• Aucun résultat trouvé

Supplementary Material

Dans le document Climate Change and Land (Page 135-146)

2

Table SM.1.1 Observations related to variables indicative of land management, and their 3

uncertainties 4

2 FOOTNOTE: Uncertainty here is defined as the coefficient of variation CV. In the case of micrometeorological fluxes they refer to random errors and CV of daily average

3 FOOTNOTE: > 100 for fluxes less than 5g N2O-N ha–1 d–1

Uncertainties2 Pros and cons Select literature

GHG

2006; Luyssaert et al.

2007; Foken and

(CH4) 14C) Rigorously derived uncertainty Cons

Not suited at farm scale

(Pelletier et al. 2012;

Henry et al. 2015;

Vanguelova et al.

2016; Djomo et al.

2016; Forrester et al.

2017; Xu et al.

2017Marziliano et al.

2017; Clark et al.

2017; Disney et al.

2018; Urbazaev et al.

2018; Paul et al.

2017; McJannet et al.

2017; Karthikeyan et

2017; Kaushal et al.

2017;

1 2 3

methods Integrative tools Cons

Validation is lacking

Labour intensive

2018; Fiener et al.

2018)

Land cover

Satellite 0.01ha – Regional 1d

->10y

16 - 100% Pros

Increasing platforms available

Consolidated algorithms Cons

Need validation Lack of common Land Use definitions

(Olofsson et al. 2014;

Liu et al. 2018; Yang et al. 2018)

Table SM. 1.2 Possible uncertainties decision making faces (following (Hansson and Hadorn 2016) 1

2

3

References SM1 4

Amaral, A. M., F. R. Cabral Filho, L. M. Vellame, M. B. Teixeira, F. A. L. Soares, and L. N. S. do. dos 5

Santos, 2018: Uncertainty of weight measuring systems applied to weighing lysimeters. Comput.

6

Electron. Agric., 145, 208–216, doi:10.1016/j.compag.2017.12.033.

7

http://linkinghub.elsevier.com/retrieve/pii/S0168169917301047 (Accessed May 20, 2018).

8

Barton, L., B. Wolf, D. Rowlings, C. Scheer, R. Kiese, P. Grace, K. Stefanova, and K. Butterbach-Bahl, 9

2015: Sampling frequency affects estimates of annual nitrous oxide fluxes. Sci. Rep., 5, 1–9, 10

doi:10.1038/srep15912. http://dx.doi.org/10.1038/srep15912.

11

Brown, S. E., and C. Wagner-Riddle, 2017: Assessment of random errors in multi-plot nitrous oxide flux 12

gradient measurements. Agric. For. Meteorol., 242, 10–20, doi:10.1016/j.agrformet.2017.04.005.

13

http://dx.doi.org/10.1016/j.agrformet.2017.04.005.

14

Campioli, M., and Coauthors, 2016: ARTICLE Evaluating the convergence between eddy-covariance and 15

biometric methods for assessing carbon budgets of forests. Nat. Commun., 7, 16

Type Knowledge gaps Understanding the uncertainties

Uncertainty of consequences

Do the model(s) adequately represent the target system?

What are the numerical values of input parameters, boundary conditions, or initial conditions?

What are all potential events that we would take into account if we were aware of them? Will future events relevant for our decisions, including expected impacts from these decisions, in fact take place?

Ensemble approaches;

downscaling

Benchmarking, sensitivity analyses

Scenario approaches

Moral uncertainty How to (ethically) evaluate the decisions?

What values to base the decision on ( often unreliable ranking of values not doing justice to the range of values at stake, cp. Sen 1992), including choice of discount rate, risk attitude (risk aversion, risk neutral, …)

Which ethical principles? (i.e. utilitarian, deontic, virtue, or other?)

Possibly scenario analysis Identification of lock-in effects and path-dependency (e.g.

Kinsley et al 2016)

Uncertainty of demarcation

What are the options that we can actually choose between? (not fully known because “decision costs”

may be high, or certain options are not “seen” as they are outside current ideologies).

How can the mass of decisions divided into individual decisions? e.g. how this influences international negotiations and the question who does what and when (cp. Hammond et al. 1999).

Possibly scenario analysis

Uncertainty of consequences &

uncertainty of demarcation

What effects does a decision have when combined with the decision of others? (e.g. other countries may follow the inspiring example in climate reduction of country X, or they use it solely in their own economic interest)

Games

Uncertainty of demarcation &

moral uncertainty

How would we decide in the future? (Spohn 1977;

Rabinowicz 2002)

doi:10.1038/ncomms13717. https://www.nature.com/articles/ncomms13717.pdf (Accessed May 19, 1

2018).

2

Cao, D.-F., B. Shi, G.-Q. Wei, S.-E. Chen, and H.-H. Zhu, 2018: An improved distributed sensing method 3

for monitoring soil moisture profile using heated carbon fibers. Meas. J. Int. Meas. Confed., 123, 4

doi:10.1016/j.measurement.2018.03.052.

5

Castaldi, F., S. Chabrillat, C. Chartin, V. Genot, A. R. Jones, and B. van Wesemael, 2018: Estimation of 6

soil organic carbon in arable soil in Belgium and Luxembourg with the LUCAS topsoil database.

7

Eur. J. Soil Sci., doi:10.1111/ejss.12553. http://doi.wiley.com/10.1111/ejss.12553 (Accessed May 8

20, 2018).

9

Chen, S., M. P. Martin, N. P. A. Saby, C. Walter, D. A. Angers, and D. Arrouays, 2018: Fine resolution 10

map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ., 630, 389–400, 11

doi:10.1016/J.SCITOTENV.2018.02.209.

12

https://www.sciencedirect.com/science/article/pii/S0048969718306089?via%3Dihub (Accessed 13

May 20, 2018).

14

Chiti, T., E. Blasi, G. Pellis, L. Perugini, M. V. Chiriacò, and R. Valentini, 2018: Soil organic carbon 15

pool’s contribution to climate change mitigation on marginal land of a Mediterranean montane area 16

in Italy. J. Environ. Manage., 218, 593–601, doi:10.1016/j.jenvman.2018.04.093.

17

https://www.sciencedirect.com/science/article/pii/S030147971830481X?via%3Dihub (Accessed 18

May 20, 2018).

19

Clark, D. A., S. Asao, R. Fisher, S. Reed, P. B. Reich, M. G. Ryan, T. E. Wood, and X. Yang, 2017:

20

Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests.

21

Biogeosciences, 14, 4663–4690, doi:10.5194/bg-14-4663-2017.

22

Deng, X., and Coauthors, 2018: Baseline map of organic carbon stock in farmland topsoil in East China.

23

Agric. Ecosyst. Environ., 254, 213–223, doi:10.1016/J.AGEE.2017.11.022.

24

https://www.sciencedirect.com/science/article/pii/S0167880917305194?via%3Dihub (Accessed 25

May 20, 2018).

26

Desjardins, R. L., and Coauthors, 2018: The challenge of reconciling bottom-up agricultural methane 27

emissions inventories with top-down measurements. Agric. For. Meteorol., 248, 48–59, 28

doi:10.1016/j.agrformet.2017.09.003. http://dx.doi.org/10.1016/j.agrformet.2017.09.003.

29

Disney, M. I., M. Boni Vicari, A. Burt, K. Calders, S. L. Lewis, P. Raumonen, and P. Wilkes, 2018:

30

Weighing trees with lasers: advances, challenges and opportunities. Interface Focus, 8, 20170048, 31

doi:10.1098/rsfs.2017.0048.

32

http://rsfs.royalsocietypublishing.org/lookup/doi/10.1098/rsfs.2017.0048 (Accessed May 20, 2018).

33

Djomo, A. N., and Coauthors, 2016: Tree allometry for estimation of carbon stocks in African tropical 34

forests. Forestry, 89, 446–455, doi:10.1093/forestry/cpw025.

35

Dossa, G. G. O., E. Paudel, H. Wang, K. Cao, D. Schaefer, and R. D. Harrison, 2015: Correct calculation 36

of CO2efflux using a closed-chamber linked to a non-dispersive infrared gas analyzer. Methods 37

Ecol. Evol., 6, 1435–1442, doi:10.1111/2041-210X.12451.

38

Efthimiou, N., 2018: The importance of soil data availability on erosion modeling. CATENA, 165, 551–

39

566, doi:10.1016/J.CATENA.2018.03.002.

40

https://www.sciencedirect.com/science/article/pii/S034181621830078X?via%3Dihub (Accessed 41

May 20, 2018).

42

Fiener, P., and Coauthors, 2018: Uncertainties in assessing tillage erosion – How appropriate are our 43

measuring techniques? Geomorphology, 304, 214–225, doi:10.1016/J.GEOMORPH.2017.12.031.

44

https://www.sciencedirect.com/science/article/pii/S0169555X17305391?via%3Dihub (Accessed 1

May 20, 2018).

2

Foken, T., and C. J. Napo, 2008: Micrometeorology. Springer,.

3

Forrester, D. I., and Coauthors, 2017: Generalized biomass and leaf area allometric equations for 4

European tree species incorporating stand structure, tree age and climate. For. Ecol. Manage., 396, 5

160–175, doi:10.1016/j.foreco.2017.04.011. http://dx.doi.org/10.1016/j.foreco.2017.04.011.

6

García-Barrón, L., J. Morales, and A. Sousa, 2018: A new methodology for estimating rainfall 7

aggressiveness risk based on daily rainfall records for multi-decennial periods. Sci. Total Environ., 8

615, 564–571, doi:10.1016/j.scitotenv.2017.09.305. https://doi.org/10.1016/j.scitotenv.2017.09.305.

9

Hammond, J. S., R. L. Keeney, and H. R., 1999: Smart choices: a practical guide to making better life 10

decisions. Broadway Books, New York, USA.

11

Hansson, S. O., and G. H. Hadorn, 2016: Introducing the Argumentative Turn in Policy Analysis. The 12

Argumentative Turn in Policy Analysis, Logic, Argumentation & Reasoning, Springer, Cham, 11–35 13

https://link.springer.com/chapter/10.1007/978-3-319-30549-3_2.

14

Henry, M., and Coauthors, 2015: Recommendations for the use of tree models to estimate national forest 15

biomass and assess their uncertainty. Ann. For. Sci., 72, 769–777, doi:10.1007/s13595-015-0465-x.

16

Iwata, Y., T. Miyamoto, K. Kameyama, and M. Nishiya, 2017: Effect of sensor installation on the 17

accurate measurement of soil water content. Eur. J. Soil Sci., 68, 817–828, doi:10.1111/ejss.12493.

18

Karthikeyan, L., M. Pan, N. Wanders, D. N. Kumar, and E. F. Wood, 2017: Four decades of microwave 19

satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour., 20

109, 106–120, doi:10.1016/j.advwatres.2017.09.006.

21

http://dx.doi.org/10.1016/j.advwatres.2017.09.006.

22

Kaushal, S. S., A. J. Gold, and P. M. Mayer, 2017: Land use, climate, and water resources-global stages 23

of interaction. Water (Switzerland), 9, 815, doi:10.3390/w9100815.

24

Lammirato, C., U. Lebender, J. Tierling, and J. Lammel, 2018: Analysis of uncertainty for N 2 O fluxes 25

measured with the closed-chamber method under field conditions: Calculation method, detection 26

limit, and spatial variability. J. Plant Nutr. Soil Sci., 181, 78–89, doi:10.1002/jpln.201600499.

27

http://doi.wiley.com/10.1002/jpln.201600499 (Accessed May 20, 2018).

28

Lavoie, M., C. L. Phillips, and D. Risk, 2015: A practical approach for uncertainty quantification of high-29

frequency soil respiration using Forced Diffusion chambers. J. Geophys. Res. Biogeosciences, 120, 30

128–146, doi:10.1002/2014JG002773. http://doi.wiley.com/10.1002/2014JG002773 (Accessed May 31

20, 2018).

32

Liu, X., and Coauthors, 2018: Comparison of country-level cropland areas between ESA-CCI land cover 33

maps and FAOSTAT data. Int. J. Remote Sens., doi:10.1080/01431161.2018.1465613.

34

Luyssaert, S., and Coauthors, 2007: CO 2 balance of boreal, temperate, and tropical forests derived from a 35

global database. Glob. Chang. Biol., 13, 2509–2537, doi:10.1111/j.1365-2486.2007.01439.x.

36

http://doi.wiley.com/10.1111/j.1365-2486.2007.01439.x (Accessed May 20, 2018).

37

Marziliano, P., G. Menguzzato, and V. Coletta, 2017: Evaluating Carbon Stock Changes in Forest and 38

Related Uncertainty. Sustainability, 9, 1702, doi:10.3390/su9101702. http://www.mdpi.com/2071-39

1050/9/10/1702.

40

Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher, 41

2013: A strategy for quality and uncertainty assessment of long-term eddy-covariance 42

measurements. Agric. For. Meteorol., 169, 122–135, doi:10.1016/j.agrformet.2012.09.006.

43

http://linkinghub.elsevier.com/retrieve/pii/S0168192312002808 (Accessed October 11, 2018).

44

McJannet, D., A. Hawdon, B. Baker, L. Renzullo, and R. Searle, 2017: Multiscale soil moisture estimates 1

using static and roving cosmic-ray soil moisture sensors. Hydrol. Earth Syst. Sci. Discuss., 1–28, 2

doi:10.5194/hess-2017-358. https://www.hydrol-earth-syst-sci-discuss.net/hess-2017-358/.

3

Moradizadeh, M., and M. R. Saradjian, 2018: Estimation of improved resolution soil moisture in 4

vegetated areas using passive AMSR-E data. J. Earth Syst. Sci., 127, 24, doi:10.1007/s12040-018-5

0925-4. http://link.springer.com/10.1007/s12040-018-0925-4 (Accessed May 20, 2018).

6

Morin, T. H., G. Bohrer, K. C. Stefanik, A. C. Rey-Sanchez, A. M. Matheny, and W. J. Mitsch, 2017:

7

Combining eddy-covariance and chamber measurements to determine the methane budget from a 8

small, heterogeneous urban floodplain wetland park. Agric. For. Meteorol., 237238, 160–170, 9

Ogle, K., E. Ryan, F. A. Dijkstra, and E. Pendall, 2016: Quantifying and reducing uncertainties in 14

estimated soil CO 2 fluxes with hierarchical data-model integration. J. Geophys. Res.

15

Biogeosciences, 121, 2935–2948, doi:10.1002/2016JG003385.

16

http://doi.wiley.com/10.1002/2016JG003385 (Accessed May 20, 2018).

17

Olofsson, P., G. M. Foody, M. Herold, S. V Stehman, C. E. Woodcock, and M. A. Wulder, 2014: Good 18

practices for estimating area and assessing accuracy of land change. Remote Sens. Environ., 148, 19

42–57, doi:10.1016/j.rse.2014.02.015. https://ac.els-cdn.com/S0034425714000704/1-s2.0-20

S0034425714000704-main.pdf?_tid=d8ceec27-1479-4fc8-b527-21

aca3eaf8d643&acdnat=1526841950_ded0bd23b704a4458fad2c248c6d08d0 (Accessed May 20, 22

2018).

23

Papadimitriou, L. V., A. G. Koutroulis, M. G. Grillakis, and I. K. Tsanis, 2017: The effect of GCM biases 24

on global runoff simulations of a land surface model. Hydrol. Earth Syst. Sci., 21, 4379–4401, 25

doi:10.5194/hess-21-4379-2017.

26

Paul, K. I., and Coauthors, 2018: Using measured stocks of biomass and litter carbon to constrain 27

modelled estimates of sequestration of soil organic carbon under contrasting mixed-species 28

environmental plantings. Sci. Total Environ., 615, 348–359, doi:10.1016/j.scitotenv.2017.09.263.

29

https://doi.org/10.1016/j.scitotenv.2017.09.263.

30

Pelletier, J., K. R. Kirby, and C. Potvin, 2012: Significance of carbon stock uncertainties on emission 31

reductions from deforestation and forest degradation in developing countries. For. Policy Econ., 24, 32

3–11, doi:10.1016/j.forpol.2010.05.005. http://dx.doi.org/10.1016/j.forpol.2010.05.005.

33

Peltola, O., and Coauthors, 2014: Evaluating the performance of commonly used gas analysers for 34

methane eddy covariance flux measurements: the InGOS inter-comparison field experiment.

35

Biogeosciences, 11, 3163–3186, doi:10.5194/bg-11-3163-2014.

36

www.biogeosciences.net/11/3163/2014/ (Accessed May 20, 2018).

37

Pirk, N., M. Mastepanov, F.-J. W. Parmentier, M. Lund, P. Crill, and T. R. Christensen, 2016:

38

Calculations of automatic chamber flux measurements of methane and carbon dioxide using short 39

time series of concentrations. Biogeosciences, 13, 903–912, doi:10.5194/bg-13-903-2016.

40

www.biogeosciences.net/13/903/2016/ (Accessed May 20, 2018).

41

Pison, I., and Coauthors, 2018: How a European network may help with estimating methane emissions on 42

the French national scale. Atmos. Chem. Phys, 185194, 3779–3798, doi:10.5194/acp-18-3779-2018.

43

https://www.atmos-chem-phys.net/18/3779/2018/acp-18-3779-2018.pdf (Accessed May 20, 2018).

44

Rabinowicz, W., 2002: Does Practical Deliberation Crowd Out Self-Prediction? Erkenntnis, 57, 91–122, 45

doi:10.1023/A:1020106622032. https://link.springer.com/article/10.1023/A:1020106622032.

46

Rannik, Ü., O. Peltola, and I. Mammarella, 2016: Random uncertainties of flux measurements by the 1

eddy covariance technique. Atmos. Meas. Tech, 9, 5163–5181, doi:10.5194/amt-9-5163-2016.

2

www.atmos-meas-tech.net/9/5163/2016/ (Accessed December 27, 2017).

3

Spohn, W., 1977: “Where Luce and Krantz do really generalize Savage’s decision model.” Erkenntnis, 4

11, 113–134. https://link.springer.com/content/pdf/10.1007/BF00169847.pdf.

5

Strati, V., and Coauthors, 2018: Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray 6

Spectroscopy and Soil–Crop System Models. Agriculture, 8, 60, doi:10.3390/agriculture8040060.

7

http://www.mdpi.com/2077-0472/8/4/60 (Accessed May 20, 2018).

8

Tie, Q., H. Hu, F. Tian, and N. M. Holbrook, 2018: Comparing different methods for determining forest 9

evapotranspiration and its components at multiple temporal scales. Sci. Total Environ., 633, 12–29, 10

doi:10.1016/j.scitotenv.2018.03.082.

11

Urbazaev, M., C. Thiel, F. Cremer, R. Dubayah, M. Migliavacca, M. Reichstein, and C. Schmullius, 12

2018: Estimation of forest aboveground biomass and uncertainties by integration of field 13

measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance 14

Manag., 13, doi:10.1186/s13021-018-0093-5. https://doi.org/10.1186/s13021-018-0093-5 (Accessed 15

May 20, 2018).

16

Valayamkunnath, P., V. Sridhar, W. Zhao, and R. G. Allen, 2018: Intercomparison of surface energy 17

fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, 18

and modeling across three ecosystems in a semiarid climate. Agric. For. Meteorol., 248, 22–47, 19

doi:10.1016/j.agrformet.2017.08.025. http://dx.doi.org/10.1016/j.agrformet.2017.08.025.

20

Vanguelova, E. I., and Coauthors, 2016: Sources of errors and uncertainties in the assessment of forest 21

soil carbon stocks at different scales—review and recommendations. Environ. Monit. Assess., 188, 22

doi:10.1007/s10661-016-5608-5.

23

Vargas, R., and M. F. Allen, 2008: Environmental controls and the influence of vegetation type, fine roots 24

and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol., 179, 460–471, 25

doi:10.1111/j.1469-8137.2008.02481.x. http://doi.wiley.com/10.1111/j.1469-8137.2008.02481.x 26

(Accessed May 20, 2018).

27

Wang, E., and Coauthors, 2018: Making sense of cosmic-ray soil moisture measurements and eddy 28

covariance data with regard to crop water use and field water balance. Agric. Water Manag., 204, 29

Wang, X., C. Wang, and B. Bond-Lamberty, 2017a: Quantifying and reducing the differences in forest 33

CO 2 -fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis.

34

doi:10.1016/j.agrformet.2017.07.023. www.elsevier.com/locate/agrformet (Accessed December 27, 35

2017).

36

Wang, Y., and Coauthors, 2017b: Estimation of observation errors for large-scale atmospheric inversion 37

of CO 2 emissions from fossil fuel combustion. Tellus B Chem. Phys. Meteorol., 69, 1325723, 38

doi:10.1080/16000889.2017.1325723.

39

http://www.tandfonline.com/action/journalInformation?journalCode=zelb20 (Accessed May 20, 40

2018).

41

Xu, L., and Coauthors, 2017: Spatial Distribution of Carbon Stored in Forests of the Democratic Republic 42

of Congo. Sci. Rep., 7, 1–12, doi:10.1038/s41598-017-15050-z.

43

Yang, L., K. Jia, S. Liang, M. Liu, X. Wei, Y. Yao, X. Zhang, and D. Liu, 2018: Spatio-Temporal 44

Analysis and Uncertainty of Fractional Vegetation Cover Change over Northern China during 2001–

45

2012 Based on Multiple Vegetation Data Sets. Remote Sens., 10, 549, doi:10.3390/rs10040549.

1

http://www.mdpi.com/2072-4292/10/4/549 (Accessed May 20, 2018).

2

Zhang, D., and G. Zhou, 2016: Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A 3

Review. Sensors, 16, 1308, doi:10.3390/s16081308. http://www.mdpi.com/1424-8220/16/8/1308.

4

Zhang, Y., F. H. S. Chiew, J. Peña-Arancibia, F. Sun, H. Li, and R. Leuning, 2017: Global variation of 5

transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res., 122, 6

6868–6881, doi:10.1002/2017JD027025.

7 8

2

Chapter 2: Land-Climate Interactions

1 2 3

Coordinating Lead Authors: Gensuo Jia (China), Elena Shevliakova (The United States of America) 4

5

Lead Authors: Paulo Artaxo (Brazil), Nathalie De Noblet-Ducoudré (France), Richard Houghton (The 6

United States of America), Joanna House (United Kingdom), Kaoru Kitajima (Japan), Christopher Lennard 7

(South Africa), Alexander Popp (Germany), Andrey Sirin (The Russian Federation), Raman Sukumar 8

(India), Louis Verchot (Colombia/The United States of America) 9

10

Contributing Authors: William Anderegg (The United States of America), Edward Armstrong (United 11

Kingdom), Ana Bastos (Portugal/Germany), Terje Koren Bernsten (Norway), Peng Cai (China), Katherine 12

Calvin (The United States of America), Francesco Cherubini (Italy), Sarah Connors (France/United 13

Kingdom), Annette Cowie (Australia), Edouard Davin (Switzerland/ France), Cecile De Klein (New 14

Zealand), Giacomo Grassi (Italy/EU), Rafiq Hamdi (Belgium), Florian Humpenöder (Germany), David 15

Kanter (The United States of America), Gerhard Krinner (France), Sonali McDermid (India/The United 16

States of America), Devaraju Narayanappa (India/France), Josep Peñuelas (Spain), Prajal Pradhan (Nepal), 17

Benjamin Quesada (Colombia), Stephanie Roe (The Philippines/The United States of America), Robert A.

18

Rohde (The United States of America), Martijn Slot (Panama), Rolf Sommer (Germany), Moa Sporre 19

(Norway), Benjamin Sulman (The United States of America), Alasdair Sykes (United Kingdom), Phil 20

Williamson (United Kingdom), Yuyu Zhou (China/The United States of America) 21

22

Review Editors: Pierre Bernier (Canada), Jhan Carlo Espinoza (Peru), Sergey Semenov (The Russian 23

Federation) 24

25

Chapter Scientist: Xiyan Xu (China) 26

27 28

Date of Draft: 27/4/2019 29

Table of Contents

1

2 Chapter 2: Land-Climate Interactions ... 1 2

Executive Summary ... 3 3

2.1 Introduction: Land – climate interactions ... 9 4

2.1.1 Recap of previous IPCC and other relevant reports as baselines ... 9 5

2.1.2 Introduction to the chapter structure ... 11 6

Box 2.1: Processes underlying land-climate interactions ... 12 7

2.2 The effect of climate variability and change on land ... 14 8

2.2.1 Overview of climate impacts on land ... 14 9

2.2.2 Climate driven changes in aridity ... 16 10

2.2.3 The influence of climate change on food security ... 17 11

2.2.4 Climate-driven changes in terrestrial ecosystems ... 17 12

2.2.5 Climate extremes and their impact on land functioning ... 19 13

Cross-Chapter Box 3: Fire and Climate Change ... 25 14

2.3 Greenhouse gas fluxes between land and atmosphere ... 28 15

2.3.1 Carbon Dioxide ... 29 16

2.3.2 Methane ... 36 17

2.3.3 Nitrous Oxide ... 40 18

Box 2.2: Methodologies for estimating national to global scale anthropogenic land carbon fluxes .. 43 19

2.4 Emissions and impacts of short-lived climate forcers (SLCF) from land ... 46 20

2.4.1 Mineral dust ... 47 21

2.4.2 Carbonaceous Aerosols ... 49 22

2.4.3 Biogenic Volatile Organic Compounds (BVOCs) ... 51 23

2.5 Land impacts on climate and weather through biophysical and GHGs effects ... 53 24

2.5.1 Impacts of historical and future anthropogenic land cover changes ... 54 25

2.5.2 Impacts of specific land use changes ... 60 26

2.5.3 Amplifying / dampening climate changes via land responses ... 68 27

2.5.4 Non-local and downwind effects resulting from changes in land cover ... 72 28

Cross-Chapte Box 4: Climate Change and Urbanisation ... 73 29

2.6 Climate consequences of response options ... 77 30

2.6.1 Climate impacts of individual response options ... 77 31

2.6.2 Integrated pathways for climate change mitigation ... 85 32

2.6.3 The contribution of response options to the Paris Agreement ... 91 33

2.7 Plant and soil processes underlying land-climate interactions ... 94 34

2.7.1 Temperature responses of plant and ecosystem production ... 94 35

2.7.2 Water transport through soil-plant-atmosphere continuum and drought mortality ... 95 36

2.7.3 Soil microbial effects on soil nutrient dynamics and plant responses to elevated CO2 ... 96 37

2.7.4 Vertical distribution of soil organic carbon ... 97 38

2.7.5 Soil carbon responses to warming and changes in soil moisture ... 97 39

2.7.6 Soil carbon responses to changes in organic-matter inputs by plants ... 98 40

References ... 101 41

Appendix ... 178 42

43 44 45

Dans le document Climate Change and Land (Page 135-146)