• Aucun résultat trouvé

Malgré de récentes avancées, le comportement des hydroliennes est aujourd'hui encore déterminé pour des conditions bien spécifiques de fonctionnement, c'est-à-dire en présence

d'un écoulement uniforme et stationnaire. Cependant, de nombreuses questions restent

aujourd'hui en suspens. D’où l’intérêt de ce travail de thèse, à travers lequel on propose de

faire la lumière sur des points cruciaux pour un dimensionnement au plus juste des

hydroliennes.

Bibliographie

[1] M. J. Khan, G. Bhuyan, M. T. Iqbal and J. E. Quaicoe, Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review. Applied Energy, vol. 86, pp. 1823-1835, 2009.

[2] L. I. Lago, F. L. Ponta and L. Chen, Advances and Trends in Hydrokinetic Turbine Systems. Energy for Sustainable Development, vol. 14, p. 287–296, 2010.

[3] F. H. Haydar, A. El Shafie and A. Othman, Tidal Current Turbines Glance at the Past and Look Into Future Prospects in Malaysia. Renewable and Substainable Energy Reviews, vol. 16, pp. 5707-5717, 2012.

[4] A. Menchaca Roa, Analyse Numérique des Hydroliennes à Axe Vertical Munies d’un Carénage. Thèse de Doctorat, 2011.

[5] H. Riegler, HAWT versus VAWT. Refocus, vol. 4, pp. 44-46, 2003.

[6] R. E. Wilson and P. B. S. Lissaman, Applied Aerodynamics of Wind Power Machines. Oregon State University, 1974.

[7] E. Amet, Simulation Numérique d'une Hydrolienne à Axe Vertical de Type Darrieus,» Thése de doctorat, 2009.

[8] C. Ploesteanu, Etude Hydrodynamique d'un Type d'Hydrolienne à Axe Vertical pour les Courants Marins. Thèse de Doctorat, 2004.

[9] A. M. Andreica, Optimisation Energétique de Chaînes de Conversion Hydroliennes: Modélisation, Commandes et Réalisations Expérimentales. Thèse de Doctorat, 2009.

[10] T. Burton, D. Sharpe, N. Jenkins and E. Bossanyi, Wind Energy Handbook, Wiley, 2001.

[11] J. F. Manwell, J. G. McGowan and A. L. Rogers, Wind Energy Explained: Theory, Design and Application., Wiley, 2003.

[12] M. S. Guney, Evaluation and Measures to Increase Performance Coefficient of Hydrokinetic Turbines. Renewable and Sustainable Energy Reviews, vol. 15, pp. 3669-3675, 2011.

[13] J. Twidell and T. Weir, Renewable Energy Resources, Taylor and Francis, 2006.

[14] B. G. Newman, Actuator Disc Theory for Vertical Axis Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics, vol. 15, pp. 347-355, 1983.

[15] A. N. Gorban, A. M. Gorlov and V. M. Silantyev, Limits of The Turbine Efficiency for Free Fluid Flow. Journal of Energy Ressources Technology, vol. 123, pp. 311-317, 2001.

[16] R. J. Barthelmie, G. C. Larsen et S. T. Frandsen, «Comparaison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar,» Journal of Atmospheric and Oceanic Technology, vol. 23, pp. 888-901, 2006.

[17] B. Multon, Energies Marines Renouvelables: Aspects Généraux, Eolien, Marémoteur et Hydrolien, Paris: LAVOISIER, 2011.

[18] M. J. Khan, M. T. Iqbal and J. E. Quaicoe, «A Technology Review and Simulation Based Performance Analysis of River Current Turbine Systems. Canadian Conference on Electrical and Computer Engineering, Ottawa, 2006.

[19] F. Ponta et G. S. Dutt, An Improved Vertical-Axis Water-Current Turbine Incorporating a Channelling Device. Renewable Energy, vol. 20, p. 223–241, 2000.

[20] R. L. Radkey and B. D. Hibbs, Definition of Cost Effective River Turbine Designs,» Report for US Department of Energy, 1981.

[21] T. Setoguchi, N. Shiomi and K. Kaneko, Development of Two-Way Diffuser for Fluid Energy Conversion System. Renewable Energy, vol. 29, p. 1757–1771, 2004.

[22] F. L. Ponta and P. M. Jacovkis, Marine Current Power Generation by Diffuser-Augmented Floating Hydro Turbines. Renewable Energy, vol. 33, pp. 665-673, 2008.

[23] Clean Current Power Systems : www.cleancurrent.com [24] UEK Corporation : www.uekus.com

[25] Atlantis Resources : www.atlantisresourcesltd.com [26] OpenHydro : www.openhydro.com

[27] R. Luquet, D. Bellevre, D. Fréchou, P. Perdon and P. Guinard, Design and Model Testing of an Optimized Ducted Marine Current Turbine. International Journal of Marine Energy, vol. 2, pp. 61-80, 2013.

[28] D. G. Phillips, P. J. Richards and R. G. J. Flay, Diffuser Development for a Diffuser Augmented Wind Turbine Using Computational Fluid Dynamics. Technical Report Department of Mechanical Engineering of the University of Auckland, New Zealand, 2005.

[29] C. J. Lawn, Optimization of The Power Output From Ducted Turbines. Journal of Power and Energy, vol. 217, pp. 107-117, 2003.

[30] M. J. Werle and W. M. Presz, Ducted Wind/Water Turbines and Propellers Revisited. Journal of Propulsion and Power, vol. 24, pp. 1146-1150, 2008.

[31] V. Aumelas, Modélisation des Hydroliennes à axe Vertical Libres ou Carénées: Développement d'un Moyen Experimental et d'un Moyen Numérique pour l'Etude de la Cavitation. Thése de Doctorat, 2011.

[32] O. Igra, Research and Development for Shrouded Wind Turbines. Energy, vol. 21, pp. 13-48, 1981. [33] G. Riegler, Principles of Energy Extraction From a Free Stream by Means of Wind Turbines. Wind

Engineering, vol. 7, p. 115:126, 1983.

[34] B. L. Gilbert and K. M. Foreman, «ExperimentsWwith a Diffuser-Augmented Model Wind Turbine. Energy Resources Technology, vol. 105, pp. 46-53, 1983.

[35] M. O. L. Hansen, N. N. Sorensen and R. G. J. Flay, Effect of Placing a Diffuser Around a Wind Turbine. Wind Energy, vol. 4, pp. 207-213, 2000.

University of Aucklande, 2003.

[37] H. Grassmann, F. Bet, G. Cabras, M. Ceschia, D. Cobai and C. DelPapa, A Partially Static Turbine-First Experimental Results. Renewable Energy, vol. 28, pp. 1779-1785, 2003.

[38] H. Grassmann, F. Bet, M. Ceschia et M. L. Ganis, On the Physics of Partially Static Turbines. Renewable Energy, vol. 29, p. 491–499, 2004.

[39] K. D. Visser, Wind Tamer Turbine Performance Report. Technical Report 11, Clarkson University, 2009.

[40] Arista Power & Wind Tamer Diffuser-Augmented Wind Turbines : www.aristapower.com

[41] Y. Ohya, T. Karasudani, A. Sakurai, K. Abe and M. Inoue, Development of a Shrouded Wind Turbine with a Flanged Diffuser. Journal of Wind Engineering and Industrial Aerodynamics, vol. 96, p. 524–539, 2008.

[42] K. Abe and Y. Ohya, An Investigation of Flow Fields Around Flanged Diffusers Using CFD. Journal of Wind Engineering and Industrial Aerodynamics, vol. 92, p. 315–330, 2004.

[43] B. Kirke, Developments in Ducted Water Current Turbines. University of South Australia, 2005. [44] P. Khunthongjan and U. Teeboonma, Duct Design for Water Current Turbine Application.

GMSARN International Conference on Energy Security and Climate Change: Problems & Issues in GMS, 2009.

[45] P. Khunthongjan, An Investigation of Diffuser for Water Current Turbine Application Using CFD. International Journal of Engineering Science and Technology, vol. 3, pp. 3437-3445, 2011.

[46] C. Munch, M. Vonlanthen, J. Gomes, R. Luquet, P. Guinard and F. Avellan, Design and Performance Assesment of a Tidal Ducted Turbine. 3rd International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, 2009.

[47] T. A. Lokocz, Testing of a Ducted Axial. MSc Thesis University of Maine, 2010.

[48] J. Reinecke, Effect of an Diffuser on the Performance of an Ocean Current Turbine. University of Stellenbosch, 2011.

[49] A. Bahaj, W. M. J. Batten and G. McCann, Experimental Verification of Numerical Predictions for Hydrodynamic Performance of Horizontal Axis Marine Current Turbines. Renewable Energy, vol. 32, pp. 2479-2490, 2007.

[50] J. Reinecke, T. von Backstrm and G. Venter, Effect of a Diffuser on the Performance of an Ocean Current Turbine. 9th European Wave and Tidal Energy Conference, 2011.

[51] H. Sun and Y. Kyozuka, Analysis of Performances of a Shrouded Horizontal Axis Tidal Turbine. OCEANS 2012 Conference, 2012.

[52] M. Shives, Hydrodynamic Modeling Optimization and Performance Assessment for Ducted and Non-ducted Tidal Turbines. MSc thesis University of Victoria, 2011.

CHAPITRE 2 :