• Aucun résultat trouvé

Dans le but d’estimer le gain de puissance obtenu par l’ajout d’un système de carénage à un rotor d’hydrolienne, une procédure itérative a été développée pour simuler l’écoulement en

présence d’un carénage .Le code potentiel est cependant adapté au calcul des hydroliennes

munies d’un système de carénage. La procédure de couplage entre deux simulations

numériques est détaillée. Afin de respecter la condition de Kutta, le système de carénage doit

impérativement présenter un profil hydrodynamique ayant un bord de fuite saillant et des

incidences non décollées.

Dans la suite de l’étude, on utilisera la méthode de l’élément de pale couplée au bilan de

quantité de mouvement pour caler la loi de pas. Le code potentiel sera ensuite utilisé pour

ajuster les autres paramètres et optimiser le rotor. Ce même code sera également utilisé pour

la conception d’une hydrolienne sous tuyère.

Bibliographie

[1] R. E. Wilson, P. B. S. Lissaman and S. N. Walker, Aerodynamic Performance of Wind Turbines. Energy Research and Development Administration, 1976.

[2] I. Masters, J. C. Chapman and J. Orme, A Three-Dimensional Tidal Stream Turbine Hydrodynamic : Performance Model. Proceedings World Renewable Energy Congress, Glasgow UK, 2008.

[3] C. Tavares Silva and M. Vicente Donadon, Unsteady Blade Element Momentum Method Including Returning Wake Effects. Aerospace Technology, vol. 5, pp. 27-42, 2013.

[4] W. J. M. Rankine, On The Mechanical Principles of The Action of Propellers. Institution of naval architects, 1865.

[5] R. E. Froude, On the Part Played in Propulsion By Differences of Fluide Pressure. vol. 30, Institute of naval architects, 1889, pp. pp: 390-405.

[6] H. Glauert and W. F. Durand, Aerodynamic theory : Airplane propellers, vol. volume 4, J. Springer, Ed., Berlin, 1935.

[7] I. H. Abbott and A. E. Von Doenhoff, Theory of Wing Sections. New York: Dover Publications, 1959.

[8] M. Drela, XFOIL: An Analysis and Design System for Low Reynolds Numbers Airfoils. Department of Aeronautics and Astronautics MIT , 1989.

[9] M. Aucher, Hélices Marines. Technique de l'Ingénieur, pp. 1-7, 1996.

[10] E. Kulunk, Aerodynamics of Wind Turbines. Fundamental and Advanced Topics in Wind Power, New Mexico Institute of Mining and Technology, 2011.

[11] R. Lanzafame and M. Messina, Horizontal Axis Wind Turbine Working at Maximum Power Coefficient Continuously. Renewable Energy, vol. 35, p. 301–306, 2010.

[12] J. L. Tangler, The Nebulous Art of UsingWind-Tunnel Airfoil Data for Predicting Rotor Performance. ASME Wind Energy Conference, Nevada, 2002.

[13] J. Tangler and G. Bir, Technical Repport: Evaluation of RCAS Inflow Models for Wind Turbine Analysis. National Renewable Energy Laboratory, 2004.

[14] I. Masters, J. C. Chapman, J. A. C. Orme and M. R. Willis, A Robust Blade Element Momentum Theory Model for Tidal Stream Turbines Including Tip and Hub Loss Corrections. Journal of Marine Engineering and Technology, vol. 10, pp. 25-35, 2011.

[15] I. Masters, J. C. Chapman, M. R. Willis and J. A. C. Orme, Modelling High Axial Induction Flows in Tidal Stream Turbines. 3rd International Conference on Ocean Energy, Bilbao, 2010.

[16] H. C. Buckland, I. Masters, J. A. C. Orme and J. C. Chapman, Blade Element Momentum Theory in Modelling Tidal Stream Turbines. 18th UK Conference on Computational Mechanics (ACME-UK), Southampton, 2010.

68

[17] H. C. Buckland, I. Masters and J. A. C. Orme, Blade Element Momentum Theory for Tidal Turbine Simulation with Wave Effects: A Validation Study. Oxford Tidal Energy Workshop , 2012.

[18] A. Bahaj, W. M. J. Batten and G. McCann, Experimental Verification of Numerical Predictions for Hydrodynamic Performance of Horizontal Axis Marine Current Turbines. Renewable Energy, vol. 32, pp. 2479-2490, 2007.

[19] A. S. Bahaj and L. E. Myers, Shaping Array Design of Marine Current Energy Converters Through Scaled Experimental Analysis. Energy, vol. 59, p. 83–94, 2013.

[20] W. M. J. Batten, A. S. Bahaj, A. F. Molland and J. R. Chaplin, Hydrodynamics of Marine Current Turbines. Renewable Energy, vol. 32, p. 249–256, 2006.

[21] W. M. J. Batten, A. S. Bahaj, A. F. Chapelin and J. R. Molland, Experimentally Validated Numerical Method for the Hydrodynamic Design of Horizontal Axis Tidal Turbines. Ocean Engineering, vol. 34, pp. 1010-1020, 2007.

[22] W. M. J. Batten, A. S. Bahaj, A. F. Chaplin and J. R. Molland, The Prediction of The Hydrodynamic Performance of Marine Current Turbines. Renewable Energy, vol. 33, pp. 1085-1096, 2008.

[23] J. N. Goundar, M. R. Ahmed and Y. H. Lee, Numerical and Experimental Studies on Hydrofoils for Marine Current Turbines. Renewable Energy, vol. 42, pp. 173-179, 2012.

[24] J. M. Laurens, S. Moyne et F. Deniset, A BEM Method for the Hydrodynamic Analysis of Fishing Boats Propulsive Systems. Seconde International Symposium on Fishing Vessel Energy Efficiency, Vigo Spain, 2012.

[25] P. Liu, A Computational Hydrodynamics Method for Horizontal Axis Turbine- Panel Method Modeling Migration From Propulsion to Turbine Energy. Energy, vol. 35, pp. 2843-2851, 2010. [26] J. Baltaza and J. A. C. Falcão de Campos, Hydrodynamic Analysis of a Horizontal Axis Marine

Current Turbine with a Bounadary Element Method. Journal of Offshore Mechanics and Arctic Engineering, vol. 133, pp. 041304:1-10, 2011.

[27] R. McSherry, J. Grimwade, I. Jones, S. Mathias, A. Wells and A. Mateus, 3D CFD Modelling of Tidal Turbine Performance with Validation Against Laboratory Experiments. European Wave and Tidal Energy Conference, Southampton, 2011.

[28] I. Afgan, J. Mcnaughton, S. Apsley, D. D. Rolfo, T. Stallard and P. Standby, Turbulent Flow and Loading on a Tidal Stream Turbine by LES and RANS. International Journal of Heat and Fluid Flow, vol. 43, pp. 96-108, 2013.

[29] J. Chul hee, Y. Jin young, L. Kang hee and R. Yu ho, Performance of Horizontal Axis Tidal Current Turbine by Blade Configuration. Renewable Energy, vol. 42, pp. 195-206, 2012.

[30] L. Ju Hyun, P. Sunho, K. Dong Hwan, R. Shin Hyung and K. Moon Chan, Computational Methods for Performance Analysis of Horizontal Axis Tidal Stream Turbines. Applied Energy, vol. 98, pp. 512-523, 2012.

2001.

[32] J. B. Leroux et J. A. Astolfi, Etude Expérimentale des Instationnarités et des Instabilités des Poches de Cavitation. 9ème Journées de l'Hydrodynamique, Poitiers France, 2003.

[33] H. Hoeijmakers, Panel Methods for Aerodynamic Analysis and Design, vol. 783, AGARD, 1992, pp. 5.1-5.47.

[34] J. M. Laurens, Comportement Hydrodynamique d'un Gouvernail Travaillant Dans le Sillage d'une Hélice. Thèse de Doctorat, Université de Bretagne Occidentale, 2002.

[35] ITTC Recommended Procedure 7.5-02-03-01.1, Testing and Extrapolation Methods Propulsion: Performance Propulsion Test. 2002.

[36] J. M. Laurens, Couplage Code de Calcul Fluide Parfait: Code de Calcul Couche Limite 3D. Rapport d'Activité Etude 2524 pièce3, DCN - Bassin d'Essais des Carènes, Centre de Val De Reuil, 1993.

[37] G. Vaz, Current Tidal Turbines Versus Propellers : Can MARIN Play a Role. chez R&D Day: Challenging Wind and Waves, 2009.

[38] J. M. Laurens, Hydrodynamique de l'Interaction Hélice Gouvernail: Simulation Numérique. Omniscriptum, 2011.

CONCEPTION D’UN ROTOR D’HYDROLIENNE DOTE D’UN