), 58-66.

- Goderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R. Orban, Ph. and Dassargues, A., 2009, Large scale surface – subsurface hydrological model to assess climate change impacts on groundwater reserves, Journal of

Hydrology, 373, 122-138.

- Goderniaux, P., Brouyère, S., Blenkinsop, S., Burton, A., Fowler, H.J., Orban, P. and Dassargues, A., 2011, Modelling climate change impacts on groundwater resources using transient stochastic climatic scenarios, Water Resources

Research, 47(12), W12516

- Orban, P., S. Brouyere, J. Batlle-Aguilar, J. Couturier, P. Goderniaux, M. Leroy, P. Maloszewski, and A. Dassargues, 2010, Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer, J. Contam. Hydrol., 118(1-2), 79-93.

- Rojas, R., Feyen L. and Dassargues, A., 2009, Sensitivity analysis of prior model probabilities and the value of prior knowledge in the assessment of conceptual model uncertainty in groundwater modelling, Hydrological Processes, 23, pp. 1131-1146.

- Rojas, R., Feyen, L., Batelaan, O. and Dassargues A., 2010, On the value of conditioning data to reduce conceptual model uncertainty in groundwater modelling, Water Resources Research, 46, 8, W08520.

- Rojas, R., Kahundeb S., Peeters L., Batelaan, O. and Dassargues A., 2010, Application of a multi-model approach to account for conceptual model and scenario uncertainties in groundwater modelling, Journal of Hydrology, 394, 416– 435.

Références

Documents relatifs

model of DMA permeation in which there is a single binding site, while the second scheme (II sites) depicts a different scenario with the CNGA1 channel occupied simultaneously by

Warning: commands of the newly installed packages hide commands with same name already in memory until the new package is uninstalled (“detached”).. These commands are indicated

Ces observations montrent que les canyons sous-marins de la pente nord de LBB sont des éléments architecturaux complexes à la fois vecteur de sédiment vers la pente

Based on the survey results and insights derived from the earlier steps, 4 scenarios were created considering the changes in the external environment and how

bending nodes selected in the interactive stage; C v and C f are the vertices and faces of the cage; T pp is the pre-processing time; T ui is the user interaction. time; T bc is

For instance, the ma- jor variations of the pressure drop ratio in the column C-1 are observed for the increase of the aliphatic flowrate and the reduc- tion of the steam temperature

Antibody against activated form of β1 directly conjugated to FITC (9EG7-FITC) was added externally and localized around the invadosome visualized by cortactin-mRFP (in red in