• Aucun résultat trouvé

Uncertainty Quantification for Eigenvalue-Realization-Algorithm, A Class of Subspace System Identification

N/A
N/A
Protected

Academic year: 2021

Partager "Uncertainty Quantification for Eigenvalue-Realization-Algorithm, A Class of Subspace System Identification"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: inria-00538941

https://hal.inria.fr/inria-00538941

Submitted on 3 Mar 2011

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Uncertainty Quantification for

Eigenvalue-Realization-Algorithm, A Class of Subspace

System Identification

Xuan-Binh Lam, Laurent Mevel

To cite this version:

Xuan-Binh Lam, Laurent Mevel. Uncertainty Quantification for Eigenvalue-Realization-Algorithm,

A Class of Subspace System Identification. [Research Report] RR-7462, INRIA. 2010, pp.16.

�inria-00538941�

(2)

a p p o r t

d e r e c h e r c h e

0249-6399

ISRN

INRIA/RR--7462--FR+ENG

Stochastic Methods and Models

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Uncertainty Quantification for

Eigensystem-Realization-Algorithm,

A Class of Subspace System Identification

Xuan-Binh Lam — Laurent Mevel

N° 7462

(3)
(4)

Centre de recherche INRIA Rennes – Bretagne Atlantique

❯♥❝❡rt❛✐♥t② ◗✉❛♥t✐✜❝❛t✐♦♥ ❢♦r

❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠✱

❆ ❈❧❛ss ♦❢ ❙✉❜s♣❛❝❡ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥

❳✉❛♥✲❇✐♥❤ ▲❛♠

✱ ▲❛✉r❡♥t ▼❡✈❡❧

† ❚❤❡♠❡ ✿ ❙t♦❝❤❛st✐❝ ▼❡t❤♦❞s ❛♥❞ ▼♦❞❡❧s ❆♣♣❧✐❡❞ ▼❛t❤❡♠❛t✐❝s✱ ❈♦♠♣✉t❛t✐♦♥ ❛♥❞ ❙✐♠✉❧❛t✐♦♥ ➱q✉✐♣❡ ■✹❙ ❘❛♣♣♦rt ❞❡ r❡❝❤❡r❝❤❡ ♥➦ ✼✹✻✷ ✖ ◆♦✈❡♠❜r❡ ✷✵✶✵ ✖ ✶✻ ♣❛❣❡s ❆❜str❛❝t✿ ■♥ ❖♣❡r❛t✐♦♥❛❧ ▼♦❞❛❧ ❆♥❛❧②s✐s✱ t❤❡ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ✭♥❛t✉r❛❧ ❢r❡✲ q✉❡♥❝✐❡s✱ ❞❛♠♣✐♥❣ r❛t✐♦s ❛♥❞ ♠♦❞❡ s❤❛♣❡s✮✱ ♦❜t❛✐♥❡❞ ❢r♦♠ ❙t♦❝❤❛st✐❝ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥ ♦❢ str✉❝t✉r❡s✱ ❛r❡ s✉❜❥❡❝t t♦ st❛t✐st✐❝❛❧ ✉♥❝❡rt❛✐♥t② ❢r♦♠ ❛♠❜✐❡♥t ✈✐❜r❛t✐♦♥ ♠❡❛s✉r❡♠❡♥ts✳ ■t ✐s ❤❡♥❝❡ ♥❡❝❡ss❛r② t♦ ❡✈❛❧✉❛t❡ t❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥✲ t❡r✈❛❧s ♦❢ t❤❡s❡ ♦❜t❛✐♥❡❞ r❡s✉❧ts✳ ❚❤✐s ♣❛♣❡r ✇✐❧❧ ♣r♦♣♦s❡ ❛♥ ❛❧❣♦r✐t❤♠ t❤❛t ❝❛♥ ❡✣❝✐❡♥t❧② ❡st✐♠❛t❡ t❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ♦❜t❛✐♥❡❞ ❢r♦♠ t❤❡ ❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠ ✭❊❘❆✮✳ ❑❡②✲✇♦r❞s✿ ❖♣❡r❛t✐♦♥❛❧ ▼♦❞❛❧ ❆♥❛❧②s✐s✱ ❙t♦❝❤❛st✐❝ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥✱ ❊rr♦r ◗✉❛♥t✐✜❝❛t✐♦♥✱ ▼❡❝❤❛♥✐❝❛❧ ❛♥❞ ❆❡r♦s♣❛❝❡ ❚❤✐s ✇♦r❦ ✇❛s s✉♣♣♦rt❡❞ ❜② t❤❡ ❊✉r♦♣❡❛♥ ♣r♦❥❡❝t ❋P✼✲◆▼P ❈P■P ✷✶✸✾✻✽✲✷ ■❘■❙✳ ∗■◆❘■❆✱ ❈❡♥tr❡ ❘❡♥♥❡s ✲ ❇r❡t❛❣♥❡ ❆t❧❛♥t✐q✉❡■◆❘■❆✱ ❈❡♥tr❡ ❘❡♥♥❡s ✲ ❇r❡t❛❣♥❡ ❆t❧❛♥t✐q✉❡

(5)

❈❛❧❝✉❧s ❞✬✐♥❝❡rt✐t✉❞❡ ♣♦✉r ❧❛ ♠ét❤♦❞❡

❞✬✐❞❡♥t✐✜❝❛t✐♦♥ ❊❘❆

❘és✉♠é ✿ ❊♥ ❆♥❛❧②s❡ ♠♦❞❛❧❡✱ ❧❡s ♣❛r❛♠ètr❡s ♠♦❞❛✉① ✭❢réq✉❡♥❝❡s✱ ❛♠♦rt✐ss❡♠❡♥ts ❡t ❞é❢♦r♠é❡s✮✱ ♦❜t❡♥✉s à ♣❛rt✐r ❞❡s ♠❡t❤♦❞❡s st♦❝❤❛st✐q✉❡s s♦♥t s✉❥❡t à ❞❡s ❡rr❡✉rs ❞✬✐♥❝❡rt✐t✉❞❡✳ ■❧ ❡st ♥é❝❡ss❛✐r❡ ❞✬é✈❛❧✉❡r ❧❡s ✐♥t❡r✈❛❧❧❡s ❞❡ ❝♦♥✜❛♥❝❡ ❝♦rr❡s♣♦♥❞❛♥ts✳ ❈❡ ❝❛❧❝✉❧ ❡st ❢❛✐t ♣♦✉r ✉♥❡ ❝❧❛ss❡ ❞✬❛❧❣♦r✐t❤♠❡s s♦✉s ❡s♣❛❝❡s ❛♣♣❡❧és ❊❘❆ ✭❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠✮✳ ▼♦ts✲❝❧és ✿ ❆♥❛❧②s❡ ♠♦❞❛❧❡✱ ✐❞❡♥t✐✜❝❛t✐♦♥ ❞❡s s②stè♠❡s st♦❝❤❛st✐q✉❡s✱ ❝❛❧❝✉❧ ❞✬✐♥❝❡rt✐t✉❞❡s✱ ♠é❝❛♥✐q✉❡ ❡t ❛❡r♦s♣❛t✐❛❧❡

(6)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✸

✶ ■♥tr♦❞✉❝t✐♦♥

❚❤❡ ❞❡s✐❣♥ ❛♥❞ ♠❛✐♥t❡♥❛♥❝❡ ♦❢ ♠❡❝❤❛♥✐❝❛❧ str✉❝t✉r❡s s✉❜❥❡❝t t♦ ♥♦✐s❡ ❛♥❞ ✈✐✲ ❜r❛t✐♦♥s ✐s ❛♥ ✐♠♣♦rt❛♥t t♦♣✐❝ ✐♥ ♠❡❝❤❛♥✐❝❛❧ ❡♥❣✐♥❡❡r✐♥❣✳ ■t ✐s ❛♥ ✐♠♣♦rt❛♥t ❝♦♠♣♦♥❡♥t ♦❢ ❝♦♠❢♦rt ✭❝❛rs ❛♥❞ ❜✉✐❧❞✐♥❣s✮ ❛♥❞ ❝♦♥tr✐❜✉t❡s s✐❣♥✐❝❛♥t❧② t♦ t❤❡ s❛❢❡t② r❡❧❛t❡❞ ❛s♣❡❝ts ♦❢ ❞❡s✐❣♥ ❛♥❞ ♠❛✐♥t❡♥❛♥❝❡ ✭❛✐r❝r❛❢ts✱ ❛❡r♦s♣❛❝❡ ✈❡❤✐❝❧❡s ❛♥❞ ♣❛②❧♦❛❞s✱ ❝✐✈✐❧ str✉❝t✉r❡s✮✳ ❘❡q✉✐r❡♠❡♥ts ❢r♦♠ t❤❡s❡ ❛♣♣❧✐❝❛t✐♦♥ ❛r❡❛s ❛r❡ ♥✉♠❡r♦✉s ❛♥❞ ❞❡♠❛♥❞✐♥❣✳ ▲❛❜♦r❛t♦r② ❛♥❞ ✐♥✲♦♣❡r❛t✐♦♥ t❡sts ❛r❡ ♣❡r❢♦r♠❡❞ ♦♥ t❤❡ ♣r♦t♦t②♣❡ str✉❝t✉r❡✱ ✐♥ ♦r❞❡r t♦ ❣❡t s♦✲❝❛❧❧❡❞ ♠♦❞❛❧ ♠♦❞❡❧s✱ ✐✳❡✳✱ t♦ ❡①tr❛❝t t❤❡ ♠♦❞❡s ❛♥❞ ❞❛♠♣✐♥❣ ❢❛❝t♦rs ✭t❤❡s❡ ❝♦rr❡s♣♦♥❞ t♦ s②st❡♠ ♣♦❧❡s✮✱ t❤❡ ♠♦❞❡ s❤❛♣❡s ✭❝♦rr❡s♣♦♥❞✐♥❣ ❡✐❣❡♥✈❡❝t♦rs✮✱ ❛♥❞ ❧♦❛❞s✳ ❚❤❡s❡ r❡s✉❧ts ❛r❡ ✉s❡❞ ❢♦r ✉♣✲ ❞❛t✐♥❣ t❤❡ ❞❡s✐❣♥ ♠♦❞❡❧ ❢♦r ❛ ❜❡tt❡r ✜t t♦ ❞❛t❛✱ ❛♥❞ s♦♠❡t✐♠❡s ❢♦r ❝❡rt✐✜❝❛t✐♦♥ ♣✉r♣♦s❡s ✭❡✳❣✳✱ ✐♥ ✢✐❣❤t ❞♦♠❛✐♥ ♦♣❡♥✐♥❣ ❢♦r ♥❡✇ ❛✐r❝r❛❢ts✮✳ ❚❤❡ ❡st✐♠❛t✐♦♥ ♦❢ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ♦❢ str✉❝t✉r❡s ❝❛♥ ❡❛s✐❧② ❜❡ ❝❛rr✐❡❞ ♦✉t ❜② ✉s✐♥❣ ❙t♦❝❤❛st✐❝ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥ ♠❡t❤♦❞s ♦♥ s❡♥s♦r ♠❡❛s✉r❡♠❡♥ts✳ ❬✸❪ ♣r♦✈❡❞ t❤❛t t❤❡ ■♥str✉♠❡♥t❛❧ ❱❛r✐❛❜❧❡ ♠❡t❤♦❞ ❛♥❞ ✇❤❛t ✇❛s ❝❛❧❧❡❞ t❤❡ ❇❛❧❛♥❝❡❞ ❘❡❛❧✐③❛t✐♦♥ ♠❡t❤♦❞ ❢♦r ❧✐♥❡❛r ❡✐❣❡♥str✉❝t✉r❡ ✐❞❡♥t✐✜❝❛t✐♦♥ ❛r❡ ❝♦♥s✐st❡♥t ✐♥ ❛ ♥♦♥st❛t✐♦♥❛r② ❝♦♥t❡①t✳ ❋r♦♠ t❤❛t ♦♥✱ t❤❡ ❢❛♠✐❧② ♦❢ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠s ❤❛s ❜❡❡♥ ❡①t❡♥s✐✈❡❧② st✉❞✐❡❞ ✭s❡❡ ✐♥ ❬✾✱ ✶✹❪✮ ❛♥❞ ❤❛s ❡①♣❛♥❞❡❞ r❛♣✐❞❧②✳ ❚❤❡r❡ ❛r❡ ❛ ♥✉♠❜❡r ♦❢ ❝♦♥✈❡r❣❡♥❝❡ st✉❞✐❡s ♦♥ s✉❜s♣❛❝❡ ♠❡t❤♦❞s ✐♥ t❤❡ ❧✐t❡r❛t✉r❡ ✭s❡❡ ❬✻✱ ✷✱ ✶✱ ✺❪✮ t♦ ♠❡♥t✐♦♥ ❥✉st ❛ ❢❡✇ ♦❢ t❤❡♠✳ ❚❤❡s❡ ♣❛♣❡rs ♣r♦✈✐❞❡ ❞❡❡♣ ❛♥❞ t❡❝❤♥✐❝❛❧❧② ❞✐✣❝✉❧t r❡s✉❧ts ✐♥❝❧✉❞✐♥❣ ❝♦♥✈❡r❣❡♥❝❡ r❛t❡s✳ ❖✉r ♦❜❥❡❝t✐✈❡ ✐s t♦ ❞❡r✐✈❡ s✐♠♣❧❡ ❢♦r♠✉❧❛ ❢♦r s✉❝❤ s❡♥s✐t✐✈✐t✐❡s✳ ❙❡♥s✐t✐✈✐t✐❡s ❢♦r t❤❡ ❛❧❣♦r✐t❤♠s ❝♦♥s✐❞❡r❡❞ ✐♥ t❤✐s ♣❛♣❡r✱ ❊❘❆✱ ❛r❡ ♥♦t ❛❞❞r❡ss❡❞ ❜② t❤♦s❡ ♣❛♣❡rs✳ ❚❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛♣♣❡❛rs ❢♦r ♠❛♥② r❡❛s♦♥s✱ ❡✳❣✳ ✜♥✐t❡ ♥✉♠❜❡r ♦❢ ❞❛t❛ s❛♠♣❧❡s✱ ✉♥❞❡✜♥❡❞ ♠❡❛s✉r❡♠❡♥t ♥♦✐s❡s✱ ♥♦♥st❛t✐♦♥❛r② ❡①❝✐✲ t❛t✐♦♥s✱ ♥♦♥❧✐♥❡❛r str✉❝t✉r❡✱ ♠♦❞❡❧ ♦r❞❡r r❡❞✉❝t✐♦♥✱✳✳✳✱ t❤❡♥ t❤❡ s②st❡♠ ✐❞❡♥✲ t✐✜❝❛t✐♦♥ ❛❧❣♦r✐t❤♠s ❞♦ ♥♦t ②✐❡❧❞ t❤❡ ❡①❛❝t s②st❡♠ ♠❛tr✐❝❡s✳ Pr❛❝t✐❝❛❧❧②✱ t❤❡ st❛t✐st✐❝❛❧ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ ♦❜t❛✐♥❡❞ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛t ❛ ❝❤♦s❡♥ s②st❡♠ ♦r❞❡r ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ ❢r♦♠ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ s②st❡♠ ♠❛tr✐❝❡s✱ ✇❤✐❝❤ ❞❡✲ ♣❡♥❞s ♦♥ t❤❡ ❝♦✈❛r✐❛♥❝❡ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ s✉❜s♣❛❝❡ ♠❛tr✐①✳ ◆♦t ❦♥♦✇✐♥❣ t❤❡ ♠♦❞❡❧ ♦r❞❡r ②✐❡❧❞s t♦ ✉s❡ ❡♠♣✐r✐❝❛❧ ♠✉❧t✐✲♦r❞❡r ♣r♦❝❡❞✉r❡ s✉❝❤ ❛s t❤❡ st❛✲ ❜✐❧✐③❛t✐♦♥ ❞✐❛❣r❛♠ ✭❬✶✵❪✮✱ ✇❤❡r❡ ♠♦❞❡s ♦❢ t❤❡ s②st❡♠ ❛r❡ ❛ss✉♠❡❞ t♦ st❛❜✐❧✐③❡ ✇❤❡♥ t❤❡ ♠♦❞❡❧ ♦r❞❡r ✐♥❝r❡❛s❡s✳ ■♥ ❬✶✷❪✱ ✐t ❤❛s ❜❡❡♥ s❤♦✇♥ ❤♦✇ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦❢ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❝❛♥ ❜❡ ❞❡t❡r♠✐♥❡❞ ❢r♦♠ t❤❡ ❝♦✈❛r✐❛♥❝❡s ♦❢ t❤❡ s②st❡♠ ♠❛tr✐❝❡s ❛♥❞ t❤❡ ❝♦✈❛r✐❛♥❝❡s ♦❢ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s✳ ❚❤❡ ❝✉rr❡♥t ♣❛♣❡r ✇✐❧❧ ❡①♣❛♥❞ ♦♥ t❤✐s ❛♥❞ ❝♦♠♣❛r❡ s❡♥✲ s✐t✐✈✐t✐❡s ❢♦r t✇♦ ♦✉t♣✉t✲♦♥❧② s②st❡♠ ✐❞❡♥t✐✜❝❛t✐♦♥ ♠❡t❤♦❞s✱ ♥❛♠❡❧② ♦✉t♣✉t✲♦♥❧② ❙t♦❝❤❛st✐❝ ❙✉❜s♣❛❝❡ ■❞❡♥t✐✜❝❛t✐♦♥ ✭❙❙■✮ ❛♥❞ ❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠ ✭❊❘❆✮ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥✳ ❙✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥ ✐s ❜❛s❡❞ ♦♥ t❤❡ ❝♦♠♣✉✲ t❛t✐♦♥ ♦❢ ♦♥❡ s✉❜s♣❛❝❡ ♠❛tr✐① ❢r♦♠ t❤❡ ❝♦rr❡❧❛t✐♦♥ t❛✐❧✳ ❯♥❧✐❦❡ s✉❜s♣❛❝❡ ❛❧❣♦✲ r✐t❤♠✱ ❊❘❆ ❝♦♠♣✉t❡s t❤❡ s②st❡♠ ♠❛tr✐❝❡s ✉s✐♥❣ t❤❡ ✐♥❢♦r♠❛t✐♦♥ ♦❢ ❜♦t❤ ✭❦✮✲ ❛♥❞ ✭❦✰✶✮✲❧❛❣ ♦❢ s❤✐❢t❡❞ ❝♦rr❡❧❛t✐♦♥ t❛✐❧s✳ ■♥ t❤✐s ♣❛♣❡r✱ ❢♦❧❧♦✇✐♥❣ t❤❡ ❧✐♥❡s ♦❢ ✭❬✶✷❪✮✱ ❛♥ ❛❧❣♦r✐t❤♠ ✇✐❧❧ ❜❡ ❞❡✈❡❧♦♣❡❞ ❢♦r ❡st✐♠❛t✐♥❣ t❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✐♥ ❊❘❆ s②st❡♠ ✐❞❡♥t✐✜❝❛t✐♦♥✳ ❚❤❡ ✉♥❝❡r✲ t❛✐♥t② ♦♥ st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① ✐s ❞❡r✐✈❡❞✱ ❜❛s❡❞ ♦♥ t❤❡ ✉♥❝❡rt❛✐♥t✐❡s ♦❢ ✭❦✮✲ ❛♥❞ ✭❦✰✶✮✲❧❛❣ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s✳ ❆ r❡❧❡✈❛♥t ✐♥❞✉str✐❛❧ ❡①❛♠♣❧❡ ✐s ❛♣♣❧✐❡❞ t♦ ❊❘❆ ❡st✐♠❛t❡s✳ ❚❤❡ ❡✣❝✐❡♥❝② ♦❢ t❤❡s❡ ❛❧❣♦r✐t❤♠s ❛♥❞ ❧❛❣ ❡✛❡❝t ❛r❡ ❛❧s♦ t❛❦❡♥ ✐♥t♦ ❛❝❝♦✉♥t✳ ❈♦♠♣❛r✐s♦♥ ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❡st✐♠❛t❡s ✐s ❛❧s♦ ♣❡r❢♦r♠❡❞✳

(7)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✹

✷ ❙t♦❝❤❛st✐❝ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥

✷✳✶ ❚❤❡ ●❡♥❡r❛❧ ❙❙■ ❆❧❣♦r✐t❤♠

❚❤❡ ❞✐s❝r❡t❡ t✐♠❡ ♠♦❞❡❧ ✐♥ st❛t❡✲s♣❛❝❡ ❢♦r♠ ✐s✿  Xk+1 = AXk+ Vk+1 Yk = CXk ✭✶✮ ✇✐t❤ t❤❡ st❛t❡ X ∈ Rn✱ t❤❡ ♦✉t♣✉t Y ∈ Rr✱ t❤❡ st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① A ∈ Rn×n ❛♥❞ t❤❡ ♦❜s❡r✈❛t✐♦♥ ♠❛tr✐① C ∈ Rr×n✳ ❚❤❡ st❛t❡ ♥♦✐s❡ V ✐s ✉♥♠❡❛s✉r❡❞ ❛♥❞ ❛ss✉♠❡❞ t♦ ❜❡ ●❛✉ss✐❛♥✱ ③❡r♦✲♠❡❛♥✱ ✇❤✐t❡✳ ▲❡t r ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ s❡♥s♦rs✱ p ❛♥❞ q ❜❡ ❝❤♦s❡♥ ♣❛r❛♠❡t❡rs ✇✐t❤ (p+1)r ≥ qr≥ n✳ ❋r♦♠ t❤❡ ♦✉t♣✉t ❞❛t❛✱ ❛ ♠❛tr✐① Hp+1,q ∈ R(p+1)r×qr ✐s ❜✉✐❧t ❛❝❝♦r❞✐♥❣ t♦ ❛ ❝❤♦s❡♥ ❙❙■ ❛❧❣♦r✐t❤♠✱ s❡❡ ❡✳❣✳ ❬✹❪ ❢♦r ❛♥ ♦✈❡r✈✐❡✇✳ ❚❤❡ ♠❛tr✐① Hp+1,q ✇✐❧❧ ❜❡ ❝❛❧❧❡❞ ✏s✉❜s♣❛❝❡ ♠❛tr✐①✑ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣✱ ❛♥❞ t❤❡ ❙❙■ ❛❧❣♦r✐t❤♠ ✐s ❝❤♦s❡♥ s✉❝❤ t❤❛t t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ s✉❜s♣❛❝❡ ♠❛tr✐① ❡♥❥♦②s ✭❛s②♠♣t♦t✐❝❛❧❧② ❢♦r ❛ ❧❛r❣❡ ♥✉♠❜❡r ♦❢ s❛♠♣❧❡s✮ t❤❡ ❢❛❝t♦r✐③❛t✐♦♥ ♣r♦♣❡rt② Hp+1,q = Op+1 Zq ✭✷✮ ✐♥t♦ t❤❡ ♠❛tr✐① ♦❢ ♦❜s❡r✈❛❜✐❧✐t② Op+1 def =      C CA ✳✳✳ CAp      ✭✸✮ ❛♥❞ ❛ ♠❛tr✐① Zq ❞❡♣❡♥❞✐♥❣ ♦♥ t❤❡ s❡❧❡❝t❡❞ ❙❙■ ❛❧❣♦r✐t❤♠✳ ▲❡t N ❜❡ t❤❡ ♥✉♠❜❡r ♦❢ ❛✈❛✐❧❛❜❧❡ s❛♠♣❧❡s ❛♥❞ Yk ∈ Rr✱ {k ∈ 1, . . . , N} t❤❡ ✈❡❝t♦r ❝♦♥t❛✐♥✐♥❣ t❤❡ s❡♥s♦r ❞❛t❛✳ ❚❤❡♥✱ t❤❡ ✏❢♦r✇❛r❞✑ ❛♥❞ ✏❜❛❝❦✇❛r❞✑ ❞❛t❛ ♠❛tr✐❝❡s Yp+1+ = 1 √ N− p − q      Yq+1 Yq+2 . . . YN −p Yq+2 Yq+3 . . . YN −p+1 ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ Yq+p+1 Yq+p+2 . . . YN      , Y− q = 1 √ N− p − q      Yq Yq+1 . . . YN −p−1 Yq−1 Yq . . . YN −p−2 ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ Y1 Y2 . . . YN −p−q      ✭✹✮ ❛r❡ ❜✉✐❧t✳ ❋♦r t❤❡ ❝♦✈❛r✐❛♥❝❡✲❞r✐✈❡♥ ❙❙■ ✭s❡❡ ❛❧s♦ ❬✸❪✱ ❬✶✵❪✮✱ t❤❡ s✉❜s♣❛❝❡ ♠❛tr✐① H✭❝♦✈✮p+1,q = Yp+1+ Yq− T ✐s ❜✉✐❧t✱ ✇❤✐❝❤ ❡♥❥♦②s t❤❡ ❢❛❝t♦r✐③❛t✐♦♥ ♣r♦♣❡rt② ✭✷✮✱ ✇❤❡r❡ Zq ✐s t❤❡ ❝♦♥tr♦❧❧❛❜✐❧✐t② ♠❛tr✐①✳ ❋♦r s✐♠♣❧✐❝✐t②✱ ❧❡t p ❛♥❞ q ❜❡ ❣✐✈❡♥✱ s❦✐♣ t❤❡ s✉❜s❝r✐♣ts ♦❢ Hp+1,q✱ Op+1 ❛♥❞ Zq✳ ❚❤❡ ❡✐❣❡♥str✉❝t✉r❡ ♦❢ t❤❡ s②st❡♠ ✭✶✮ ✐s r❡tr✐❡✈❡❞ ❢r♦♠ ❛ ❣✐✈❡♥ ♠❛tr✐① H✳ ❚❤❡ ♦❜s❡r✈❛❜✐❧✐t② ♠❛tr✐① O ✐s ♦❜t❛✐♥❡❞ ❢r♦♠ ❛ t❤✐♥ ❙✐♥❣✉❧❛r ❱❛❧✉❡ ❉❡❝♦♠✲ ♣♦s✐t✐♦♥ ✭❙❱❉✮ ♦❢ t❤❡ ♠❛tr✐① H ❛♥❞ ✐ts tr✉♥❝❛t✐♦♥ ❛t t❤❡ ❞❡s✐r❡❞ ♠♦❞❡❧ ♦r❞❡r ❘❘ ♥➦ ✼✹✻✷

(8)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✺ n✿ H = UΣVT =  U1 U0   Σ1 0 0 Σ0  VT, ✭✺✮ O = U1Σ1/21 . ✭✻✮ ◆♦t❡ t❤❛t t❤❡ s✐♥❣✉❧❛r ✈❛❧✉❡s ✐♥ Σ1∈ Rd×d♠✉st ❜❡ ♥♦♥✲③❡r♦ ❛♥❞ ❤❡♥❝❡ O ✐s ♦❢ ❢✉❧❧ ❝♦❧✉♠♥ r❛♥❦✳ ❚❤❡ ♦❜s❡r✈❛t✐♦♥ ♠❛tr✐① C ✐s t❤❡♥ ❢♦✉♥❞ ✐♥ t❤❡ ✜rst ❜❧♦❝❦✲r♦✇ ♦❢ t❤❡ ♦❜s❡r✈❛❜✐❧✐t② ♠❛tr✐① O✳ ❚❤❡ st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① A ✐s ♦❜t❛✐♥❡❞ ❢r♦♠ t❤❡ s❤✐❢t✐♥❣ ✐♥✈❛r✐❛♥❝❡ ♣r♦♣❡rt② ♦❢ O✱ ♥❛♠❡❧② ❛s t❤❡ ❧❡❛st sq✉❛r❡s s♦❧✉t✐♦♥ ♦❢

O↑A = O↓, ✇❤❡r❡ O↑def=      C CA ✳✳✳ CAp−1      , O↓def=      CA CA2 ✳✳✳ CAp      . ✭✼✮ ❚❤❡ ❡✐❣❡♥str✉❝t✉r❡ (λ, ϕλ)r❡s✉❧ts ❢r♦♠

det(A − λI) = 0, Aφλ= λφλ, ϕλ= Cφλ, ✭✽✮

✇❤❡r❡ λ r❛♥❣❡s ♦✈❡r t❤❡ s❡t ♦❢ ❡✐❣❡♥✈❛❧✉❡s ♦❢ A✳ ❋r♦♠ λ✱ t❤❡ ♥❛t✉r❛❧ ❢r❡q✉❡♥❝② ❛♥❞ ❞❛♠♣✐♥❣ r❛t✐♦ ❛r❡ ♦❜t❛✐♥❡❞✱ ❛♥❞ ϕλ ✐s t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ♠♦❞❡ s❤❛♣❡✳ ❚❤❡r❡ ❛r❡ ♠❛♥② ♣❛♣❡rs ♦♥ t❤❡ ✉s❡❞ ✐❞❡♥t✐✜❝❛t✐♦♥ t❡❝❤♥✐q✉❡s✳ ❆ ❝♦♠♣❧❡t❡ ❞❡s❝r✐♣t✐♦♥ ❝❛♥ ❜❡ ❢♦✉♥❞ ✐♥ ❬✸❪✱ ❬✶✹❪✱ ❬✶✵❪✱ ❬✹❪✱ ❛♥❞ t❤❡ r❡❧❛t❡❞ r❡❢❡r❡♥❝❡s✳ ❆ ♣r♦♦❢ ♦❢ ♥♦♥✲st❛t✐♦♥❛r② ❝♦♥s✐st❡♥❝② ♦❢ t❤❡s❡ s✉❜s♣❛❝❡ ♠❡t❤♦❞s ❝❛♥ ❜❡ ❢♦✉♥❞ ✐♥ ❬✹❪✳

✷✳✷ ❊❘❆ ✭❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠✮

❆♥♦t❤❡r ✈❛r✐❛♥t ♦❢ r❡❛❧✐③❛t✐♦♥ ❛❧❣♦r✐t❤♠ ❜❛s❡❞ ♦♥ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ t❤❡ s✉❜✲ s♣❛❝❡ ♠❛tr✐❝❡s ✐s ❝❛❧❧❡❞ ❊❘❆ ✭❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠✮ ✭s❡❡ ✐♥ ❬✽❪✮✳ ■t ✐s ❜❛s❡❞ ♦♥ t❤❡ ❣❡♥❡r❛❧ r❡♠❛r❦ t❤❛t ♦♥❡ ❝❛♥ ❝♦♠♣✉t❡ t❤❡ s✉❜s♣❛❝❡ ♠❛tr✐① H ♥♦t ✉s✐♥❣ t❤❡ ✜rst ❧❛❣s ♦❢ t❤❡ ❝♦rr❡❧❛t✐♦♥ t❛✐❧✳ ❉❡✜♥✐♥❣ H(k)❛s H(k)=      Rk+1 Rk+2 . . . Rk+q Rk+2 Rk+3 . . . Rk+q+1 ✳✳✳ ✳✳✳ ✳✳✳ ✳✳✳ Rk+p+1 . . . Rk+p+q      , ✭✾✮ ✐♥ ✇❤✐❝❤ t❤❡ ❝♦rr❡❧❛t✐♦♥s ❛r❡ r❡❧❛t❡❞ t♦ t❤❡ ❢❛❝t♦r✐③❛t✐♦♥ Rj def = E Yl+jYlT = CAjG ✭✶✵✮ ✇✐t❤ t❤❡ ❝r♦ss✲❝♦✈❛r✐❛♥❝❡ ❜❡t✇❡❡♥ t❤❡ st❛t❡ ❛♥❞ t❤❡ ♦❜s❡r✈❡❞ ♦✉t♣✉ts G = E [Xl YlT]✳ ❚❤❡♥✱ ❛ ❙✐♥❣✉❧❛r ❱❛❧✉❡ ❉❡❝♦♠♣♦s✐t✐♦♥ ✐s ♣❡r❢♦r♠❡❞ ♦♥ H(k) ❛s H(k)= U1 U0   Σ1 0 0 Σ0   V1T V0T  ✭✶✶✮ ❚❤❡ st❛t❡ tr❛♥s✐t✐♦♥ ♠❛tr✐① ✇✐❧❧ ❜❡ ❞❡✜♥❡❞ ❛s A = O†1  H(k+1)Z1†  , ✭✶✷✮

(9)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✻ ✇❤❡r❡† ♠❡❛♥s ▼♦♦r❡✲P❡♥r♦s❡ ♣s❡✉❞♦✲✐♥✈❡rs❡✱ ❛♥❞ O†1 = (Σ1)− 1 2 UT 1, ✭✶✸✮ Z1† = V1(Σ1)− 1 2. ✭✶✹✮ ■❢ t❤❡ ❝♦rr❡❧❛t✐♦♥s ❛r❡ ❝♦♠♣✉t❡❞ ❢r♦♠ ❝r♦ss s♣❡❝tr❛✱ t❤❡ ♠❡t❤♦❞ ✐s ❝❛❧❧❡❞ ◆❊❳❚✲❊❘❆❀ ❜✉t ✇✐t❤♦✉t ❧♦ss ♦❢ ❣❡♥❡r❛❧✐t②✱ ✐t ✐s ❥✉st ❛ss✉♠❡❞ t❤❛t t❤❡ ❝♦rr❡✲ ❧❛t✐♦♥s ❛r❡ ❝♦♠♣✉t❡❞ ❢r♦♠ t✐♠❡ s❛♠♣❧❡s✳ ❚❤❡ ❞✐♠❡♥s✐♦♥s ♦❢ A r❡❧❛t❡s t♦ t❤❡ ❞✐♠❡♥s✐♦♥s ♦❢ U1,Σ1, V1✳ ❆♥❞ ❛s s✉❝❤✱ ❛ st❛❜✐❧✐③❛t✐♦♥ ❞✐❛❣r❛♠ ✐s ♦❜t❛✐♥❡❞ ❜② ♣❡r❢♦r♠✐♥❣ t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ A ❢♦r ♠✉❧t✐♣❧❡ ♠♦❞❡❧ ♦r❞❡rs ❛♥❞ ❦❡❡♣✐♥❣ ❛s st❛❜❧❡ ♣♦❧❡s t❤❡ ♠♦❞❡s ✇❤✐❝❤ r❡♣❡❛t ♦✈❡r ♠✉❧t✐♣❧❡ ♠♦❞❡❧ ♦r❞❡rs✳

✸ ❈♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s

✸✳✶ ❉❡s❝r✐♣t✐♦♥s ♦❢ ❙❙■ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s ❛❧❣♦r✐t❤♠

❚❤❡ st❛t✐st✐❝❛❧ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ ♦❜t❛✐♥❡❞ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛t ❛ ❝❤♦s❡♥ s②st❡♠ ♦r❞❡r ❝❛♥ ❜❡ ❝♦♠♣✉t❡❞ ❢r♦♠ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ s②st❡♠ ♠❛tr✐❝❡s✱ ✇❤✐❝❤ ❞❡♣❡♥❞s ♦♥ t❤❡ ❝♦✈❛r✐❛♥❝❡ ♦❢ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ s✉❜s♣❛❝❡ ♠❛tr✐① H✳ ❚❤❡ ❧❛tt❡r ❝❛♥ ❜❡ ❡✈❛❧✉❛t❡❞ ❜② ❝✉tt✐♥❣ t❤❡ s❡♥s♦r ❞❛t❛ ✐♥t♦ ❜❧♦❝❦s ♦♥ ✇❤✐❝❤ ✐♥st❛♥❝❡s ♦❢ t❤❡ s✉❜s♣❛❝❡ ♠❛tr✐① ❛r❡ ❝♦♠♣✉t❡❞✳ ❙♦✱ t❤✐s ♦✛❡rs ❛ ♣♦ss✐❜✐❧✐t② t♦ ❝♦♠♣✉t❡ t❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦❢ t❤❡ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛t ❛ ❝❡rt❛✐♥ s②st❡♠ ♦r❞❡r ✇✐t❤♦✉t r❡♣❡❛t✐♥❣ t❤❡ s②st❡♠ ✐❞❡♥t✐✜❝❛t✐♦♥✳ ■♥ ❬✶✷❪✱ t❤✐s ❛❧❣♦r✐t❤♠ ✇❛s ❞❡s❝r✐❜❡❞ ✐♥ ❞❡t❛✐❧ ❢♦r t❤❡ ❝♦✈❛r✐❛♥❝❡✲❞r✐✈❡♥ ❙❙■✳ ❚❤❡ ✉♥❝❡rt❛✐♥t② ∆A ❛♥❞ ∆C ♦❢ t❤❡ s②st❡♠ ♠❛tr✐❝❡s A ❛♥❞ C ❛r❡ ❝♦♥♥❡❝t❡❞ t♦ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ s✉❜s♣❛❝❡ ♠❛tr✐① t❤r♦✉❣❤ ❛ ❏❛❝♦❜✐❛♥ ♠❛tr✐①  vec∆A vec∆C  = JA,C vec∆H, ✭✶✺✮ ✇❤❡r❡ vec ✐s t❤❡ ✈❡❝t♦r✐③❛t✐♦♥ ♦♣❡r❛t♦r✳ ❚❤❡♥✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ✭♥❛t✉r❛❧ ❢r❡q✉❡♥❝② f✱ ❞❛♠♣✐♥❣ r❛t✐♦ d ❛♥❞ ♠♦❞❡ s❤❛♣❡ φ✮ ✐s ❞❡r✐✈❡❞ ❢r♦♠ ∆fµ= Jfµ  vec∆A vec∆C  , ∆dµ= Jdµ  vec∆A vec∆C  , ✭✶✻✮ ❛♥❞ ∆φµ = Jφµ  vec∆A vec∆C  . ✭✶✼✮ ❚❤❡ ❏❛❝♦❜✐❛♥s Jfµ✱ Jdµ ❛♥❞ Jφµ ❛r❡ ❝♦♠♣✉t❡❞ ❢♦r ❡❛❝❤ ♠♦❞❡ µ✳ ❋✐♥❛❧❧②✱ t❤❡ ❝♦✈❛r✐❛♥❝❡s ♦❢ t❤❡ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛r❡ ♦❜t❛✐♥❡❞ ❛s cov(fµ) = Jfµ JA,C cov(vec H) J

T A,C JfTµ

cov(dµ) = Jdµ JA,C cov(vec H) J

T A,C JdTµ

cov(φµ) = Jφµ JA,C cov(vec H) J

T

A,C JφTµ ✭✶✽✮

(10)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✼ ✇❤❡r❡ cov(vecH) ✐s t❤❡ ❝♦✈❛r✐❛♥❝❡ ♦❢ t❤❡ ✈❡❝t♦r✐③❡❞ s✉❜s♣❛❝❡ ♠❛tr✐①✳ ❆❢t❡r r❡tr✐❡✈✐♥❣ t❤❡ ✉♥❝❡rt❛✐♥t✐❡s ♦♥ t❤❡ s②st❡♠ ♠❛tr✐❝❡s A ❛♥❞ C✱ t❤❡ ❝❛❧❝✉❧❛t✐♦♥ ♦❢ t❤❡ ✉♥❝❡rt❛✐♥t✐❡s ♦♥ t❤❡ ❢r❡q✉❡♥❝② ❛♥❞ ❞❛♠♣✐♥❣ ✐s str❛✐❣❤t❢♦r✇❛r❞✳ ❍♦✇❡✈❡r✱ ❢♦r t❤❡ ♠♦❞❡ s❤❛♣❡✱ t❤❡r❡ ✐s ❛♥ ✐ss✉❡ ♦❢ ♥♦r♠❛❧✐③❛t✐♦♥ ❛s ❡❛❝❤ ♦♥❡ ✐s ❞❡✜♥❡❞ ✉♣ t♦ ❛♥ ✉♥❦♥♦✇♥ ❝♦♥st❛♥t✳ ❚❤✐s ✇❛s ❛❞❞r❡ss❡❞ ✐♥ ❬✼❪✳

✸✳✷ ❉❡r✐✈❛t✐♦♥ ♦❢ ❊❘❆ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s

■♥ t❤✐s s❡❝t✐♦♥✱ ❢♦r ❊❘❆✱ ✐t ✐s ✐♥✈❡st✐❣❛t❡❞ ❤♦✇ t❤❡ ❝♦✈❛r✐❛♥❝❡s ♦❢ ♠♦❞❛❧ ♣❛r❛♠✲ ❡t❡rs ❝❛♥ ❜❡ ❞❡r✐✈❡❞ ❢r♦♠ t❤❡ ❝♦✈❛r✐❛♥❝❡ ♦❢ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s t❛❦✐♥❣ ❝❛r❡ ♦❢ t❤❡ ✉♥❝❡rt❛✐♥t✐❡s ♦❢ ♦❜s❡r✈❛❜✐❧✐t②✱ ❝♦♥tr♦❧❧❛❜✐❧✐t② ❛♥❞ s②st❡♠ ♠❛tr✐❝❡s✳ ❋✐rst❧②✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ t❤❡ s②st❡♠ ♠❛tr✐① A ✐s ❛ ❢✉♥❝t✐♦♥ ♦❢ t❤❡ s❡♥s✐t✐✈✲ ✐t✐❡s ♦❢ H(k+1)✱ O† 1 ❛♥❞ Z † 1✿ ∆A = ∆h O†1  H(k+1)Z1†  i = h∆O†1  i H(k+1)Z1†  +O†1  h ∆H(k+1)i Z1†  +O†1  H(k+1)h∆Z1†  i . ✭✶✾✮ ❚❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ t❤❡ ✈❡❝t♦r✐③❡❞ s②st❡♠ ♠❛tr✐① A ✐s r❡✇r✐tt❡♥ ❛s vec∆A = Z1† T H(k+1)T⊗ Id  vec∆O†1  +Z1† T ⊗ O1†  vec∆H(k+1) +Id⊗  O1†H(k+1)  vec∆Z1†  , ✭✷✵✮ ✇❤❡r❡ Id ✐s ✐❞❡♥t✐t② ♠❛tr✐① ✇✐t❤ ❞✐♠❡♥s✐♦♥ d✳ ⊗ ✐s t❤❡ ❑r♦♥❡❝❦❡r ♣r♦❞✉❝t✳ ❚❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ H(k+1) ❝❛♥ s✐♠♣❧② ❜❡ ❡st✐♠❛t❡❞ ❜② ❝✉tt✐♥❣ t❤❡ s✐❣♥❛❧s✳ ❚❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ t❤❡ ♣s❡✉❞♦✲✐♥✈❡rs❡ ♦❢ ♦❜s❡r✈❛❜✐❧✐t② O1 ❝❛♥ ❜❡ ❞❡✜♥❡❞ ❞✐r❡❝t❧② ❢r♦♠ t❤❡ s✐♥❣✉❧❛r ✈❛❧✉❡s ❛♥❞ s✐♥❣✉❧❛r ✈❡❝t♦rs ❜② ∆O1†  = ∆Σ−12 1 U1T  = h∆Σ−12 1  i U1T + Σ−12 1 ∆ U1T  = −1 2Σ −3 2 1 (∆Σ1) U1T + Σ −1 2 1 ∆ U1T  ✭✷✶✮ ❚❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ O† 1 ✐s ♥♦✇ ✈❡❝t♦r✐③❡❞ ❛s vec∆O1†  =  U1⊗  −12Σ−32 1  vec∆Σ1 +I(p+1)r⊗ Σ −1 2 1  vec ∆ U1T  =  U1⊗  −12Σ−32 1  vec∆Σ1 +I(p+1)r⊗ Σ −1 2 1  PU1 vec∆U1 ✭✷✷✮

(11)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✽ ✇❤❡r❡ PU1 ✐s ❛ ♠❛tr✐① t❤❛t ❝❛♥ ♣❡r♠✉t❛t❡ vec∆U1t♦ vec ∆ U T 1  ❙✐♠✐❧❛r❧②✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦♥ t❤❡ ♣s❡✉❞♦✲✐♥✈❡rs❡ ♦❢ ❝♦♥tr♦❧❧❛❜✐❧✐t② Z1❝❛♥ ❜❡ ❞❡s❝✐❜❡❞ ❛s ∆Z1†  = ∆V1Σ− 1 2 1  = (∆V1) Σ −1 2 1 + V1∆  Σ−12 1  = (∆V1) Σ −1 2 1 + V1  −1 2  Σ−32 1 ∆Σ1 ✭✷✸✮ ❛♥❞ r❡❝♦♥str✉❝t✐♥❣ ✐t ✐♥ ✈❡❝t♦r✐③❡❞ ❢♦r♠ ❧❡❛❞s t♦ vec∆Z1†  = Σ−12 1 ⊗ Iqr  vec∆V1 +  Id⊗  −12V1Σ −3 2 1  vec∆Σ1. ✭✷✹✮ ❚❤❡ s❡♥s✐t✐✈✐t② ♦❢ t❤❡ ❧❡❢t s✐♥❣✉❧❛r ✈❡❝t♦rs ❝❛♥ ❜❡ r❡❧❛t❡❞ t♦ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ s✉❜s♣❛❝❡ ♠❛tr✐① H(k) ✭s❡❡ ✐♥ ❬✶✶❪✮ vec∆U1 = L1d    B†1C1 ✳✳✳ Bd†Cd   vec∆H (k) ✭✷✺✮ ✇✐t❤ ❛ s❡❧❡❝t✐♦♥ ♠❛tr✐① ❞❡✜♥❡❞ ❜② L1d = Id⊗ I(p+1)r O(p+1)r×qr  ✭✷✻✮ ❛♥❞ Bj= " I(p+1)r −H (k) σj −(H(k)σj)T Iqr # , ✭✷✼✮ Cj = 1 σj  vT j ⊗ (I(p+1)r− ujuTj) (uT j ⊗ (Iqr− vjvjT))P  , ✭✷✽✮ P = (p+1)r X k1=1 qr X k2=1 E(p+1)r×qrk1k2 ⊗ Ekqr×(p+1)r2k1 , ✭✷✾✮ ✇❤❡r❡ σj ✐s t❤❡ ❡✐❣❡♥✈❛❧✉❡ ❛t s②st❡♠ ♦r❞❡r j {j ∈ 1, . . . , d}✱ uj ✭r❡s♣✳ vj✮ ✐s ❝♦❧✉♠♥ ♥✉♠❜❡r j ♦❢ U ✭r❡s♣✳ V ✮✳ E(p+1)r×qr k1k2 ✐s ❛ (p + 1)r × qr ♠❛tr✐① ✇❤♦s❡ ❡❧❡♠❡♥t ✐s ✶ ❛t ♣♦s✐t✐♦♥ (k1, k2)❛♥❞ ③❡r♦ ❡❧s❡✇❤❡r❡✳ ❚❤❡ s❡♥s✐t✐✈✐t② ♦❢ ❡✐❣❡♥✈❛❧✉❡s ✐s ❛❞❞r❡ss❡❞ ❛s ✭s❡❡ ✐♥ ❬✶✶❪✮ vec(∆Σ1) = S3d    (v1⊗ u1)T ✳✳✳ (vd⊗ ud)T   vec∆H (k), ✭✸✵✮ ❘❘ ♥➦ ✼✹✻✷

(12)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✾ ✐♥ ✇❤✐❝❤ S3d✐s ❛ s❡❧❡❝t✐♦♥ ♠❛tr✐① S3d = d X s=1 E(s−1)d+s,sd2×d ✭✸✶✮ ❚❤❡ s❡♥s✐t✐✈✐t② ♦❢ r✐❣❤t ❡✐❣❡♥✈❡❝t♦rs ✭s❡❡ ✐♥ ❬✶✶❪✮ ✐s t❤❡♥ s♣❡❝✐✜❡❞ ❜② vec∆V1 = L2d    B1†C1 ✳✳✳ B†dCd   vec∆H (k) ✭✸✷✮ ✇✐t❤ s❡❧❡❝t✐♦♥ ♠❛tr✐① L2d = Id⊗  Oqr×(p+1)r Iqr  . ✭✸✸✮ ❊s♣❡❝✐❛❧❧②✱ vec∆H(k) ❝❛♥ ❜❡ s✐♠♣❧✐✜❡❞ ❜② ♠❛❦✐♥❣ ✉s❡ ♦❢ ❛ ❜❧♦❝❦✲st♦r✐♥❣ ♠❛tr✐① M(k) vec∆H(k) = S4(k)vec∆M(k) ✭✸✹✮ ✇❤❡r❡ M(k) =      R1 R2 ✳✳✳ Rp+q+k      ✭✸✺✮ S(k)4 =       Ir⊗ S(k)5,1 Ir⊗ S(k)5,2 ✳✳✳ Ir⊗ S(k)5,q       ✭✸✻✮ S5,t(k) =  O(p+1)r×(t−1+k)r I(p+1)r O(p+1)r×(q−t)r  ✭✸✼✮ ❋✐♥❛❧❧②✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ s②st❡♠ ♠❛tr✐① A ❝❛♥ ❜❡ s❤♦✇♥ ✐♥ ✈❡❝t♦r✐③❛t✐♦♥ ❢♦r♠ vec∆A = JAvec∆M(k), ✭✸✽✮ ✐♥ ✇❤✐❝❤ JA✐s ❛ ❏❛❝♦❜✐❛♥ ♠❛tr✐① JA = N1    (v1⊗ u1)T ✳✳✳ (vd⊗ ud)T   S (k) 4 +N2    B1†C1 ✳✳✳ Bd†Cd   S (k) 4 +Z1† T ⊗ O1†  S4(k+1) ✭✸✾✮

(13)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✵ ✇✐t❤ t❤❡ ♠❛tr✐❝❡s N1 =  Z1† T H(k+1)T⊗ Id  U1⊗  −12Σ−32 1  S3d +Id⊗  O†1H(k+1)  Id⊗  −12V1Σ −3 2 1  S3d, ✭✹✵✮ N2 =  Z1† T H(k+1)T⊗ Id   I(p+1)r⊗ Σ −1 2 1  PU1 L1d +Id⊗  O†1H (k+1) Σ−1 2 1 ⊗ Iqr  L2d. ✭✹✶✮ ▲✐❦❡✇✐s❡✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ t❤❡ ✈❡❝t♦r✐③❡❞ s②st❡♠ ♠❛tr✐① C ✐s vec∆C = JC vec∆M(k) ✭✹✷✮ ✇✐t❤ ❏❛❝♦❜✐❛♥ ♠❛tr✐① JC = (Id⊗ SC) (Bd+ Cd) S4(k), ✭✹✸✮ ✇❤❡r❡ SC =  Ir Or×pr  , ✭✹✹✮ Bd =  Id⊗  1 2U1Σ −1 2 1  S3d    (v1⊗ u1)T ✳✳✳ (vd⊗ ud)T    ✭✹✺✮ Cd =  Σ12 1 ⊗ I(p+1)r  L1d    B1†C1 ✳✳✳ Bd†Cd   . ✭✹✻✮ ❋✐♥❛❧❧②✱ t❤❡ ✉♥❝❡rt❛✐♥t② ♦❢ s②st❡♠ ♠❛tr✐❝❡s ❝❛♥ ❜❡ ❥♦✐♥❡❞ t♦❣❡t❤❡r  vec∆A vec∆C  =  JA JC  vec∆M(k) = JA,C vec∆M(k) ✭✹✼✮ ❚❤❡♥✱ t❤❡ ❝♦✈❛r✐❛♥❝❡s ♦❢ t❤❡ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛r❡ ♦❜t❛✐♥❡❞ ❛s cov(fµ) = Jfµ JA,C cov(vec M

(k)) JT A,C JfTµ

cov(dµ) = Jdµ JA,C cov(vec M

(k)) JT A,C JdTµ

cov(φµ) = Jφµ JA,C cov(vec M

(k)) JT

A,C JφTµ ✭✹✽✮

(14)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✶

✹ ◆✉♠❡r✐❝❛❧ ❊①❛♠♣❧❡s

❚❤❡ ❙✶✵✶ ❜r✐❞❣❡ ✭❬✶✸❪✮ ❝♦♥♥❡❝t❡❞ ❙❛❧③❜✉r❣ ✲ ❱✐❡♥♥❛ ❝❛rr✐❛❣❡ ✇❛② ✐♥ ❆✉str✐❛✳ ❚❤❛t ✐s ❛ ♣♦st✲t❡♥s✐♦♥❡❞ ❝♦♥❝r❡t❡ ❜r✐❞❣❡ ✇✐t❤ ♠❛✐♥ s♣❛♥ ♦❢ ✸✷ ♠✱ s✐❞❡ s♣❛♥s ♦❢ ✶✷ ♠✱ ❛♥❞ t❤❡ ✇✐❞t❤ ♦❢ ✻✳✻ ♠✳ ❚❤❡ ❞❡❝❦ ✐s ❝♦♥t✐♥✉♦✉s ♦✈❡r t❤❡ ♣✐❡rs✳ ❚❤✐s ❜r✐❞❣❡✱ ❝♦♥tr✉❝t❡❞ ✐♥ ✶✾✻✵✱ ❤❛s ❜❡❡♥ ❛ t②♣✐❝❛❧ ♦✈❡r♣❛ss ❜r✐❞❣❡ ✐♥ ❆✉str✐❛ ♥❛t✐♦♥❛❧ ❤✐❣❤✇❛②✳ ■♥ t❤❡ ❝✉rr❡♥t ♣❛♣❡r✱ t❤❡ ❛♠❜✐❡♥t ✈✐❜r❛t✐♦♥ ❞❛t❛ ✐s ❝♦❧❧❡❝t❡❞ ♦♥ ✶✺ s❡♥s♦rs✳ ❚❤❡ ♦r✐❣✐♥❛❧ s❛♠♣❧✐♥❣ ❢r❡q✉❡♥❝② ✐s ✺✵✵ ❍③ ✇✐t❤ ✶✻✺✵✵✵ t✐♠❡ s❛♠♣❧❡s ❛✈❛✐❧❛❜❧❡✳ ❚❤❡ ❞❛t❛ ✐s ❞❡❝✐♠❛t❡❞ t♦ ✸✺✳✼ ❍③ ❛♥❞ ♦♥❧② ✜✈❡ ♠♦❞❡s ❛r❡ t❛❦❡♥ ✐♥t♦ ❛❝❝♦✉♥t✳ ❋✐❣✉r❡ ✶✿ ❙✶✵✶ ❜r✐❞❣❡ ✐♥ ❘❡✐❜❡rs❞♦r❢✱ ❆✉str✐❛

✹✳✶ ▼♦❞❛❧ ❛♥❛❧②s✐s

❋♦r t❤❡ ♦✉t♣✉t✲♦♥❧② ♠♦❞❛❧ ❛♥❛❧②s✐s ♦❢ t❤❡ ❛♠❜✐❡♥t ✈✐❜r❛t✐♦♥ ❞❛t❛ ♦❢ t❤❡ ❙✶✵✶ ❜r✐❞❣❡✱ s✐♠✐❧❛r ♣❛r❛♠❡t❡rs ❢♦r ❜♦t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ❛r❡ ❡♠♣❧♦②❡❞✳ ✻✹ ❝♦rr❡❧❛t✐♦♥s ✭p + 1 = q = 32✮ ❛r❡ ✉s❡❞✱ ❧❡❛❞✐♥❣ t♦ ❍❛♥❦❡❧ ♠❛tr✐❝❡s ✇✐t❤ ✸✷ ❜❧♦❝❦ r♦✇s ❛♥❞ ❝♦❧✉♠♥s✳ ❚❤❡ r❡s✉❧t✐♥❣ ♠✉❧t✐✲♦r❞❡r ❞✐❛❣r❛♠s ❛r❡ ♣r❡s❡♥t❡❞ ✐♥ ❋✐❣✉r❡ ✷ ❛♥❞ ❋✐❣✉r❡ ✸✳

(15)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✷ ❋✐❣✉r❡ ✷✿ ❙t❛❜✐❧✐③❛t✐♦♥ ❞✐❛❣r❛♠ ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ✭♥❛t✉r❛❧ ❢r❡q✉❡♥❝② ✈s✳ ♠♦❞❡❧ ♦r❞❡r✮ ❋✐❣✉r❡ ✸✿ ❙t❛❜✐❧✐③❛t✐♦♥ ❞✐❛❣r❛♠ ✇✐t❤ ❊❘❆ ✭♥❛t✉r❛❧ ❢r❡q✉❡♥❝② ✈s✳ ♠♦❞❡❧ ♦r❞❡r✮ ❚❤❡ s✉♠♠❛r② ♦❢ t❤❡ ❢r❡q✉❡♥❝✐❡s ❛♥❞ ❞❛♠♣✐♥❣ r❛t✐♦s ♦❢ t❤❡ ✜✈❡ ✐❞❡♥t✐✜❡❞ ♠♦❞❡s ✐s ❣✐✈❡♥ ✐♥ ❚❛❜❧❡ ✶ ❛♥❞ ❚❛❜❧❡ ✷✱ ❢♦r ❜♦t❤ s✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥ ❛♥❞ ❊❘❆✳ ❊❘❆✲✢ ✐s t❤❡ ❊❘❆ ✇❤✐❝❤ ✉s❡s ✜rst✲❧❛❣ ❛♥❞ s❡❝♦♥❞✲❧❛❣ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s✱ ❊❘❆✲s❧ ✐s t❤❡ ❊❘❆ ✇❤✐❝❤ ✉t✐❧✐③❡s s❡❝♦♥❞✲❧❛❣ ❛♥❞ t❤✐r❞✲❧❛❣ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s✱ ❊❘❆✲t❧ ✐s t❤❡ ❊❘❆ ✇❤✐❝❤ ❡♠♣❧♦②s t❤✐r❞✲❧❛❣ ❛♥❞ ❢♦✉rt❤✲❧❛❣ s✉❜s♣❛❝❡ ♠❛tr✐❝❡s✳ ❚❤❡ ❞✐✛❡r❡♥❝❡s ✐♥ t❤❡ ♦❜t❛✐♥❡❞ ❢r❡q✉❡♥❝✐❡s ❜❡t✇❡❡♥ s✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥ ❛♥❞ ❊❘❆ ❛r❡ s♠❛❧❧✱ ❧❡ss t❤❛♥ ✵✳✺%✱ ❢♦r ❛❧❧ ✜✈❡ ♠♦❞❡s✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ❞❛♠♣✐♥❣ r❛t✐♦s✱ t❤❡ ❞✐✛❡r❡♥❝❡s ❛r❡ ❜✐❣❣❡r ❜❡❝❛✉s❡ ♦❢ ❤✐❣❤❡r ✉♥❝❡rt❛✐♥t② ✐♥ t❤❡ ❡st✐♠❛t✐♦♥ ♦❢ ❞❛♠♣✐♥❣ r❛t✐♦s✳ ❘❘ ♥➦ ✼✹✻✷

(16)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✸ ▼♦❞❡ ❋r❡q✉❡♥❝② ❢ ✭❍③✮ ❙✉❜s♣❛❝❡ ❊❘❆✲✢ ❊❘❆✲s❧ ❊❘❆✲t❧ ✶ ✹✳✵✸✾ ✹✳✵✸✽ ✹✳✵✸✼ ✹✳✵✸✼ ✷ ✻✳✷✽✷ ✻✳✷✽✸ ✻✳✷✽✹ ✻✳✷✽✸ ✸ ✾✳✻✽✷ ✾✳✻✽✹ ✾✳✻✽✸ ✾✳✻✽✹ ✹ ✶✸✳✷✽✹ ✶✸✳✷✽✸ ✶✸✳✷✾✵ ✶✸✳✸✵✼ ✺ ✶✺✳✼✷✶ ✶✺✳✼✷✵ ✶✺✳✼✻✸ ✶✺✳✻✸✵ ❚❛❜❧❡ ✶✿ ■❞❡♥t✐✜❡❞ ❢r❡q✉❡♥❝✐❡s ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ▼♦❞❡ ❉❛♠♣✐♥❣ ❘❛t✐♦ ❞ ✭✪✮ ❙✉❜s♣❛❝❡ ❊❘❆✲✢ ❊❘❆✲s❧ ❊❘❆✲t❧ ✶ ✵✳✼✺✾ ✵✳✼✺✹ ✵✳✼✻✷ ✵✳✼✺✻ ✷ ✵✳✻✶✼ ✵✳✻✵✽ ✵✳✺✽✽ ✵✳✺✼✸ ✸ ✶✳✶✾✸ ✶✳✶✽✾ ✶✳✶✽✺ ✶✳✷✷✽ ✹ ✶✳✹✸✻ ✶✳✹✷✹ ✶✳✸✵✾ ✶✳✶✸✺ ✺ ✶✳✻✸✽ ✶✳✾✻✻ ✷✳✸✻✵ ✷✳✹✼✺ ❚❛❜❧❡ ✷✿ ■❞❡♥t✐✜❡❞ ❞❛♠♣✐♥❣ r❛t✐♦s ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆

✹✳✷ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s

❋♦r t❤❡ ❝♦♠♣✉t❛t✐♦♥ ♦❢ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs✱ ✷✹ t✐♠❡ ❧❛❣s✱ ❧❡❛❞✐♥❣ t♦ p+1 = q = 12✱ ❛♥❞ ✹✵ ♠♦❞❡❧ ♦r❞❡rs ❛r❡ ✉t✐❧✐③❡❞ ❞✉❡ t♦ t❤❡ ❧✐♠✐t❛t✐♦♥ ✐♥ ❝♦♠♣✉t❡r ♠❡♠♦r②✳ ▼♦❞❡ ❋r❡q✉❡♥❝② ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✭✪✮ ❙✉❜s♣❛❝❡ ❊❘❆✲✢ ❊❘❆✲s❧ ❊❘❆✲t❧ ✶ ✵✳✶✶✺ ✵✳✶✶✵ ✵✳✶✷✷ ✵✳✶✵✵ ✷ ✵✳✵✾✷ ✵✳✵✾✸ ✵✳✵✾✷ ✵✳✵✽✾ ✸ ✵✳✶✸✸ ✵✳✶✸✹ ✵✳✶✺✻ ✵✳✶✺✾ ✹ ✵✳✹✼✶ ✵✳✸✵✵ ✵✳✷✹✼ ✵✳✺✼✸ ✺ ✶✳✶✹✽ ✶✳✽✷✺ ✷✳✹✽✺ ✶✳✹✹✷ ❚❛❜❧❡ ✸✿ ❋r❡q✉❡♥❝② ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ▼♦❞❡ ❉❛♠♣✐♥❣✲r❛t✐♦ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✭✪✮ ❙✉❜s♣❛❝❡ ❊❘❆✲✢ ❊❘❆✲s❧ ❊❘❆✲t❧ ✶ ✶✼✳✼✾✶ ✶✼✳✽✶✾ ✶✼✳✼✺✼ ✶✻✳✸✺✷ ✷ ✶✾✳✸✽✸ ✶✾✳✷✸✾ ✷✵✳✹✵✶ ✶✾✳✾✵✵ ✸ ✶✻✳✽✹✺ ✶✸✳✸✵✷ ✶✶✳✸✸✷ ✶✶✳✾✻✵ ✹ ✷✽✳✾✶✾ ✶✺✳✵✶✷ ✺✻✳✼✼✼ ✻✺✳✵✶✾ ✺ ✻✵✳✺✷✷ ✼✵✳✽✵✵ ✶✻✶✳✼✹✾ ✶✸✵✳✻✾✶ ❚❛❜❧❡ ✹✿ ❉❛♠♣✐♥❣✲r❛t✐♦ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✇✐t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ■♥ ❚❛❜❧❡ ✸ ❛♥❞ ❚❛❜❧❡ ✹✱ t❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦❢ t❤❡ ♥❛t✉r❛❧ ❢r❡q✉❡♥❝✐❡s ❛♥❞ ❞❛♠♣✐♥❣ r❛t✐♦s ♦❢ t❤❡ ✜✈❡ ♠♦❞❡s ❛r❡ ♣r❡s❡♥t❡❞✱ r❡s♣❡❝t✐✈❡❧②✳ ❈♦♥✜❞❡♥❝❡

(17)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✹ ✐♥t❡r✈❛❧s ♦❢ t❤❡ ❢r❡q✉❡♥❝✐❡s ❛r❡ ♠✉❝❤ s♠❛❧❧❡r t❤❛♥ t❤♦s❡ ♦❢ ❞❛♠♣✐♥❣ r❛t✐♦s✳ ❚❤✐s ✐s ❝♦❤❡r❡♥t ✇✐t❤ st❛t✐st✐❝❛❧ t❤❡♦r②✱ s✐♥❝❡ t❤❡ ❧♦✇❡r ❜♦✉♥❞ ♦❢ t❤❡ ❝♦✈❛r✐❛♥❝❡ ❣✐✈❡♥ ❜② ❋✐s❤❡r ✐♥❢♦r♠❛t✐♦♥ ♠❛tr✐① ✐s s♠❛❧❧❡r ❢♦r t❤❡ ❢r❡q✉❡♥❝✐❡s t❤❛♥ ❢♦r t❤❡ ❞❛♠♣✐♥❣ r❛t✐♦s✳ ❇❡s✐❞❡s✱ ❢♦r t❤✐s ❛♣♣❧✐❝❛t✐♦♥✱ ❝♦♥✜❞❡♥❝❡ ❜♦✉♥❞s ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ♦❢ ❊❘❆ ❛r❡ r❡❧❛t✐✈❡❧② s✐♠✐❧❛r ❛s t❤♦s❡ ♦❜t❛✐♥❡❞ ✇✐t❤ t❤❡ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠✳ ❲❤✐❧❡ s❤✐❢t✐♥❣ t❤❡ ❧❛❣s ♦❢ ❊❘❆✱ t❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧ ✢✉❝t✉❛t✐♦♥s s❡❡♠ t♦ ❜❡ st❛❜❧❡✱ ❛♥❞ t❤❡ ❊❘❆✲✢ ♠❛② s✉♣♣❧② t❤❡ ♠♦st ❝♦♠♣❛r❛❜❧❡ r❡s✉❧ts t♦ s✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥✳

✺ ❈♦♥❝❧✉s✐♦♥s

■♥ t❤✐s ♣❛♣❡r✱ t❤❡ ♦✉t♣✉t✲♦♥❧② s②st❡♠ ✐❞❡♥t✐✜❝❛t✐♦♥ ❛♥❞ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛r❡ ❞❡r✐✈❡❞ ❛♥❞ ✐♠♣❧❡♠❡♥t❡❞ ❢♦r ❜♦t❤ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆✳ ❆❧❧ t❤❡ ♠❡t❤♦❞s ✇❡r❡ s✉❝❝❡ss❢✉❧❧② ❛♣♣❧✐❡❞ ❛♥❞ t❡st❡❞ ♦♥ t❤❡ ❛♠❜✐❡♥t ✈✐❜r❛t✐♦♥ ❞❛t❛ ♦❢ t❤❡ ❙✶✵✶ ♦✈❡r♣❛ss ❜r✐❞❣❡✳ ❚❤❡ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ❣✐✈❡ ❝♦♠♣❛r❛❜❧❡ r❡s✉❧ts✳ ❚❤❡ q✉❛❧✐t② ♦❢ st❛❜✐❧✐③❛t✐♦♥ ❞✐❛❣r❛♠s ❛s ✇❡❧❧ ❛s ❢r❡q✉❡♥❝✐❡s ♦❢ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠ ❛♥❞ ❊❘❆ ❛r❡ ❛❧♠♦st s✐♠✐❧❛r✳ ❚❤❡ ❞❛♠♣✐♥❣ r❛t✐♦s ❛r❡ s❧✐❣❤t❧② ❞✐✛❡r❡♥t ❞✉❡ t♦ ❛♥ ❡①♣❡❝t❡❞❧② ❤✐❣❤❡r ✉♥❝❡rt❛✐♥t② ♦♥ ❡st✐♠❛t✐♦♥✳ ❚❤❡ ❝♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ❛r❡ ❛❧s♦ ❝♦♠♣✉t❡❞✳ ■t ✐s ♦❜✲ s❡r✈❡❞ t❤❛t t❤❡ ✉♥❝❡rt❛✐♥t② ❢♦r ❊❘❆ ✐s r❡❧❛t✐✈❡❧② s✐♠✐❧❛r ✇✐t❤ t❤❛t ❛ss♦❝✐❛t❡❞ t♦ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠✳ ❲❤❡♥ t❛❦✐♥❣ ✐♥t♦ ❛❝❝♦✉♥t t❤❡ ❧❛❣ ❡✛❡❝t ❢♦r ❊❘❆✱ ❊❘❆✲✢ s❡❡♠s t♦ ❜❡ t❤❡ ♠♦st r❡❛s♦♥❛❜❧❡ s❡❧❡❝t✐♦♥ ❢♦r t❤❡ ❞❡s✐❣♥❡rs ❞❡❛❧✐♥❣ ✇✐t❤ ❊❘❆✳ ❘❘ ♥➦ ✼✹✻✷

(18)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✺

❈♦♥t❡♥ts

✶ ■♥tr♦❞✉❝t✐♦♥ ✸ ✷ ❙t♦❝❤❛st✐❝ ❙②st❡♠ ■❞❡♥t✐✜❝❛t✐♦♥ ✹ ✷✳✶ ❚❤❡ ●❡♥❡r❛❧ ❙❙■ ❆❧❣♦r✐t❤♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹ ✷✳✷ ❊❘❆ ✭❊✐❣❡♥s②st❡♠✲❘❡❛❧✐③❛t✐♦♥✲❆❧❣♦r✐t❤♠✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✺ ✸ ❈♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ✻ ✸✳✶ ❉❡s❝r✐♣t✐♦♥s ♦❢ ❙❙■ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s ❛❧❣♦r✐t❤♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✻ ✸✳✷ ❉❡r✐✈❛t✐♦♥ ♦❢ ❊❘❆ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✼ ✹ ◆✉♠❡r✐❝❛❧ ❊①❛♠♣❧❡s ✶✶ ✹✳✶ ▼♦❞❛❧ ❛♥❛❧②s✐s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✶ ✹✳✷ ❈♦♥✜❞❡♥❝❡ ■♥t❡r✈❛❧s ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✶✸ ✺ ❈♦♥❝❧✉s✐♦♥s ✶✹

❘❡❢❡r❡♥❝❡s

❬✶❪ ❉✳ ❇❛✉❡r✱ ▼✳ ❉❡✐st❧❡r✱ ❛♥❞ ❲✳ ❙❝❤❡rr❡✳ ❈♦♥s✐st❡♥❝② ❛♥❞ ❛s②♠t♦t✐❝ ♥♦r✲ ♠❛❧✐t② ♦❢ s♦♠❡ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠s ❢♦r s②st❡♠s ✇✐t❤♦✉t ♦❜s❡r✈❡❞ ✐♥♣✉ts✳ ❆✉t♦♠❛t✐❝❛✱ ✸✺✿✶✷✹✸✕✶✷✺✹✱ ✶✾✾✾✳ ❬✷❪ ❉✳ ❇❛✉❡r ❛♥❞ ▼✳ ❏❛♥ss♦♥✳ ❆♥❛❧②s✐s ♦❢ t❤❡ ❛s②♠t♦t✐❝ ♣r♦♣❡rt✐❡s ♦❢ t❤❡ ♠♦❡s♣ t②♣❡ ♦❢ s✉❜s♣❛❝❡ ❛❧❣♦r✐t❤♠s✳ ❆✉t♦♠❛t✐❝❛✱ ✸✻✿✹✾✼✕✺✵✾✱ ✷✵✵✵✳ ❬✸❪ ❆✳ ❇❡♥✈❡♥✐st❡ ❛♥❞ ❏✳✲❏✳ ❋✉❝❤s✳ ❙✐♥❣❧❡ s❛♠♣❧❡ ♠♦❞❛❧ ✐❞❡♥t✐✜❝❛t✐♦♥ ♦❢ ❛ ♥♦♥✲ st❛t✐♦♥❛r② st♦❝❤❛st✐❝ ♣r♦❝❡ss✳ ■❊❊❊ ❚r❛♥s❛❝t✐♦♥s ♦♥ ❆✉t♦♠❛t✐❝ ❈♦♥tr♦❧✱ ❆❈✲✸✵✭✶✮✿✻✻✕✼✹✱ ✶✾✽✺✳ ❬✹❪ ❆✳ ❇❡♥✈❡♥✐st❡ ❛♥❞ ▲✳ ▼❡✈❡❧✳ ◆♦♥✲st❛t✐♦♥❛r② ❝♦♥s✐st❡♥❝② ♦❢ s✉❜s♣❛❝❡ ♠❡t❤✲ ♦❞s✳ ■❊❊❊ ❚r❛♥s❛❝t✐♦♥s ♦♥ ❆✉t♦♠❛t✐❝ ❈♦♥tr♦❧✱ ❆❈✲✺✷✭✻✮✿✾✼✹✕✾✽✹✱ ✷✵✵✼✳ ❬✺❪ ❆✳ ❈❤✐✉s♦ ❛♥❞ ●✳ P✐❝❝✐✳ ❆s②♠♣t♦t✐❝ ✈❛r✐❛♥❝❡ ♦❢ s✉❜s♣❛❝❡ ♠❡t❤♦❞s ❜② ❞❛t❛ ♦rt❤♦❣♦♥❛❧✐③❛t✐♦♥ ❛♥❞ ♠♦❞❡❧ ❞❡❝♦✉♣❧✐♥❣✿ ❛ ❝♦♠♣❛r❛t✐✈❡ ❛♥❛❧②s✐s✳ ❆✉t♦✲ ♠❛t✐❝❛✱ ✹✵✿✶✼✵✺✕✶✼✶✼✱ ✷✵✵✹✳ ❬✻❪ ▼✳ ❉❡✐st❧❡r✱ ❑✳ P❡t❡r♥❡❧❧✱ ❛♥❞ ❲✳ ❙❝❤❡rr❡r✳ ❈♦♥s✐st❡♥❝② ❛♥❞ r❡❧❛t✐✈❡ ❡✣✲ ❝✐❡♥❝② ♦❢ s✉❜s♣❛❝❡ ♠❡t❤♦❞s✳ ❆✉t♦♠❛t✐❝❛✱ ✸✶✿✶✽✻✺✕✶✽✼✺✱ ✶✾✾✺✳ ❬✼❪ ▼✳ ❉ö❤❧❡r✱ ❳✳✲❇✳ ▲❛♠✱ ❛♥❞ ▲✳ ▼❡✈❡❧✳ ❈♦♥✜❞❡♥❝❡ ✐♥t❡r✈❛❧s ♦♥ ♠♦❞❛❧ ♣❛✲ r❛♠❡t❡rs ✐♥ st♦❝❤❛st✐❝ s✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥✳ ■♥ Pr♦❝❡❡❞✐♥❣s ♦❢ t❤❡ ✸✹t❤ ■❆❇❙❊ ❙②♠♣♦s✐✉♠✱ ❱❡♥✐❝❡✱ ■t❛❧②✱ ❙❡♣t❡♠❜❡r ✷✵✶✵✳ ❬✽❪ ❏✳✲◆✳ ❏✉❛♥❣ ❛♥❞ ❘✳ ❙✳ P❛♣♣❛✳ ❆♥ ❡✐❣❡♥s②st❡♠ r❡❛❧✐③❛t✐♦♥ ❛❧❣♦r✐t❤♠ ❢♦r ♠♦❞❛❧ ♣❛r❛♠❡t❡r ✐❞❡♥t✐✜❝❛t✐♦♥ ❛♥❞ ♠♦❞❡❧ r❡❞✉❝t✐♦♥✳ ❏♦✉r♥❛❧ ♦❢ ●✉✐❞❛♥❝❡✱ ❈♦♥tr♦❧ ❛♥❞ ❉②♥❛♠✐❝s✱ ✽✭✺✮✿✻✷✵✕✻✷✼✱ ✶✾✽✺✳ ❬✾❪ ❲✳ ❊✳ ▲❛r✐♠♦r❡✳ ❙②st❡♠ ✐❞❡♥t✐✜❝❛t✐♦♥✱ r❡❞✉❝❡❞ ♦r❞❡r ✜❧t❡rs ❛♥❞ ♠♦❞❡❧❧✐♥❣ ✈✐❛ ❝❛♥♦♥✐❝❛❧ ✈❛r✐❛t❡ ❛♥❛❧②s✐s✳ ■♥ t❤❡ ❆♠❡r✐❝❛♥ ❈♦♥tr♦❧ ❈♦♥❢❡r❡♥❝❡✱ ♣❛❣❡s ✹✹✺✕✹✺✶✱ ✶✾✽✸✳

(19)

❯♥❝❡rt❛✐♥t② q✉❛♥t✐✜❝❛t✐♦♥ ✶✻ ❬✶✵❪ ❇✳ P❡❡t❡rs ❛♥❞ ●✳ ❉❡ ❘♦❡❝❦✳ ❘❡❢❡r❡♥❝❡✲❜❛s❡❞ st♦❝❤❛st✐❝ s✉❜s♣❛❝❡ ✐❞❡♥✲ t✐✜❝❛t✐♦♥ ❢♦r ♦✉t♣✉t✲♦♥❧② ♠♦❞❛❧ ❛♥❛❧②s✐s✳ ▼❡❝❤❛♥✐❝❛❧ ❙②st❡♠s ❛♥❞ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣✱ ✶✸✭✻✮✿✽✺✺✕✽✼✽✱ ◆♦✈❡♠❜❡r ✶✾✾✾✳ ❬✶✶❪ ❘✳ P✐♥t❡❧♦♥✱ P✳ ●✉✐❧❧❛✉♠❡✱ ❛♥❞ ❏✳ ❙❝❤♦✉❦❡♥s✳ ❯♥❝❡rt❛✐♥t② ❝❛❧❝✉❧❛t✐♦♥ ✐♥ ✭♦♣❡r❛t✐♦♥❛❧✮ ♠♦❞❛❧ ❛♥❛❧②s✐s✳ ▼❡❝❤❛♥✐❝❛❧ ❙②st❡♠s ❛♥❞ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣✱ ✷✶✿✷✸✺✾✕✷✸✼✸✱ ✷✵✵✼✳ ❬✶✷❪ ❊✳ ❘❡②♥❞❡rs✱ ❘✳ P✐♥t❡❧♦♥✱ ❛♥❞ ●✳ ❉❡ ❘♦❡❝❦✳ ❯♥❝❡rt❛✐♥t② ❜♦✉♥❞s ♦♥ ♠♦❞❛❧ ♣❛r❛♠❡t❡rs ♦❜t❛✐♥❡❞ ❢r♦♠ st♦❝❤❛st✐❝ s✉❜s♣❛❝❡ ✐❞❡♥t✐✜❝❛t✐♦♥✳ ▼❡❝❤❛♥✐❝❛❧ ❙②st❡♠s ❛♥❞ ❙✐❣♥❛❧ Pr♦❝❡ss✐♥❣✱ ✷✷✭✹✮✿✾✹✽✕✾✻✾✱ ✷✵✵✽✳ ❬✶✸❪ ❉✳ ▼✳ ❙✐r✐♥❣♦r✐♥❣♦✱ ❚✳ ◆❛❣❛②❛♠❛✱ ❨✳ ❋✉❥✐♥♦✱ ❉✳ ❙✉✱ ❛♥❞ ❈✳ ❚❛♥❞✐❛♥✳ ❖❜✲ s❡r✈❡❞ ❞②♥❛♠✐❝ ❝❤❛r❛❝t❡r✐st✐❝s ♦❢ ❛♥ ♦✈❡r♣❛ss ❜r✐❞❣❡ ❞✉r✐♥❣ ❛ ❢✉❧❧✲s❝❛❧❡ ❞❡str✉❝t✐✈❡ t❡st✐♥❣✳ ■♥ ❚❤❡ ❋✐❢t❤ ■♥t❡r♥❛t✐♦♥❛❧ ❈♦♥❢❡r❡♥❝❡ ♦♥ ❇r✐❞❣❡ ▼❛✐♥✲ t❡♥❛♥❝❡✱ ❙❛❢❡t②✱ ▼❛♥❛❣❡♠❡♥t ❛♥❞ ▲✐❢❡✲❈②❝❧❡ ❖♣t✐♠✐③❛t✐♦♥✱ ✷✵✶✵✳ ❬✶✹❪ P✳ ❱❛♥ ❖✈❡rs❝❤❡❡ ❛♥❞ ❇✳ ❉❡ ▼♦♦r✳ ❙✉❜s♣❛❝❡ ■❞❡♥t✐✜❝❛t✐♦♥ ❢♦r ▲✐♥❡❛r ❙②st❡♠s✿ ❚❤❡♦r②✱ ■♠♣❧❡♠❡♥t❛t✐♦♥✱ ❆♣♣❧✐❝❛t✐♦♥s✳ ❑❧✉✇❡r✱ ✶✾✾✻✳ ❘❘ ♥➦ ✼✹✻✷

(20)

Centre de recherche INRIA Rennes – Bretagne Atlantique IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur

INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

❤tt♣✿✴✴✇✇✇✳✐♥r✐❛✳❢r ISSN 0249-6399

Références

Documents relatifs

Human Health Therapeutics Research Centre, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, Canada, K1A 0R6.. Human Health Therapeutics Research Centre,

Carbon supported pyrolyzed CoTMPP catalyst (CoTMPP/C) was assessed using X- ray diffraction and Raman, a number of varied electrochemical tests, as well as a single cell test..

According to the spirit of tight typings, linear head correctness does not only provide the size of (linear head) normal forms, but also the lengths of evaluation sequences to

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble – Rhône-Alpes : 655,