• Aucun résultat trouvé

Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging

N/A
N/A
Protected

Academic year: 2021

Partager "Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01133250

https://hal.archives-ouvertes.fr/hal-01133250

Submitted on 18 Mar 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging

Henri Der Sarkissian, Jeanpierre Guédon, Pierre Tervé, Nicolas Normand, Imants Svalbe

To cite this version:

Henri Der Sarkissian, Jeanpierre Guédon, Pierre Tervé, Nicolas Normand, Imants Svalbe. Evaluation of 3D Discrete Angles Rotation Degradations for Myocardial Perfusion Imaging. 25th Annual Congress of the European Association of Nuclear Medicine, Oct 2012, Milan, Italy. Springer-Verlag, European Journal of Nuclear Medicine and Molecular Imaging, 39 (2), pp.S502-S502, 2012. �hal-01133250�

(2)

E

VALUATION

OF

D

ISCRETE

A

NGLES

R

OTATION

D

EGRADATIONS

FOR

M

YOCARDIAL

P

ERFUSION

I

MAGING

Henri DER SARKISSIAN1,2, Jeanpierre GUEDON1, Pierre TERVE2, Nicolas NORMAND1, Imants SVALBE3

1. LUNAM Université, Université de Nantes, IRCCyN UMR CNRS 6597, Nantes, FRANCE 2. KEOSYS, Nantes, FRANCE 3. Monash Univ., Melbourne, AUSTRALIA

P0685

I

NTRODUCTION

& P

URPOSE

For myocardial perfusion imaging, the tomographic transaxial cardiac volume must be reoriented in the standard views for inter-patient comparison and diagnosis accuracy, as advised by the EANM guidelines.

The volume is then resampled and displayed in the standard HLA, VLA and SA axis.

Rotation of digital images defined on discrete grid introduce image degradation and artifact arising from the lack of perfect match between continuously rotated grid and the original one. As a result, every rotation has to be considered cautiously and be held in the manner to minimize the quantification error. The goal of this poster is :

1) to compare existing rotation algorithms for nuclear medicine images (with their specific spectral content),

2) to use a novel method (Svalbe) both based on discrete angle rotation and image sampling to ensure an one-to-one pixel mapping, 3) to measure rotation operator defaults using the same discrete angles for all tested methods.

HLA

SA

base

apex

LA

S

UBJECTS

& M

ETHODS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Continuous rotation of a 2D image

- Nearest neighbor - Linear

- Cubic B-spline

Discrete image

Continuous

image

rotated image

Continuous

Discrete rotated

image

Interpolation

Continuous

Rotation

Sampling

Sinogram data

Reconstruction

Discrete rotation of a 2D image

- Based on Finite Radon Transform

- Upscale rotation directly implemented in Radon space -  Reversible and lossless

-  Rotations only for Haros-Farey angles

Rotated sinogram

Discrete rotated

image

Reconstruction

Discrete sinogram

Discrete Rotation

Method PET CT 8 Rotations of

45° 80 Rotations of 45° 8 Rotations of 45° 80 Rotations of 45°

MSE PSNR MSE PSNR MSE PSNR MSE PSNR

Nearest 24.90 34.17 24.90 34.17 145.41 26.50 145.41 26.50 Bilinear 25.29 34.10 98.55 28.19 155.29 26.22 326.36 22.99 CubicB- spline 20.64 34,98 20.92 34.93 115.17 27.52 139.64 26.68 High order (Spline 7) 21.93 34,72 71.57 29.58 116.87 27.45 267.27 23.86

Table  1:  kN  rota.ons  of  2π/N  

Method PET CT MSE PSNR MSE PSNR Nearest 10.18 38.05 162.29 26.03 Bilinear 1.14 47.56 98.85 28.18 Cubic B-spline 0.01 66.55 82.12 28.99 Discrete FRT rotation 0.08 59.10 146.65 26.47

Table  2:  Rota.on  of  angle  (1,1)  followed  by  (2,1)  and  reverse  rota.on  by  

(1,-­‐3)  

2 kind of experiments are used :

1)  kN rotations of 2π/N angle. 2π/N is chosen to be a discrete angle. This scheme is only used for continuous rotations (c.f. Table 1),

2)  Rotation of angle (p1,q1), followed by (p2,q2). The resulting image is then rotated one last time by the global reverse angle (p1p2-q1q2,q1p2+p1q2). This scheme is tested for continuous and discrete rotations (c.f. Table 2).

R(t, m) = I (< my + t >p, y)

y=0 p−1

FRT is an exact, discrete and periodic form of the Radon

transform. It maps a p size square image I(x,y) to a p×(p+1) projection image R(t,m), where each pixel of R(t,m) contains the projection value of the original image onto a discrete-angle ray.

Each row m represents a discrete direction of projection. By re-arranging cleverly the rows, we can perform rotations in the projection space.

Left to right: Original PET image, rotation of angle θ  using nearest-neighbor interpolation, rotation of angle θ  using cubic spline

interpolation θ = arctan(1 2)

Discrete angle directions given by Haros-Farey series of order 5

For  con(nuous  rota(ons,  cubic  spline  seems  to  give  the  best  results.  Even  higher  order  spline  give  worse   results.  We  discourage  the  use  of  bilinear  interpola(on  since  it  blurs  drama(cally  the  image.  We  also  

discourage  the  use  of  even  degree  splines,  as  for  example  SP2  which  gives  rise  to  strong  aliasing  ar(facts.  

The  discrete  FRT-­‐based  rota(on  does  not  give  the  best  MSE  values,  but  it  does  not  introduce  any  blur.   Moreover,  the  original  pixel  intensi(es  are  preserved  thus  the  rota(on  is  totally  reversible  and  lossless,   which  is  very  appreciable  for  quan(ta(ve  analysis  based  on  pixel  intensity.  

Some  drawbacks,  like  the  magnifica(on  of  image  size  increases  memory  usage  and  the  periodic  sampling   of  FRT  needs  a  specific  mapping  to  achieve  discrete  rota(on  from  real  acquisi(on.  

R

ESULTS

Experiments

Error measurement using 2 metrics

   

Mean Square Error (MSE) – the l  2 norm of error image :

Peak Signal to Noise Ratio (PSNR) :

MSE = 1 PQ

(

I(x, y) − I '(x, y)

)

2 x=0 Q−1

x=0 P−1

PSNR = 20 log( 255 MSE ) PET 82Rb CT 8 Rotations (Bilinear) 80 Rotations (Bilinear) 8 Rotations (Cubic Spline) 80 Rotations (Cubic Spline)

C

ONCLUSION

The key points of our method are:

- The method is fully discrete so no assumption is made about an underlying continuous model, making it fast, exact and reversible

- It is performed into a discrete projection space, close to the data acquisition space. Thus no tomographic reconstruction has to be made prior to reorientation, minimizing the smoothing effects of interpolation.

Future work: Effects of both reconstruction and reorientation have to be assessed simultaneously. For this purpose, we need estimators of left ventricle orientation directly into the projection space.

The authors thank Pr. Leguludec and Pr. Rouzet from Bichat Hospital, Paris for the data they provided and the QuantiCardi project from Pays de la Loire Region for supporting this work. Special thanks to Benoit Recur for his help.

Références

Documents relatifs

In the following section we present two uniqueness and existence results for degenerate parabolic PDEs in a weak space–time formulation with different enforcement of the

[r]

Présence de politiques et procédures pour l’emploi des aiguilles filtrantes au département de pharmacie 7 (44) Présence de politiques et procédures pour l’emploi des

Automatic myocardial ischemic lesion detection on magnetic resonance perfusion weighted imaging prior perfusion quantification: A pre-modeling strategy... Automatic Myocardial

Although some of the strains examined had IGS profiles identical to those previously described for strains isolated in soils in France and Argentina where cotton had never

Cette fois, la figure est réduite à un point M et seul le centre O des cercles est

Dessine ci-dessous, en vraie grandeur, la section de ce cylindre par un plan parallèle à son axe contenant O et O'b. 3 On réalise la section ABB'A' par un plan parallèle

[r]