• Aucun résultat trouvé

Retombées de présent travail et applications potentielles des résultats

Chapitre 3 Conclusion générale

3.5 Retombées de présent travail et applications potentielles des résultats

Le principal objectif de cette étude était de fournir des connaissances supplémentaires quant à l’expression de gènes potentiellement impliqués dans l’adaptation climatique chez l’épinette noire. La majorité des hypothèses émises dans ce projet ont été validées ou partiellement validées. Peu d’études établissement clairement un lien entre la diversité génétique sous-jacente à l’adaptation climatique et l’expression des gènes. L’expression des gènes représente une étape clef entre le génotype et sa manifestation sous forme d’un génotype particulier. Les variations modifiant la séquence codante d’un gène peuvent aussi jouer un rôle tout aussi important dans la mise en place du phénotype. La présente étude donne un aperçu du rôle de l’expression génique dans l’adaptation aux variables climatiques. Le travail réalisé dans ce mémoire représente un travail exploratoire puisqu’il concernait un petit nombre de gènes, néanmoins il indique que l’expression des gènes doit être prise ne compte pour développer une compréhension complète de l’adaptation.

Par conséquent, le fait d’étendre cette étude à un plus grand nombre de gènes et d’individus, par exemple au moyen de méthodes comme le RNA-Seq, permettrait d’identifier un plus grand nombre de gènes étant potentiellement impliqués dans l’adaptation climatique, et ce, avec une plus grande précision. Comme plusieurs études le démontrent déjà, un changement de climat important surviendra au cours des années à venir (IPCC 2014). Cette étude et les études subséquentes à cette dernière pourraient aider à obtenir une meilleure compréhension du rôle de certains gènes dans l’acclimatation et ainsi sélectionner les arbres selon leur génotype pour le reboisement afin de faciliter la survie de l’espèce et assurer une diversité génétique.

53

Bibliographie

Agrawal, A.A. 2001. Phenotypic plasticity in the interactions and evolution of species. Science. 294:321-326.

Aitken, S.N., S. Yeaman, J.A. Holliday, T. Wang and S. Curtis-McLane 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations.

Evolutionary Applications 1:95.

Albrecht, V., S. Weinl, D. Blazevic, C. D'Angelo, O. Batistic, Ü. Kolukisaoglu, R. Bock, B. Schulz, K. Harter and J. Kudla 2003. The calcium sensor CBL1 integrates plant responses to abiotic stresses. The Plant Journal 36:457.

Bajaj.,Y.P.S. 1991. Biotechnology in Agriculture and Forestry 16. Trees III. Springer- Verlag 3: pp.423-424.

Battista, J.R., M.-J. Park and A.E. McLemore 2001. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133.

Beane J, Vick J, Schembri F, et al. 2011. "Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq". Cancer Prev Res (Phila) 4 (6): 803–817

Beaulieu, J., M. Perron and J. Bousquet 2004. Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana. Canadian Journal of Forest Research 34:531-545.

Browne, J., A. Tunnacliffe and A. Burnell 2002. Anhydrobiosis: Plant desiccation gene found in a nematode. Nature 416:38.

Bigras, F.J. and S.J. Colombo 2001. Conifer cold hardiness:616.

Catalae, R., E. Santos, J.M. Alonso, J.R. Ecker, J.M. MartÃ-nez-Zapater and J. Salinas 2003. Mutations in the Ca2+/H+ Transporter CAX1 Increase CBF/DREB1 Expression and the Cold-Acclimation Response in Arabidopsis. The Plant Cell Online 15:2940-2951.

Cheong, Y.H., K.-N. Kim, G.K. Pandey, R. Gupta, J.J. Grant and S. Luan 2003. CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. The Plant Cell Online 15:1833-1845.

Close, T.J. and P.J. Lammers 1993. An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiology 101:773-779.

54

Diallo, A., N. Kane, Z. Agharbaoui, M. Badawi and F. Sarhan 2010. Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance. PLoS ONE 5:e8690.

Fortier, J. 2008. Le reboisement au Québec: Quelle place pour la ligniculture? Réseau ligniculture Québec:1-23.

Frewen, B.E., T.H.H. Chen, G.T. Howe, J. Davis, A. Rohde, W. Boerjan and H.D. Bradshaw, Jr. 2000. Quantitative trait loci and candidate gene mapping of bud set and bud flush in populus. Genetics 154:837-845.

Gal, T.Z., I. Glazer and H. Koltai 2003. Differentialgene expression during dessication stress in the insect-killing nematode Steinernema feltiae IS-6. Journal of

Parasitology 89:761.

Gal, T.Z., I. Glazer and H. Koltai 2004. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Letters. 577:21.

Gerstein, M.B., C. Bruce, J.S. Rozowsky, D. Zheng, J. Du, J.O. Korbel, O. Emanuelsson, Z.D. Zhang, S. Weissman and M. Snyder 2007. What is a gene, post-ENCODE? history and updated definition. Cold Spring Harbor Laboratory Press

Guo, A.-Y., X. Chen, G. Gao, H. Zhang, Q.-H. Zhu, X.-C. Liu, Y.-F. Zhong, X. Gu, K. He and J. Luo 2008. PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Research 36:966-969.

Gyllenstrand, N., D. Clapham, T. Kaellman and U. Lagercrantz 2007. A Norway spruce Flowering locus T homolog is implicated in control of growth rhythm in conifers. Plant Physiology 144:248-257.

Hall, D., V. Luquez, V.M. Garcia, K.R.S. Onge, S. Jansson and P.r.K. Ingvarsson 2007. Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula. L.): A comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849.

Hand, S.C., D. Jones, M.A. Menze and T.L. Witt 2007. Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 307A:62.

Heide, O.M. and A.K. Prestrud 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology 25:109-114.

Heintzman, N. and B. Ren 2007. The gateway to transcription: identifying, characterizing and understanding promoters in the eukaryotic genome. Cellular and Molecular Life Sciences 64:386.

55 Helliwell CA, Robertson M, Finnegan EJ, Buzas DM, Dennis ES (2011) Vernalization-

repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PLoS ONE 6(6)

Holliday, J.A., S.G. Ralph, R. White, J. Bohlmann and S.N. Aitken 2008. Global

monitoring of autumn gene expression within and among phenotypically divergent populations of Sitka spruce (Picea sitchensis). New Phytologist 178:103-122. Holtan , H. E., Bandong, S., Marion, C.M., Adam, L., Tiwari, S., Shen, Y., Maloof, J. N.,

Masze, D. R., Ohto, M., Preuss, S., Meister, R., Petracek, M., Repetti, P. P., Reuber, T. L., Ratcliffe, O. J., Khanna, R. 2011. BBX32, an Arabidopsis B-Box Protein, Functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiology 2109-2123.

Howe, G.T., S.N. Aitken, D.B. Neale, K.D. Jermstad, N.C. Wheeler and T.H. Chen 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany 81:pp. 1247-1266.

Huang, J., J.F. Wang, Q.H. Wang and H.S. Zhang 2005. Identification of a rice zinc finger protein whose expression is transiently induced by drought, cold but not by salinity and abscisic acid. Mitochondrial DNA 16:130-136.

Huq, E., J.M. Tepperman and P.H. Quail 2000. GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis. Proceedings of the National Academy of Sciences 97:9789-9794.

Ingvarsson, P.r.K., M.V. Garcia, V. Luquez, D. Hall and S. Jansson 2008. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula. Salicaceae). Genetics 178:2217-2226. IPCC 2014. Climate Change 2014. Third Assessment Report of the Intergovernmental

Panel on Climate Change IPCC (WG I and II). (Cambridge Univ. Press, Cambridge, 2014).

Jaramillo-Correa, J.P., J. Beaulieu and J. Bousquet 2001. Contrasting evolutionary forces driving population structure at expressed sequence tag polymorphisms, allozymes and quantitative traits in white spruce. Molecular Ecology 10:2729.

Joosen, R.V.L., M. Lammers, P.A. Balk, P. Braennum, M.C.J.M. Konings, M. Perks, E. Stattin, M.F. van Wordragen and A.H.M. van der Geest 2006. Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Tree Physiology 26:1297-1313.

Kayal, W.E., C.C.G. Allen, C.J.T. Ju, E.R.I. Adams, S. King-Jones, L.I. Zaharia, S.R. Abrams and J.E.K. Cooke 2011. Molecular events of apical bud formation in white spruce, Picea glauca. Plant, Cell and Environment 34:480-500.

56

Khanna, R., B. Kronmiller, D.R. Maszle, G. Coupland, M. Holm, T. Mizuno and S.-H. Wu 2009. The Arabidopsis B-Box Zinc Finger Family. The Plant Cell Online 21:3416- 3420.

Kikawada, T., Y. Nakahara, Y. Kanamori, K.-i. Iwata, M. Watanabe, B. McGee, A. Tunnacliffe and T. Okuda 2006. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochemical and Biophysical Research

Communications 348:56.

Kim, W.Y., Kim, J. Y., Jung, H. J., Oh, S. H. Han, Y. S., Kang, H 2010. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation. Plant Physiology and Biochemistry 866-872.

Kisis, D., V. Lumbreras, M. Pagès 2001. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. Federation of European Biochemical Societies 187- 189.

Lagercrantz, U. 2009. At the end of the day: a common molecular mechanism for photoperiod responses in plants? Journal of Experimental Botany 60:2501-2515. Levitt, J. 1980b. Responses of plants to environmental stresses. Vol I. Chilling, freezing,

and high temperature stresses, 2nd edn. Academic press, New York London Toronto Sydney San Francisco 497 p.

Li, P., J. Beaulieu, A. Corriveau and J. Bousquet 1993. Genetic variation in juvenile growth and phenology in a white spruce provenance-progeny test. Silvae Genetica 42:52- 60.

Li. P., J. Beaulieu & J. Bousquet 1997. Genetic structure and patterns of genetic variation among populations in eastern white spruce (Picea glauca). Canadian Journal of Forest Research 27:189-198

Luchi, S. 2001. Three classes of zinc finger proteins. Cellular and Molecular Life Sciences 58:625.

Malcolm, J.R., A. Markham, R.P. Neilson and M. Garaci 2002. Estimated migration rates under scenarios of global climate change. Journal of Biogeography 29:835.

Masek, J.G. 2001. Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. Journal of Biogeography 28:967.

McLachlan, J.S. and J.S. Clark 2004. Reconstructing historical ranges with fossil data at continental scales. Forest Ecology and Management 197:139.

McLachlan, J.S., J.J. Hellmann and M.W. Schwartz 2007. A framework for debate of assisted migration in an era of climate change. Conservation Biology 21:297.

57 Mizoguchi, T., L. Wright, S. Fujiwara, F.d.r. Cremer, K. Lee, H. Onouchi, A. Mouradov, S.

Fowler, H. Kamada, J. Putterill and G. Coupland 2005. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant Cell Online 17:2255-2270.

Morgenstern, E.K. 1969a. Genetic variation in seedlings of Picea Mariana (Mill.) BSP. Silvae Genetica 18:151-161.

NFDP. National Forestry Database Program. The Canadian Council of Forest Ministers. (http://nfdp.ccfm.org/index_e.php visité en mai, 2011)

Noodén, L.D. and Weber, J.A. (197 8) Environmental and hormonal control of dormancy in terminal buds of plants. In Dormancy and Developmental Arrest. Experimental Analysis in Plants and Animals (Cutter, M.E.,ed.). NewYork: Academic Press, pp. 221 - 268.

Nussey, D.H., A.J. Wilson and J.E. Brommer 2007. The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology 20:831. Olsen, J.E., O. Junttila, J. Nilsen, M.E. Eriksson, I. Martinussen, O. Olsson, G. Sandberg

and T. Moritz 1997. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. The Plant Journal 12:1339.

Owens, J.N. and M. Molder 1977. Seed-cone differentiation and sexual reproduction in western white pine (Pinus monticola). Canadian Journal of Botany 55:2574-2590. Pabo, C.O. and R.T. Sauer 1992. Transcription factors: structural families and principles of

DNA recognition. Annual Review of Biochemistry 61:1053-1095.

Pavy, N., B. Boyle, C. Nelson, C. Paule, I. Giguère, S. Caron, L.S. Parsons, N. Dallaire, F. Bedon, H. Bérubé, J. Cooke and J. Mackay 2008. Identification of conserved core xylem gene sets: conifer cDNA microarray development, transcript profiling and computational analyses. New Phytologist 180:766-786.

Perron, M., Bousquet, J. 1997. Natural hybridization between black spruce and red spruce. Molecular Ecology 6:725-734.

Prunier. J, J. Laroche J. Beaulieu and J. Bousquet 2011. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Molecular Ecology 20:1702.

Prunier. J., S. Gérardi, J. Laroche, J. Beaulieu and J. Bousquet 2012. Parallel and lineage- specific molecular adaptation to climate in boreal black spruce. Molecular Ecology 21(17): 4270-4286

58

Prunier, J., Pelgas, B., Gagnon, F., Desponts, M., Isabel, N., Beaulieu, J., Bousquet, J., 2013. The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics. 14:368 Pouchkina-Stantcheva, N.N., B.M. McGee, C. Boschetti, D. Tolleter, S. Chakrabortee,

A.V. Popova, F. Meersman, D. Macherel, D.K. Hincha and A. Tunnacliffe 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318:268-271.

Raven, P.H., Evert, R.F., Eichhorn, S.E., 1999, Biologie Végétale, De Boeck, 6e edition 923 p.

Reitz, M. U., Jeff, K. B., Kathleen, Z., Agnès, A., Ralph, H., Katja, B. Jafargholi, I., Ruth, E., Patrick, S. 2012. The subcellular localization of Tubby-like proteins and participation in stress signaling and root colonization by the mutualist Piriformospora indica. Plant Physiology 1:45.

Riechmann, J.L., J. Heard, G. Martin, L. Reuber, C. Z, Jiang, J. Keddie, L. Adam, O. Pineda, O.J. Ratcliffe, R.R. Samaha, R. Creelman, M. Pilgrim, P. Broun, J.Z. Zhang, D. Ghandehari, B.K. Sherman and G. L. Yu 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105- 2110.

Rohde, A. and R.P. Bhalerao 2007. Plant dormancy in the perennial context. Trends in plant science 12:217-223.

Ruttink, T., M. Arend, K. Morreel, V.r. Storme, S. Rombauts, J.r. Fromm, R.P. Bhalerao, W. Boerjan and A. Rohde 2007. A molecular timetable for apical bud formation and dormancy induction in poplar. The Plant Cell Online 19:2370-2390.

Sakai, A. and W. Larcher 1987. Frost survival of plants In Ecological studies. Springer- Verlag, Berlin Heidelberg New York London Paris Tokyo pp. 321-352

Sarkar, S. and T. Fuller 2002. Generalized norms of reaction for ecological. Developmental Biology 10:1-29.

Scheiner, S. M. 1993 Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24: 35–68

Schrader, J., R. Moyle, R. Bhalerao, M. Hertzberg, J. Lundeberg, P. Nilsson and R.P. Bhalerao 2004. Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome. The Plant Journal 40:173-187

Shi, J., K.-N. Kim, O. Ritz, V. Albrecht, R. Gupta, K. Harter, S. Luan and J.r. Kudla 1999. Novel protein kinases associated with calcineurin B–like calcium sensors in Arabidopsis. The Plant Cell Online 11:2393-2406.

59 Shukla, R.K., S. Raha, V. Tripathi and D. Chattopadhyay 2006. Expression of CAP2, an

APETALA2-Family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiology 142:113-123.

Stacy, R.A.P. and R.B. Aalen 1998. Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteinsin plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476.

Storz, J.F. 2005. Using genome scans of DNA polymorphism to infer adaptive population divergence. Molecular Ecology 14:671.

Sultan, S.E. 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5:537.

Torii, K.U. 2004. Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. International Review of Cytology. Academic Press. 2004. Volume 234. Pages 1-46

Tunnacliffe, A., J. Lapinski and B. McGee 2005. A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315.

Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe and F. Speleman 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3. Weiser, C.J. 1970. Cold resistance and injury in woody plants. Science 169:1269-1278. Xiong, L., K.S. Schumaker and J.-K. Zhu 2002. Cell signaling during cold, drought, and

salt stress. The Plant Cell Online 14:S165-S183

Yang, A., X. Dai and W.-H. Zhang 2012. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. Journal of Experimental Botany 63:2541-2556.

Zhou, Q.-Y., A.-G. Tian, H.-F. Zou, Z.-M. Xie, G. Lei, J. Huang, C.-M. Wang, H.-W. Wang, J.-S. Zhang and S.-Y. Chen 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal 6:486.

60

Annexe

Table S1. Expression level of candidate genes for each genotypic class (Log2 number of RNA transcript molecules).

a. Homozygote 1 b. Hétérozygote c. Homozygote 2

Gene name

Date 1 Date 2

Ho1a Heb Ho2c

All Ho1a Heb Ho2c All

LOB domain-containing (DUF260) 10.10 10.02 10.26 10.09 10.96 10.77 11.15 10.91 Late embryogenesis abundant (LEA) 9.76 9.51 9.34 9.70 10.23 10.09 10.58 10.24 Leucine-rich receptor-like protein kinase 16.10 15.58 15.43 15.65 14.70 14.41 14.33 14.45

tubby like 13.57 13.55 13.65 13.59 19.52 19.79 19.75 19.69

AP2 (PgAP2-3) 10.84 10.85 11.09 10.89 11.38 11.39 11.55 11.41 B-box type zinc finger family (PgBBOX-1) 15.29 15.33 15.42 15.51 15.53 15.50 15.29 15.30

NA 17.04 16.83 16.78 12.86 18.25 18.15 18.18 13.70

Zinc finger, C2H2 type 10.76 11.39 11.45 11.34 12.27 11.96 11.97 12.01 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 13.17 12.92 12.88 13.05 13.92 13.89 13.99 13.92

AP2 10.32 10.64 10.65 10.54 17.09 16.41 17.64 17.05

WRKY DNA -binding 8.19 8.62 8.30 8.44 9.42 9.48 9.87 9.60

Zinc finger, C3HC4 type (RING finger) 14.85 14.74 15.06 14.89 16.04 17.02 16.72 16.75 Chaperone DnaJ-domain superfamily 13.30 13.24 13.35 13.29 13.38 13.28 13.32 13.34 bZIP transcription factor (PgBZIP-8) 12.80 12.78 12.78 12.79 12.66 12.73 12.77 12.68 GAST1 protein homolog 2 11.98 12.00 11.93 12.06 13.48 13.34 12.89 13.38

myb 11.99 12.06 11.84 12.00 15.11 15.28 14.52 15.10

myb (PgMYB-5) 13.94 13.66 13.64 13.67 15.09 14.85 14.88 14.88 GRAS family transcription factor 13.75 13.64 13.91 13.79 13.80 13.47 13.71 13.62 multiprotein bridging factor 1B 17.04 16.83 16.78 16.91 18.25 18.15 18.18 18.20 AP2 domain (PgAP2-1) 15.71 15.52 15.83 15.71 15.94 16.04 16.03 15.96 B-box zinc finger 16.62 16.68 16.61 16.64 16.87 16.96 17.10 16.93 B-box zinc finger family 14.46 14.52 14.51 14.49 13.16 13.48 13.81 13.39 RING/U-box superfamily 11.61 11.79 11.81 11.68 12.72 12.70 12.91 12.74

61

Table S2. Correlation between genotypic classes and phenotypic values at two different dates (June 22th and July 27th, 2011).

Corrected p-values

Gene name

Date 1 Date 2

Budset Growth Budset Growth

LOB domain-containing (DUF260) 0.190 0.736 1.105 1.059

Late embryogenesis abundant (LEA) 0.737 0.228 0.953 1.713

Leucine-rich receptor-like protein kinase 0.980 0.774 1.024 1.068

tubby like 0.721 0.692 0.762 0.997

AP2 (PgAP2-3) 0.987 0.674 1.156 0.914

B-box type zinc finger family (PgBBOX-1) 0.971 0.667 1.125 0.910

NA 0.769 0.622 0.926 1.243

Zinc finger, C2H2 type 0.005 0.623 1.027 1.096

2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase 0.042 0.730 0.853 1.238

AP2 1.006 0.555 1.006 1.032

WRKY DNA -binding 0.946 0.693 1.086 0.964

Zinc finger, C3HC4 type (RING finger) 0.802 0.870 0.989 0.941

Chaperone DnaJ-domain superfamily 0.698 0.889 1.091 1.007

bZIP transcription factor (PgBZIP-8) 0.309 0.584 1.047 1.056

GAST1 protein homolog 2 0.660 0.804 1.109 1.112

myb 0.741 0.877 1.267 1.046

myb (PgMYB-5) 0.985 0.690 1.015 0.970

GRAS family transcription factor 0.934 0.754 0.847 1.206

multiprotein bridging factor 1B 0.991 0.711 0.981 1.107

AP2 domain (PgAP2-1) 0.701 0.892 1.077 0.937

B-box zinc finger 0.066 0.871 0.552 1.022

B-box zinc finger family 0.974 0.753 0.744 0.963

RING/U-box superfamily 0.284 1.140 0.802 0.861

62

Figure S1. Origin of 1152 trees used to develop the experimental study population of 142 trees. Circles: localization of forest

stands represented in seed orchards (natural tree populations); triangles: localization of seed orchards sampled for the study. The populations represent six ecological regions (each with a different colour) and span the same geographic area as that surveyed in Prunier et al. (2011). In total, 1152 seedlings equally distributed among the regions were genotyped and 142 were selected to develop the experimental study population aimed at studying the relationship between gene expression and SNP genotypic classes.

Locations of populations and seed orchards

Documents relatifs