• Aucun résultat trouvé

On the space-time separated representation of integral linear viscoelastic models

N/A
N/A
Protected

Academic year: 2021

Partager "On the space-time separated representation of integral linear viscoelastic models"

Copied!
18
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/9958

To cite this version :

Amine AMMAR, Ali ZGHAL, Franck MOREL, Francisco CHINESTA - On the space-time

separated representation of integral linear viscoelastic models Comptes Rendus Mécanique

-Vol. 343, n°4, p.247-263 - 2015

Any correspondence concerning this service should be sent to the repository

Administrator :

archiveouverte@ensam.eu

(2)

Contents lists available atScienceDirect

Comptes Rendus Mecanique

www.sciencedirect.com

On

the

space-time

separated

representation

of

integral

linear

viscoelastic

models

Représentation

séparée

espace-temps

pour

des

comportements

viscoélastiques

linaires

intégraux

Amine Ammar

a

,

b

,

,

Ali Zghal

a

,

Franck Morel

b

, Francisco Chinesta

c aUMSSDT, ENSIT, Université de Tunis, 5, avenue Taha-Hussien, Montfleury 1008, Tunis, Tunisia

bArts et Métiers ParisTech, 2, bd du Ronceray, BP 93525, 49035 Angers cedex 01, France cGEM, UMR CNRS–Centrale Nantes, 1, rue de la Noe, BP 92101, 44321 Nantes cedex 3, France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received1December2014 Accepted10February2015 Availableonline9March2015

Keywords: PGD Viscoelasticity Integro-differentialmodels Fatigue Mots-clés : PGD Viscoélasticité Modèleintegro-differentiel Fatigue

Theanalysisofmaterialsmechanicalbehaviorinvolvesmanycomputationalchallenges.In thiswork,weare addressing thetransientsimulation ofthemechanical behavior when thetimeofinterestismuchlargerthanthecharacteristictimeofthemechanicalresponse. Thissituation isencountered inmanyapplications,as for exampleinthe simulation of materialsaging,orinstructuralanalysiswhensmall-amplitudeoscillatoryloadsareapplied duringalongperiod,asitoccursforexamplewhencharacterizingviscoelasticbehaviors bycalculatingthecomplexmodulusorwhenaddressingfatiguesimulations.Moreover,in the case ofviscoelasticbehaviors,the constitutiveequationis manytimesexpressedin anintegralformavoidingthenecessityofusinginternalvariables,factthatresultsinan integro-differentialmodel.Inordertoefficientlysimulatesuchamodel,weexploreinthis worktheuseofaspace-timeseparatedrepresentation.

©2015Académiedessciences.PublishedbyElsevierMassonSAS.All rights reserved.

r

é

s

u

m

é

L’analyseducomportementmécaniquedesmatériauxentraîne denombreusesdifficultés dupoint devuenumérique.Danscetravail,nousallonsnousfocalisersurl’uned’entre elles, celle associée à la simulation transitoire du comportement mécanique quand l’intervalletemporeld’intérêtestsubstantiellementpluslongqueletempscaractéristique associé à la réponse mécanique. Cette situation est fréquemment retrouvée dans la caractérisation rhéologique des matériaux viscoélastiques (pour la détermination du modulecomplexe)ainsiquequandons’attaqueàlasimulationdelafatigue.Deplus,dans lecasdesmatriauxviscoélastiques,lecomportementestgénéralementdécritparuneloi decomportementintégralequiévitelebesoind’utiliserdesvariablesinternes,donnantlieu

*

Correspondingauthor.

E-mail addresses:Amine.Ammar@ensam.eu(A. Ammar),Ali.Zghal@gmail.com(A. Zghal),Franck.Morel@ensam.eu(F. Morel), Francisco.Chinesta@ec-nantes.fr(F. Chinesta).

http://dx.doi.org/10.1016/j.crme.2015.02.002

(3)

àunmodèlemécaniqueintegro-différentiel.Pourunerésolutionefficace,nousanalysons icil’utilisationd’unereprésentationséparéeenespace-temps.

1. Introduction

The presentwork focuseson theefficient treatment ofmodels involvingtransient fieldsthat must be solved inlarge time intervals usingvery small time steps. In thiscontext, if one uses standard incremental time-discretizations, in the generalcase(modelsinvolvingtime-dependentparameters,non-linearmodels,etc.),onemustsolveatleastalinearsystem ateachtimestep.Whenthetimestepbecomestoosmallasaconsequenceofthestabilityrequirements,andthesimulation timeintervalislargeenough,standardincrementalsimulationsbecomeinefficient.Theymustbereplacedwithothermore efficienttechniques.

Model order reduction—MOR—techniques consider reduced bases on which the solution is projected. As such bases

involve ingeneralfew functions, compared withthe standard approximationbases inwhich an interpolation function is attachedtoeachnodeofamesh,onemustconsiderareduceddiscretemodelwhosesolutioncanbeinmanycasessolved inrealtime.

TherearethreemainstrategiesbasedonMOR.Thefirstone concernstheso-calledProperOrthogonalDecomposition— POD—that proceedsby extractingthe mostsignificant functionsinvolved in the model’s solution.For that purpose,the high-fidelity modelissolved by usinga standard discretizationtechnique anddifferentsnapshotsare extracted(solution atdifferenttimes).Then,by applyingtheproperorthogonaldecomposition,themostsignificant modesare identifiedand then usedforprojectingthesolutionto“similar” problems.Bysimilar problems,we understandmodelsinvolvingslightly different parameters, boundary conditions, geometries, than the onesinvolved in the original model that served for ex-tracting thereducedbasis.Thereis anextensiveliterature regardingthisissue.The interestedreaderscan referto[1–12]

andthe numerousreferencestherein.The extractionofthereducedbasis isthe keypoint whenusing POD-basedmodel orderreduction,aswellasitsadaptivitywhenaddressingscenariosfarfromtheonesconsideredintheconstructionofthe reducedbasis[13,14].

Anotherfamilyofmodelorderreductiontechniqueswelladaptedtothesolutiontoparametricmodelsliesintheused ofreducedbases—RB—constructed bycombiningagreedyalgorithmandan apriorierrorindicatordrivingtheexploration of the parametric space. Thus, RB techniques need for some amount off-line work, but then the reduced basis can be usedonlineforsolving differentmodelswithaperfectcontrolofthesolutionaccuracybecauseoftheavailabilityoferror bounds. Whentheerrorisinadmissible,thereducedbasis canbeenriched byinvokingagainthesamegreedyalgorithm. Theinterestedreaderscanreferto[15–18]andthereferencestherein.

Manyyearsago,P.Ladevezeproposed theuseofspace-timeseparatedrepresentations,attheheartofthethirdkindof MOR strategieshereaddressedandthat wascoinedasProperGeneralizedDecomposition—PGD.Heintroducedthe space-time separatedrepresentationas one ofthe mainbricks composing the LATINmethod,a powerful nonlinearsolver. The interestedreadercanreferto[19–24]andthevaluablereferencestherein.

Whenusingspace-timeseparatedrepresentations,theapproximationofatransientfieldu

(

x

,

t

)

,x

∈ 

R

D, D

=

1

,

2

,

3 andt

I = (

0

,

T ]

R

,isexpressedas u

(

x

,

t

)

N



i=1 Xi

(

x

)

·

Ti

(

t

)

(1)

The constructor of such a separated representation consists of a double iteration loop: the first associated withthe calculation of each term

(

Xn

(

x

)

·

Tn

(

t

))

,

n

∈ [

1

,

· · · ,

N

]

, of the finite sum (1), and the other for solving the nonlinear problemrelatedtothecalculationofeachcoupleoffunctions( Xn

(

x

)

andTn

(

t

)

)becausebothbeingunknowntheproblem results nonlinear.The numericalalgorithmwas deeplyreported inourformerworks, butforthesake ofcompleteness it hasbeensummarizedinAppendix A.

Anadditionaladvantageofseparatedrepresentationsisthattheycanbeappliedtothesolutiontoproblemsdefinedin highly dimensionalspaces becausetheyallow circumventingtheso-calledcurse ofdimensionality.Thus,we appliedsuch kindofseparatedrepresentations forsolvingmodels involvingmanyconformationalcoordinates encounteredinquantum chemistry,kinetictheorydescriptionsofmaterialsorcellsignalingprocesses[25–29].Moreover,weproposedaddingmodel parametersasextra-coordinatesforconstructingparametricsolutionsthatcanbeseenascomputationalvademecumsfrom whichwecanperform,inrealtime,optimization,inverseanalysis,andsimulation-basedcontrol[30–35].

Theinterestedreadercanalsorefertotherecentreviews[36–39]andthereferencestherein.

1.1. Non-incrementalversusincrementaltimeintegrations

It isusefultoreflectonthe considerabledifferencebetweentheabove PGDstrategy andtraditional,incrementaltime integrationschemes.

(4)

Indeed, the PGD allows for a non-incremental solution to time-dependent problems. Let

Q

n denote the number of non-lineariterationsrequiredtocomputethenewterm Xn

(

x

)

·

Tn

(

t

)

atenrichmentstepn.Then,theentirePGDprocedure toobtainthe N-termapproximation(1)involvesthesolutiontoatotalof

Q

= (Q

1

+ · · · +

Q

N

)

decoupled,boundaryand initialvalueproblems.TheBVPsaredefinedoverthespacedomain



,andtheircomputationalcomplexityscaleswiththe mesh used to discretize them.The IVPsare defined over the time interval

I

, andtheir complexity is usually negligible comparedtothatoftheBVPs,evenwhenextremelysmalltimestepsareusedfortheirdiscretization.

Thisisvastly differentfroma standard,incremental solutionprocedure.If P is thetotalnumberoftime steps forthe completesimulation,i.e.P

=

T /

t,anincrementalprocedureinvolvesthesolutiontoaBVPin



ateachtimestep,i.e.a totalof P BVPs.Thiscanbe averylarge numberindeed,asthetimestep



t mustbe chosensmallenoughtoguarantee thestabilityofthenumericalscheme.

NumericalexperimentswiththePGDshowthatthe

Q

nsrarelyexceedten,whileN isafewtens.Thus,thecomplexity of the complete PGD solution is a few hundreds of BVP solutions in



. This is in many applications several orders of magnitudelessthanthetotalofP BVPsthatmustbesolvedusingastandardincrementalprocedure.

Thisandotherrelatedadvantagesinusingspace-timeseparatedrepresentationswereanalyzedin[26,40,41]and[42].

1.2. Separatingthephysicalspace

Sometimes,thedomain



,assumedtobethree-dimensional,canbefullyorpartiallyseparated,andconsequentlyitcan beexpressedas



= 

x

× 

y

× 

z or



= 

xy

× 

z,respectively.Thefirstdecompositionisrelatedtohexahedraldomains, whereasthesecondoneisrelatedtoplate,beamsorextrudeddomains.Bothwerewidelyconsideredin[43,37,44–47].We considerbelowtheapproximationsrelatedtobothscenarios.

(i) Thespatialdomain



ispartiallyseparable.InthiscaseEq.(1)canberewrittenas:

u

(

x

,

z

,

t

)

=

N



i=1 Xi

(

x

)

·

Zi

(

z

)

·

Ti

(

t

)

(2) wherex

= (

x

,

y

)

∈ 

xy,z

∈ 

zandt

I

.

Thus,iterationp ofthealternatingdirectionstrategyatagivenenrichmentstepn consistsinthefollowingthreetasks, employingthenotationintroducedinAppendix A:

(a) solvein



xy atwo-dimensionalBVPtoobtainthefunction Xnp, (b) solvein



z aone-dimensionalBVPtoobtainthefunction Znp, (c) solvein

I

aone-dimensionalIVPtoobtainthefunction Tnp.

WecanrepeatourdiscussionregardingthecomplexityofthisPGDnon-incrementalstrategyversusstandard incremen-talschemes.Clearly,what willdominatethecostofthePGDprocedureisthetotalof

Q

two-dimensionalBVPstobe solvedin



xy.TheBVPsin



zandIVPsin

I

beingone-dimensional,theircomplexityiscomparativelynegligible.Thus, thecomputationalcostofthePGDsimulationwillbeordersofmagnitudesmallerthanthatofastandardincremental procedure,whichrequiresthesolutiontoathree-dimensionalBVPateachtimestep.

(ii) Thespatialdomain



x isfullyseparable.Inthiscase,Eq.(1)canberewrittenas:

u

(

x

,

y

,

z

,

t

)

=

N



i=1

Xi

(

x

)

·

Yi

(

y

)

·

Zi

(

z

)

·

Ti

(

t

)

(3) Iteration p ofthealternatingdirectionstrategyatagivenenrichmentstepn consistsinthefollowingfourtasks: (a) solvein



x aone-dimensionalBVPtoobtainthefunction Xnp,

(b) solvein



y aone-dimensionalBVPtoobtainthefunctionYnp, (c) solvein



zaone-dimensionalBVPtoobtainthefunction Znp, (d) solvein

I

aone-dimensionalIVPtoobtainthefunctionTnp.

Thecostsavings providedbythePGDarepotentially phenomenalwhenthespatialdomainisfullyseparable. Indeed, the complexity ofthe PGDsimulation now scales with the one-dimensional meshes used to solve the BVPs in



x,



y and



z, regardless ofthe time step used in thesolution to the decoupled IVPsin

I

.The computational cost is thus orders of magnitude smaller than that of a standard incremental procedure, which requires the solution to a three-dimensionalBVPateachtimestep.

Evenwhenthedomainisnotfullyseparable,afullyseparatedrepresentationcouldbeconsideredbyusingappropriate geometricalmappingsorbyimmersingthenon-separabledomainintoafullyseparableone.Theinterestedreadercanrefer to[48]and[49].

AfterthisshortintroductioninSection 2,we define theintegro-differential viscoelasticmodelwithin thesmall trans-formations frameworkwhosespacediscretization willbe carriedout inSection 3.InSection 4,thespace-time separated representationwill be introduced andits construction will be consideredin detail inSection 5. Finally,in Section 6,we

(5)

addresssomenumericalexamplesforverifyingtheproposedstrategyandtoproveitsabilitytoaddressefficientlycomplex scenarios.

2. Linearviscoelasticintegralmodel

The mechanicalmodelisdefinedinthe domain



whoseboundary

∂

≡ 

is decomposedinto



Dand



N inwhich

velocitiesandtractionsareprescribedrespectively.

Weconsiderthestandardmomentumbalanceequationneglectingtheinertiaandmassterms:

∇ ·  =

0 (4)

where



isthestandardCauchy’sstresstensor. Theboundaryconditionswrite:



v

(

x

∈ 

D

,

t

I)

=

vg

(

x

∈ 

D

,

t

I)

(

x

∈ 

N

,

t

I)

·

n

(

x

∈ 

N

)

=

tg

(

x

∈ 

N

,

t

I)

(5) where n isthe unitoutwards vectordefinedon theboundary



N,vg the prescribedvelocities on



Dandtg the applied tractions on



N.It was assumedthat the mechanicalproblemis linearimplyingboth alinear constitutivelawandsmall

displacements andstrains.Thus,weassumethatdomain



remainsunchangedallalongthetimeandthenunaffectedby thekinematicsinducedbytheappliedboundaryconditions.

The weak formrelatedtothemomentum balanceateach time t consistsin lookingforthevelocity field v

V

,with

V =



v

(

x

,

t

)



H

1

()



3

,

v

(

x

∈ 

D

,

t

I) =

vg

(

x

∈ 

D

,

t

I)



suchthat



 D

: 

dx

=



N v

·

tgdx,

v

V

∗ (6) with

V

=



v

(

x

,

t

)



H

1

()



3

,

v

(

x

∈ 

D

,

t

I) =

0



.

InEq.(6),D istheusualrateofstraintensorandweuse



insteadoftheusual

σ

notationforthestresstensorbecause inwhatfollows

σ

willrefertothevectorformofthestresstensor.

Usingvectornotations,integral(6)writes



 d

·

σ

dx

=



N v

·

tgdx (7)

whered isthevectorformoftherateofstraintensorD.

Theconstitutiveequationhereconsideredconsistsofthestandardviscoelasticintegralform



=

t



−∞

λ(

t

τ)

Tr

(

D

))

·

I d

τ

+

t



−∞ 2μ(t

τ)

D

)

dτ (8)

whereTr

()

referstothetraceoperatorand

λ

and

μ

aretwomemoryfunctions.

Even if here we only address the simplest viscoelastic constitutive model, all the developments can be extended to generalizedviscoelasticmodelsinvolvingseveralrelaxationtimes.

Byusingvectornotations,theconstitutiveequationcanbewrittenas

σ

=

t



−∞

C

(

t

τ

)

·

d

)

dτ (9)

beingd thevectorformofthestrainratetensorD.Inplanestrain,with

σ

=





1122



12

(10) and d

=

DD1122 2D12

(11)

(6)

theexpressionofC

(

t

τ

)

writes: C

(

t

τ

)

= λ(

t

τ

)

1 1 01 1 0 0 0 0

⎠ +

μ(

t

τ

)

2 0 00 2 0 0 0 1

⎠ = λ(

t

τ

)

Gλ

+

μ(

t

τ

)

Gμ (12)

Thevectorformofthestrainratetensorreads:

d

=

x 0 0

y

y

x

·



vx vy



(13)

wherevx andvyarethevelocityvectorcomponents:vT

= (

vx

,

vy

)

. 3. Spacediscretization

Wecanassumeastandardfiniteelementapproximationofthevelocityfield,involvingamesh

M

consistingin

N

nodes with coordinates Xi, i

=

1

,

2

,

· · · ,

N

.Thus, if Ni

(

x

)

denotes the shape function relatedto node Xi, that by construction verifiestheKroeneckerdeltapropertyNi

(

Xj

)

= δ

i j,thevelocityfieldvanbewrittenas

vx

=

N



i=1 Ni

(

x

)

vx

(

Xi

)

=

NT

·

Vx vy

=

N



i=1 Ni

(

x

)

vy

(

Xi

)

=

NT

·

Vy (14)

whereVx andVyarethevectorsthatcontainthenodalvelocitycomponentsvx

(

Xi

)

andvy

(

Xi

)

(i

=

1

,

2

,

· · · ,

N

)respectively andN thevectorcontainingthedifferentshapefunctions.

Thisapproximationcanbewritteninamorecompactformaccordingto:

v

=



NT 0T 0T NT



·



Vx Vy



=

M

·

V (15)

where0T istherowvectorofsize

N

withnullentries. Thus,thevectorformoftherateofstraind reads:

d

=

NT

x 0 T 0T

N T

y

NT

y

NT

x

·



Vx Vy



=

B

·

V (16)

Now,comingbacktotheweakform(7),itsleftmemberresults



 d

·

σ

dx

=

V∗T

(

t

)

·

t



−∞



λ(

t

τ

)

Kλ

+

μ(

t

τ)

Kμ



·

V

(τ)

(17) with

Kλ

=



 BT

·

Gλ

·

B dx Kμ

=



 BT

·

Gμ

·

B dx (18)

(7)

Ontheotherhand,theright-hand-sidememberofEq.(6)writes:



N v

(

x

,

t

)

·

tg

(

x

,

t

)

dx

=

V∗T

·



N MT

·

M dx

·

f

(

t

)

=

V ∗T

(

t

)

·

F

(

t

)

(19)

Thusfinally,afterdiscretizinginspace,theproblemreads:

V∗T

(

t

)

·

t



−∞



λ(

t

τ)

Kλ

+

μ(

t

τ)

Kμ



·

V

)

⎭ =

V∗T

(

t

)

·

F

(

t

)

(20)

whichleadstothelinearsystem: t



−∞



λ(

t

τ)

Kλ

+

μ(

t

τ)

Kμ



·

V

)

=

F

(

t

)

(21)

complementedwiththeDirichletboundaryconditionsapplyingon



D.

Eq.(21)canberewrittenas

Kλ

·

t



−∞

λ(

t

τ)

V

)

+

Kμ

·

t



−∞

μ(

t

τ)

V

)

=

F

(

t

)

(22)

4. Space-timeseparatedrepresentation

Now,weconsiderEq.(22)andassumethatboththeappliedtractionF

(

t

)

andthevelocityfieldV

)

canbewrittenin aseparatedform,respectively:

F

(

t

)

NF



i=1 Si

S

i

(

t

)

(23) and V

(

t

)

NV



i=1 Xi

X

i

(

t

)

(24)

Thus,Eq.(22)results: NV



i=1

Kλ

·

Xi

·

t



−∞

λ(

t

τ

)X

i

)

+

Kμ

·

Xi

·

t



−∞

μ(

t

τ

)X

i

)

⎭ =

NF



i=1 Si

S

i

(

t

)

(25)

The time integralscan be approximatedby using an adequatenumerical quadrature.Ifwe assume that F

(

t

)

andV

(

t

)

vanishatt

0,andconsiderdiscretetimestn

=

n



t,thenwecanwrite:

t1



0 g

(

t

)

dt

g

(

t1

)

t t2



0 g

(

t

)

dt

g

(

t1

)

t

+

g

(

t2

)

t

..

.

tn



0 g

(

t

)

dt

i=n



i=1 g

(

ti

)

t (26)

(8)

t1



0

λ(

t1

τ

)X

i

)

≈ λ(

t0

)X

i

(

t1

)

t t2



0

λ(

t2

τ

)X

i

)

≈ λ(

t0

)X

i

(

t2

)

t

+ λ(

t1

)X

i

(

t1

)

t

..

.

tn



0

λ(

tn

τ

)X

i

)

n



j=1

λ(

tn

tj

)X

i

(

tj

)

t

..

.

(27)

whosematrixformreads:

t1



0

λ(

t1

τ

)X

i

)

t2



0

λ(

t2

τ

)X

i

)

..

.

tP



0

λ(

tP

τ

)X

i

)

= 

t

λ(

t0

)

0

· · ·

0

λ(

t1

)

λ(

t0

)

· · ·

0

..

.

..

.

. .

.

..

.

λ(

tP

) λ(

tP−1

)

· · · λ(

t0

)

·

X

i

(

t1

)

X

i

(

t2

)

..

.

X

i

(

tP

)

= 

t Lλ

· Xi

(28) withP



t

=

T

.

Consideringnowtheintegralinvolvingthememoryfunction

μ

(

t

τ

)

andusingthesamequadrature,itresults:

t1



0

μ(

t1

τ

)X

i

)

t2



0

μ(

t2

τ

)X

i

)

..

.

tP



0

μ(

tP

τ

)X

i

(τ)

= 

t

μ(

t0

)

0

· · ·

0

μ(

t1

)

μ(

t0

)

· · ·

0

..

.

..

.

. .

.

..

.

μ(

tP

)

μ(

tP−1

)

· · ·

μ(

t0

)

·

X

i

(

t1

)

X

i

(

t2

)

..

.

X

i

(

tP

)

= 

t Lμ

· Xi

(29)

Forevanescentmemory,functions

λ(

tm

)

and

μ

(

tm

)

vanishuptoacertainvaluen,andconsequentlyonlym diagonalsof LλandLμ mustbecomputed.

5. Separatedrepresentationconstructor

Weconsiderthepreviousdiscreteform(25) NV



i=1

Kλ

·

Xi

·

t



−∞

λ(

t

τ)X

i

(τ)

+

Kμ

·

Xi

·

t



−∞

μ(

t

τ

)X

i

(τ)

⎭ =

NF



i=1 Si

S

i

(

t

)

(30)

andassume thatatpresentiteration we alreadycomputedtheq

1 firstterms ofthefinitesum(24),withq

1

<

NV,

leadingtothe

(

q

1

)

-approximate:

Vq−1

(

t

)

=

q−1



i=1

Xi

X

i

(

t

)

(31)

(9)

Vq

(

t

)

=

q



i=1

Xi

X

i

(

t

)

=

Vq−1

+

Xq

X

q

(

t

)

(32)

Now,inordertoapplytherationaledescribedinAppendix A,weconsiderthetestfunction

Vq

=

X

X

q

(

t

)

+

Xq

X

(

t

)

(33)

andfrom(25)theextendedweakform: T



0



X

X

q

(

t

)

+

Xq

X

(

t

)



·

q



i=1

Kλ

·

Xi

·

t



−∞

λ(

t

τ)X

i

(τ)

+

Kμ

·

Xi

·

t



−∞

μ(

t

τ

)X

i

)

NF



i=1 Si

S

i

(

t

)

dt

=

0 (34)

thatcanberewrittenundertheform: T



0



X

X

q

(

t

)

+

Xq

X

(

t

)



·

Kλ

·

Xq

·

t



−∞

λ(

t

τ

)X

q

)

+

Kμ

·

Xq

·

t



−∞

μ(

t

τ

)X

q

)

dt

= −

T



0



X

X

q

(

t

)

+

Xq

X

(

t

)



·

q−1



i=1

Kλ

·

Xi

·

t



−∞

λ(

t

τ

)X

i

(τ)

+

Kμ

·

Xi

·

t



−∞

μ(

t

τ

)X

i

)

NF



i=1 Si

S

i

(

t

)

dt (35)

thatcontainstheunknownfieldsintheleft-hand-sidememberandtheknown(alreadycomputed)fieldsinthe right-hand-sideone.

Now, asdescribed in Appendix A,for computingthe coupleof unknown functionsXq and

X

q

(

t

)

, we are considering againan alternateddirectionsfixedpoint strategythat computedXq by assuming

X

q

(

t

)

known(it israndomlychosen at the beginning ofthe process),andthen updating

X

q

(

t

)

from thejustcalculated Xq. The process continue untilreaching convergence,thatis,thefixedpoint.

Inwhatfollowwearedevelopingbothsteps.

5.1. CalculationofXq

WhencalculatingXq,

X

q

(

t

)

isassumedknown(

X

(

t

)

=

0 inEq.(35)),andwithitallfunctionsdependingontime.Thus, alltimeintegralscanbeperformed,leadingtoalinearproblemforcalculatingtheunknownvectorXq.

ThefirstintegralinEq.(35)concerns T



0

X

q

(

t

)

t



−∞

λ(

t

τ

)X

q

)

dt (36)

thatusingthenotationpreviouslyintroducedresults

α

=

T



0

X

q

(

t

)

t



−∞

λ(

t

τ

)X

q

(τ)

dt

= 

t2

X

Tq

·

Lλ

· Xq

(37)

Similarly,wecandefine:

α

=

T



0

X

q

(

t

)

t



−∞

μ(

t

τ

)X

q

)

dt

= 

t2

X

Tq

·

Lμ

· Xq

,

(38)

α

λ q,i

=

T



0

X

q

(

t

)

t



−∞

λ(

t

τ)X

i

)

dt

= 

t2

X

Tq

·

Lλ

· Xi

,

(39)

(10)

α

μq,i

=

T



0

X

q

(

t

)

t



−∞

μ(

t

τ

)X

i

)

dt

= 

t2

X

Tq

·

Lμ

· Xi

(40)

i

∈ [

1

,

2

,

· · · ,

q

1

]

;and

β

q,i

=

T



0

X

q

(

t

)

·

S

i

(

t

)

dt (41)

i

∈ [

1

,

2

,

· · · ,

NF

]

;fromwithEq.(35)reducedto:

X

·



α

λ qKλ

·

Xq

+

α

Kμ

·

Xq



=

X

·

q−1



i=1



α

λ q,iKλ

·

Xi

+

α

qμ,iKμ

·

Xi



NF



i=1

β

q,iSi

(42)

oritsassociatedlinearsystem



α

λ qKλ

·

Xq

+

α

Kμ

·

Xq



=

q−1



i=1



α

λ q,iKλ

·

Xi

+

α

qμ,iKμ

·

Xi



NF



i=1

β

q,iSi

(43)

thatcanbesolvedforcalculatingXq



α

qλKλ

+

α

Kμ



·

Xq

=

q−1



i=1



α

λq,iKλ

·

Xi

+

α

μq,iKμ

·

Xi



NF



i=1

β

q,iSi

(44) or Xq

=



α

qλKλ

+

α

Kμ



−1

·

q−1



i=1



α

qλ,iKλ

·

Xi

+

α

qμ,iKμ

·

Xi



NF



i=1

β

q,iSi

(45) 5.2. Calculationof

X

q

(

t

)

Whencalculating

X

q

(

t

)

,Xqisassumedknown(X

=

0 inEq.(35)).Thus,allmatrixproductsinEq.(35)canbecalculated, fromwhichthenextscalarsresult:

γ

λ q

=

XTq

·

Kλ

·

Xq (46)

γ

=

XqT

·

Kμ

·

Xq (47)

γ

λ q,i

=

XTq

·

Kλ

·

Xi (48)

γ

qμ,i

=

XTq

·

Kμ

·

Xi (49)

i

∈ [

1

,

2

,

· · · ,

q

1

]

;and

δ

q,i

=

XTq

·

Si (50)

i

∈ [

1

,

2

,

· · · ,

NF

]

.

Byusingpreviousnotation,Eq.(35)reducesto: T



0

X

(

t

)

γ

t



−∞

λ(

t

τ)X

q

(τ)

+

γ

t



−∞

μ(

t

τ)X

q

)

dt

= −

T



0

X

(

t

)

q−1



i=1

γ

qλ,i t



−∞

λ(

t

τ

)X

i

(τ)

+

γ

qμ,i t



−∞

μ(

t

τ

)X

i

)

⎭ −

NF



i=1

δ

q,i

S

i

(

t

)

dt (51) or



t2

X

∗T

·



γ

qλLλ

+

γ

Lμ



· Xq

= −X

∗T

·



t2 q−1



i=1



γ

qλ,iLλ

+

γ

qμ,iLμ



· Xi

− 

t NF



i=1

δ

q,iSi

(

t

)

(52)

(11)

where

S

i isthevectorthatcontainsthevalueof

S

i

(

t

)

attimesn

· 

t,n

∈ [

1

,

2

,

· · · ,

P

]

.Thusthestrongformrelatedto(52) results



γ

λ qLλ

+

γ

Lμ



· Xq

=

q−1



i=1



γ

λ q,iLλ

+

γ

qμ,iLμ



· Xi

1



t NF



i=1

δ

q,iSi

(

t

)

(53)

fromwhichitfinallyresults:

Xq

=



γ

Lλ

+

γ

Lμ



−1

·

q−1



i=1



γ

qλ,iLλ

+

γ

qμ,iLμ



· Xi

1



t NF



i=1

δ

q,iSi

(

t

)

(54)

5.3. Separatedrepresentationconstructoroverwiew

– Assumingatiterationq

1 vectorsXi and

X

i

(

t

)

,i

∈ [

1

,

2

,

· · · ,

q

1

]

,known

– while

Vq−1

(

t

)

Vq−2

(

t

)

>

calculateVq

(

t

)

=

Vq−1

(

t

)

+

Xq

X

q

(

t

)

by solving until reaching the fixed point thetwo problemsbelow:

– calculateXqfromEq.(45)

Xq

=



α

Kλ

+

α

Kμ



−1

·

q−1



i=1



α

λq,iKλ

·

Xi

+

α

qμ,iKμ

·

Xi



NF



i=1

β

q,iSi

(55)

– calculate

X

q

(

t

)

fromEq.(54)

Xq

=



γ

Lλ

+

γ

Lμ



−1

·

q−1



i=1



γ

qλ,iLλ

+

γ

qμ,iLμ



· Xi

1



t NF



i=1

δ

q,iSi

(

t

)

(56) 6. Numericalresults

In thissection, we are first verifyingthe proposed strategy by solving a quite simpleproblemand thenaddressing a

more complex problemclose to the one found in assembled systems involving elastomers. As we are considering here

linearbehaviors,itisexpectedthatafteracertaintimetheresponsebecomessteadyharmonic,withacertainphaseangle withrespecttotheappliedload. Thus,simulationsinthelinearcasedonot needtocovertheentirelife period,butonly thetransientregime.

6.1. Strategyverification

For strategy verification, we consider the plane deformation quasi-incompressible viscoelastic model in



= (

0

,

L

)

×

(

0

,

H

)

,withL

=

1 and H

=

1;and

I = (

0

,

T ]

,with

T =

0

.

25 (allunitsinthemetricsystem).

Aharmonictractionisappliedtotheupperboundary y

=

H givenby tg

(

x

,

y

=

H

,

t

)

= (

sin

t

),

0

)

T,with

ω

=

2

π

.The lateralsidesarefree,thatistg

(

x

=

0

,

y

,

t

)

=

tg

(

x

=

L

,

y

,

t

)

=

0.Onthelowerboundary,thedisplacementandvelocitiesare enforcedtozero,thatisv

(

x

,

y

=

0

,

t

)

=

0.

WeconsideredtheviscoelasticlawgivenbytheMaxwell’smodel(assumingsmalldisplacementsandstrains)

θ

d

dt

+  =

2 G

θ

D (57)

whereG denotestheshearmodulusand

θ

therelaxationtime. TheintegralcounterpartoftheMaxwellmodel(57)reads:

(

t

)

=

t



0

2 G etθτD d

τ

(58)

Usingthenotationintroducedintheprevioussectionsweconsider:



λ(

t

)

= 

e−θt

μ(

t

)

=

2 G e

(59) Inthenumericaltestscarriedout,weconsidered



largeenoughforensuringthemodelincompressibilityand2G

=

0

.

3356.

(12)

Usingthestrategydescribedintheprevioussectionwecomputedthevelocityfieldrelatedtotheappliedload,andthe displacementwasobtainedbyintegratingthecalculatedvelocity.ForMaxwell’smodelitiswellknownthatthetangentof thephaseangle(anglebetweentheappliedloadandtheresultingdisplacement),tan

(ϕ)

,isrelatedto therelaxationtime andtheappliedfrequencyfrom:

tan(ϕ)

=

1

ω

θ

(60)

Thus,itfollowsfromEq.(60)thattheknowledgeofthephaseangle

ϕ

allowsidentifyingtherelaxationtime

θ

.Tocheck it,wesolvedthejust-presentedmodelforthreedifferentvaluesoftherelaxationtime:

θ

1

=

0

.

05,

θ

2

=

21π ,and

θ

3

=

2.By

solving thethreeviscoelasticproblems,weobtainedthethreeassociated displacementfieldsui

(

x

,

t

)

, i

=

1

,

2

,

3.Now,the post-treatment ofthe obtainedresults allows calculating thethree phase angles

ϕi

, i

=

1

,

2

,

3 and from them thethree relaxationtimesthatwereinperfectagreementwiththeonesthatwerechosenforperformingthecalculation.

6.2. Analysisofarigid–viscoelasticjoining

Inthepresentanalysis,weconsideragainasquaredomain



= (−

L

,

L

)

× (−

H

,

H

)

,withL

=

3 and H

=

3,containinga circularhole

H(C,

R

)

centeredat

C =

0 andofradius R

=

1.Thesystemwasanalyzedinthetimeinterval

I = (

0

,

T ]

,with

T =

20.Thevelocitywas prescribedonthe domainboundary



≡ ∂

,consistingoftheexternalboundary



e andofthe internalone(holeboundary)



i

≡ ∂H

,



= 

e

∪ 

i:



vg

(

x

∈ e

,

t

)

= (

sin(0.1πt2

),

0)T

vg

(

x

∈ i

,

t

)

=

0

(61) Thebehaviorlawwasgivenby

λ(

t

)

= 



a1e− t b1

+

a2et b2



μ(

t

)

= ϒ



c1e− t c1

+

c2ed2t



(62) witha1

=

a2

=

c1

=

c2

=

1,b1

=

5,b2

=

0

.

1,d1

=

10,d2

=

0

.

5,



=

(1+ν)(12ν),

ϒ

=

2(1E+ν),E

=

1 and

ν

=

0

.

3.

ThesolutionV

(

t

)

involvesonlysixmodesfortheprescribedprecision(Xi,

X

i),i

=

1

,

· · · ,

6,whosefourmostsignificant are depicted inFig. 1.The time-associated functions

X

i

(

t

)

, i

=

1

,

· · · ,

4,are depicted inFig. 2. InFig. 3 theapplied dis-placementandtheassociatedtractionarerepresented.From thisfigure,itcan benoticedthat whenthefrequencyofthe applieddisplacementincreases,thetensionamplitudedecreasesandthephaseangleincreases,asexpectedforviscoelastic behaviors.

7. Conclusions

In this work, we extended the domain of applicability of space-time separated representations to integro-differential modelsdescribingviscoelasticbehaviors. Theadvantagesinusingsuchdecompositionfollowfromthefactthat spaceand time arediscretized independentlyandthenafine resolutionofbothdiscretizations canbe considered,withoutaffecting the globalefficiency ofthe coupled model.Depending on the analyzed case, thespeeding up can reach some orders of magnitude.

Hereweusedthemostdirectformulationthatonlyinvolveskinematicdegreesoffreedom(velocities);however,amixed formulation(stress velocity)asinthe LATINmethod(see [19]) couldbe envisaged inorderto separate thegloballinear problemfromthelocalonethatdependsonthehistorydespiteofitslinearity.

Another appealing possibility in using such kind of separated representations is the fact of introducing some model parameterasextra-coordinateinordertocalculateageneralparametricsolutiontothetransientinteger-differentialmodel. Thispossibility,andtheconsiderationofnonlinearviscoelasticbehaviors,constitutesomeworkinprogress.

Acknowledgements

FranciscoChinestaacknowledgesthesupportoftheInstitutUniversitairedeFrance (IUF).

Appendix A. Space-timeseparatedrepresentationconstructor

Forthesakeofsimplicity,weconsiderheretheone-dimensionalproblemofcomputingthefieldu

(

x

,

t

)

governedby

u

t

k

2u

(13)

Fig. 1. (Color online.) Four most significant modes Xi: (top-left) X1; (top-right) X2; (down-left) X3and (down-right) X4.

Fig. 2. (Color online.) Four most significant modesXi(t), i=1,· · · ,4.

inthespace-timedomain



= 

x

× 

t

= (

0

,

L

)

× (

0

,

τ

]

.Thediffusivityk andsourceterm f areassumedtobeconstant.We specifyhomogeneousinitialandboundaryconditions,i.e.u

(

x

,

t

=

0

)

=

u

(

x

=

0

,

t

)

=

u

(

x

=

L

,

t

)

=

0.Morecomplexscenarios wereaddressedin[50].

Theweightedresidualformof(63)reads



x×t u



u

t

k

2u

x2

f



dx dt

=

0 (64)

(14)

Fig. 3. (Color online.) Applied displacement (blue curve) versus its associated tension (green curve).

OurobjectiveistoobtainaPGDapproximatesolutionintheseparatedform

u

(

x

,

t

)

N



i=1

Xi

(

x

)

·

Ti

(

t

)

(65)

We doso by computingeach termof theexpansion at each stepof an enrichmentprocess, until asuitable stopping criterionismet.

A.1. Progressiveconstructionoftheseparatedrepresentation

Atenrichmentstepn,then

1 firsttermsofthePGDapproximation(65)areknown:

un−1

(

x

,

t

)

=

n−1



i=1

Xi

(

x

)

·

Ti

(

t

)

(66)

WenowwishtocomputethenexttermXn

(

x

)

·

Tn

(

t

)

togettheenrichedPGDsolution

un

(

x

,

t

)

=

un−1

(

x

,

t

)

+

Xn

(

x

)

·

Tn

(

t

)

=

n−1



i=1

Xi

(

x

)

·

Ti

(

t

)

+

Xn

(

x

)

·

Tn

(

t

)

(67) Onemustthussolvea non-linearproblemfortheunknownfunctions Xn

(

x

)

andTn

(

t

)

bymeansofasuitable iterative scheme.Werelyonthesimplebutrobustalternatingdirectionscheme.

Atenrichmentstepn,thePGDapproximationun,p obtainedatiteration p isgivenby

un,p

(

x

,

t

)

=

un−1

(

x

,

t

)

+

Xnp

(

x

)

·

Tnp

(

t

)

(68) Startingfroman arbitraryinitialguessTn0

(

t

)

,thealternating directionstrategycomputes Xnp

(

x

)

fromT

p−1

n

(

t

)

,andthen

Tnp

(

t

)

fromX p

n

(

x

)

.Thesenon-lineariterationsproceeduntilreachingafixedpointwithinauser-specifiedtolerance

,i.e.

Xnp

(

x

)

·

Ynp

(

y

)

Xnp−1

(

x

)

·

Ynp−1

(

y

)

<

(69) where

·

isasuitablenorm.

Theenrichmentstepn thusendswiththeassignments Xn

(

x

)

Xnp

(

x

)

andTn

(

t

)

Tnp

(

t

)

.

The enrichmentprocess itself stopswhen an appropriate measure oferror

E(

n

)

becomes smallenough, i.e.

E(

n

)

<

˜

. Onecanapplythestoppingcriteriadiscussedin[51,52].

Letuslookatoneparticularalternatingdirectioniterationatagivenenrichmentstep.

A.2. Alternatingdirectionstrategy

(15)

– Calculating Xnp

(

x

)

fromT p−1

n

(

t

)

.

Atthisstage,theapproximationisgivenby

un

(

x

,

t

)

=

n−1



i=1

Xi

(

x

)

·

Ti

(

t

)

+

Xnp

(

x

)

·

Tnp−1

(

t

)

(70)

whereallfunctionsbut Xnp

(

x

)

areknown.

Thesimplestchoicefortheweightfunctionu∗ in(64)is

u

(

x

,

t

)

=

Xn

(

x

)

·

Tnp−1

(

t

)

(71) whichamountstoconsideraGalerkinformulationofthediffusionproblem.

Introducing(70)and(71)into(64),weobtain



x×t Xn

·

Tnp−1

·



Xnp

·

dTnp−1 dt

k d2Xnp dx2

·

T p−1 n



dx dt

= −



x×t Xn

·

Tnp−1

·

n−1



i=1



Xi

·

dTi dt

k d2Xi dx2

·

Ti



dx dt

+



x×t Xn

·

Tnp−1

·

f dx dt (72)

Asallfunctionsoftimet areknown,wecanevaluatethefollowingintegrals:

α

x

=



t



Tnp−1

(

t

)



2 dt

β

x

=



t Tnp−1

(

t

)

·

dTnp−1

(

t

)

dt dt

γ

ix

=



t Tnp−1

(

t

)

·

Ti

(

t

)

dt

δ

xi

=



t Tnp−1

(

t

)

·

dTi

(

t

)

dt dt

ξ

x

=



t Tnp−1

(

t

)

·

f dt (73)

Eq.(72)thentakestheform



x Xn

·



k

·

α

x

·

d 2Xp n dx2

+ β

x

·

Xp n



dx

=



x Xn

·

n−1



i=1



k

·

γ

ix

·

d 2X i dx2

− δ

x i

·

Xi



dx

+



x Xn

· ξ

xdx (74)

Thisdefinesaone-dimensional boundaryvalueproblem(BVP),whichisreadilysolved bymeansofastandard finite-elementmethodtoobtainan approximationofthefunction Xnp.Asanotheroption,one cangobacktotheassociated strongform

k

·

α

x

·

d2X p n dx2

+ β

x

·

Xp n

=

n−1



i=1



k

·

γ

ix

·

d2Xi dx2

− δ

x i

·

Xi



+ ξ

x (75)

andthensolveitusinganysuitable numericalmethod,such asfinitedifferencesforexample.Thestrongform(75)is asecond-orderdifferentialequation forXnp duetothefactthattheoriginaldiffusionequation(63)involvesa second-orderx-derivativeoftheunknownfield u.

The homogeneousDirichletboundary conditions Xnp

(

x

=

0

)

=

X p

n

(

x

=

L

)

=

0 arereadilyspecified witheitherweakor strongformulations.

– Calculating Tnp

(

t

)

fromthejust-computed Xnp

(

x

)

.

The proceduremirrorswhatwehavejustdone.Itsufficestoexchangetherolesplayedbytherelevantfunctionsofx

Références

Documents relatifs

Comme les formules pour l’estimateur de calage pour les totaux sont déjà intégrées dans divers logi ciels utilisés dans les agences statistiques, l’application du nouvel

Au- tomatic classification of skin lesions using geometrical measurements of adaptive neighborhoods and local binary patterns.. ICIP 2015 IEEE International Conference on

The discrete formulation of the strings-soundboard continuity equations must ensure the stability of the resulting scheme, which couples the implicit three points nonlinear

1) L’achat au profit de ses adhérents des matières premières et des intrants nécessaires à l’agriculture et à la pêche. 2) La conservation, la transformation, le stockage,

Figure 106 : Synoptique d’un étage d’amplification à Transistor 119 Figure 107 : Influence des pertes sur les impédances ramenées dans le circuit de sortie 120 Figure 108

Basé sur le modèle proposé dans la section précédente, nous introduisons une approche composé de multiple gestionnaires autonomes mis en œuvre avec la boucle de contrôle MAPE-K

Mais dans les années 1990, des chercheurs japonais ont mis en évidence un état ferromagnétique non- conventionnel dans le GaAs dopé avec une faible concentration de Mn (environ 5

ىلإ ىلولأا ةيضرفلاب ةقِّلعتملا جئاتنلا تراشأ :ّنأ ةدوج ىوتسم يلعتلا ةذتاسأ ىدل يّفصلا يظفللا لعافتلا امجيس ةتس ةيجهنم مادختساب يئادتبلاا م