• Aucun résultat trouvé

Dans la suite du travail, nous nous appuyons sur ces conclusions pour étudier l’intégrité des différentes formes de carénage réalisées en matériaux composites

Bibliographie

[1] Open Hydro : www.openhydro.com

[2] L. C. Hollaway, Polymers and Polymer Composites in Construction. Thomas Telford, 1990. [3] L. Zhou, Y. W. Mai, B. Zhang, J. Mao and H. Jiang, Advanced Composites for Marine

Engineering, softcover, 2015.

[4] E. Greene, Marines Composites. Annapolis, Maryland: Eric Greene Associates, 1999.

[5] C. Bois, Mesure et Prévision de l’Évolution des Endommagements dans les Composites Stratifié. Thèse de Doctorat, 2003.

[6] Hexcel, HexPly Prepreg Technology. Hexcel Corporation, 2013.

[7] J. Geraghty, Brims Tidal Array-The OpenHydro Open-Centre Turbine (OCT). 2013. [8] Cita-Wind : www.cita-wind.com

[9] I. Daniel and O. Ishai, Engineering Mechanics of Composite Materials. Oxford University Press, 2006.

[10] T. Searle, Composites offer advantages for propellers. Reinforced Plastics, vol. 37, p. 24–26, 1993.

[11] T. J. Searle, The Manufacture of Marine Propellers in Moulded Anisotropic Polyiner Contposites. Plymouth School of Materials, Manufacture and Mechanical Engineering , University of Plymouth , 1998.

[12] G. Marsh, A New Start for Marine Propellers. Reinforced Plastics, vol. 48, p. 34–38, 2004. [13] C. C. Li, Y. J. Lee and C. S. Hung, Optimization and Experiment of Composite Marine

Propellers. Composite Structures, vol. 89, pp. 206-215, 2009.

[14] B. Jose Pedro, B. Christian and A. Poul, Hydro-Elastic Analysis and Optimization of a Composite Marine Propeller. Marine Structures, vol. 23, pp. 22-38, 2010.

[15] P. Davies, A. Boisseau, D. Choqueus, F. Thiebaud and D. Perreux, Durabilité des Composites pour Energie Marine Renouvelable. Comptes Rendus des JNC 17, Poitiers, 2011.

[16] P. L. Fraenkel, Development and testing of Marine Current Turbine’s SeaGen 1.2MW tidal stream turbine. International Conference on Ocean Energy (ICOE), Bilbao, 2010.

[17] Verdan Power : www.verdantpower.com

132

[19] M. Menaga, The Advantages of Composite Material in Marine Renewable Energy Structures. Marine Renewable Energy Conference, 2008.

[20] J.-M. Berthelot, Matériaux Composites: Comportement mécanique et analyse des structures. TEC & DOC, 2005.

[21] E. Aussedat-Yahia, Comportement et Endommagements du Composite Tissé Carbone/ PMR15 Soumis à des Chargements Mécaniques et Thermiques. Ecole Nationale Supérieure des Mines de Paris: Thèse de doctorat, 1997.

[22] F. Desrumaux, F. Meraghni and M. L. Benzeggagh, Micromechanical Modelling Coupled to a Reliability Approach for Damage Evolution Prediction in Composite Materials. Applied Composite Materials, vol. 7, pp. 231-250, 2000.

[23] H. Nechad, Evaluation de l'Endommagement et de la Rupture de Matériaux Hétérogènes par Ultrasons et Emission Acoustique : Estimation de la Durée de Vie Restante. Thèse de Doctorat, 2004.

[24] S. Spießberger, K. Humer, E. Tschegg, H. Weber and H. Gerstenberg, Reactor Irradiation Effects on the Ultimate Tensile and the Interlaminar Shear Strength of Carbon Fibre Reinforced Epoxies at 77 K. Cryogenics, vol. 38, p. 79–83, 1998.

[25] P. Compston, M. Styles and S. Kalyanasundaram, Low Energy Impact Damage Modes in Aluminium Foam and Polymer Foam Sandwich Structures. Journal of Sandwich Structures and Materials, vol. 8, pp. 365-379, 2006.

[26] C. Godescu, Caractérisation et Modélisation de l'Endommagement par Microfissuration des Composites Stratifiés - Apports des Mesures de Champs et de l'Homogénéisation. Thése de Doctorat, Institut National Polytechnique de Toulouse (INP Toulouse), 2011.

[27] P. Ladevèze, O. Allix, J. F. Deü and D. Lévêque, A Mesomodel for Localisation and Damage Computation in Laminates. Computer Methods in Applied Mechanics and Engineering, vol. 183, p. 105–122, 2000.

[28] E. Greene, Marine Composites: Failure Modes. Eric Greene Associates, 2013.

[29] L. Marcin, Modélisation du Comportement de l'Endommagement et de la Rupture de Matériaux Composites à Renforts Tissés pour le Dimensionnement Robuste de Structure. Thèse de Doctorat, 2010.

[30] E. Abisset, Un Mésomodèle d’Endommagement des Composites Stratifiés pour le Virtual Testing: Identification et Validation. Thèse de Doctorat, 2012.

[31] R. M. A. Christensen, A Survey of and Evaluation Methodology for Fiber Composite Material Failure Theories. Dordrecht: Kluwer Academic Publishers, 2001.

[32] F. Paris, A Study of Failure Criteria of Fibrous Composite Materials. NASA Technical Report, 2001.

[33] M. J. Hinton, A. S. Kaddour and P. D. Soden, Failure Criteria in Fiber Reinforced Polymer Composites. Oxford: Elsevier Science, 2004.

[34] M. J. Hinton, A. S. Kaddour and P. D. Soden, «A Further Assesment of the Predictive Capabilities of Current Failure Theories for Composite Laminates: Comparison with Experimental Evidence. Composite Science and Technology, vol. 64, pp. 549-588, 2004.

[35] S. W. Tsai and E. M. A. Wu, A General Theory of Strenght for Anisotropic Materials. Journal of Composite Material, vol. 5, pp. 58-80, 1971.

[36] Z. Hashin and A. Rotem, A Fatigue Failure Criterion for Fiber Reinforced Materials. Journal of Composite Materials, vol. 7, pp. 448-464, 1973.

[37] Z. Hashin, Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics, vol. 47, pp. 329-334, 1980.

[38] F. K. Chang and K. Y. Chang, A Progressive Damage Model for Laminated Composites Containing Stress Concentrations. Journal of Composite Material, vol. 21, pp. 834-855, 1987. [39] R. M. Christensen, Stress Based Yield : Failure Criteria for Fiber Composites. Journal of Solid

and Structures, vol. 34, pp. 529-543, 1997.

[40] A. Puck and H. Schurmann, Failure Analysis of FRP Laminates by means of Physical Based Phenomenological Models. Composites Science and Technology, vol. 58, pp. 1045-1067, 1998. [41] P. Ladeveze and E. Le Dantec, Damage Modelling of the Elementary Ply for Laminated

Composites. Composites Science and Technology, vol. 43, pp. 257-267, 1992.

[42] J. F. Maire and P. M. Lesne, An Explicit Damage Model for the Design of Composites Structures. Composites Science and Technology, vol. 58, p. 773–778, 1998.

[43] D. Krajcinovic, Damage Mechanics: Accomplishments, Trends and Needs. International Journal of Solids and Structures, vol. 37, pp. 267-277, 2000.

[44] L. M. Kachanov, On The Time to Failure Under Creep Conditions. Izv. AN SSSR, 1958, pp. 26-31.

[45] D. Krajcinovic and G. U. Fonseka, The Continuum Damage Theory of Brittle Materials. Journal of Applied Mechanics, vol. 48, pp. 809-824, 1981.

[46] R. Talreja, A Continuum Mechanics Characterization of Damage in Composite Materials. Proceedings of the Royal Society of London, London, 1985.

[47] G. Frantziskonis, Distributed Damage in Composites: Theory and Verification. Composite Structure, vol. 10, pp. 165-184, 1988.

[48] Q. Yang and J. Engblom, Finite Element Based Sub-Laminate Damage Model for Intraply Cracking. Journal of Reinforced Plastics Composites, vol. 14, pp. 233-254, 1995.

134

[49] P. W. Randles and J. A. Nemes, Continuum Damage Model for Thick Composite Materials. Mechanics of Materials, vol. 13, pp. 1-13, 1992.

[50] A. Matzenmiller, J. Lubliner and R. L. Taylor, A Constitutive Model for Anisotropic Damage in Fiber-Composites. Mechanics of Materials, vol. 20, p. 125–152, 1995.

[51] K. V. Williams and R. Vaziri, Application of Damage Mechanics Model for Predicting the Impact Response of Composite Materials. Computers and Structures, vol. 79, pp. 997-1011, 2001.

[52] LS DYNA Livermore Software Technology: www.lstc.com

[53] I. Lapczyk and J. A. Hurtado, Progressive Damage modeling in Fiber-Reinforced Materials. Composites Part A: Applied Science and Manufacturing, vol. 38, pp. 2333-2341, 2007.

[54] D S Simulia, Abaqus version 6.14, 2014.

[55] P. Maimi, P. Camanho, J. A. Mayugo and C. G. Da´vila, A Continuum Damage Model for Composite Laminates: Part I–Constitutive Model. Mechanics of Materials, vol. 39, p. 897–908, 2007.

[56] S. H. Xin and H. M. Wen, A Progressive Damage Model for Fiber Reinforced Plastic Composites Subjected to Impact Loading. International Journal of Impact Engineering, vol. 75, pp. 40-52, 2015.

[57] A. A. Griffith, The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society of London, A221, pp. 163-198, 1921.

[58] G. R. Irwin, Onset of Fast Crack Propagation in High Strength Steel and Aluminium Alloys. Proceedings of the second Sagamore Ordinance Materials Conference, pp. 289-305, 1956. [59] J. R. A. Rice, Path Independent Integral and the Approximation Analysis of Strain

Concentrations. Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.

[60] B. Cotterell, The Past, Present and Futur of Fracture Mechanics. Engineering Fracture Mechanics, vol. 69, pp. 533-553, 2002.

[61] L. Hamitouch, Endommagement et Rupture des Assemblages en T des Structures Composites pour des Applications Navales. Thèse de Doctorat, 2008.

[62] R. Krueger, Virtual Crack Closure Technique: History, Approach,and Applications. Society of Mechanical Engineers, Hampton, Virginia 23666, 2004.

[63] R. Singh, P. A. Wawrzynek and A. R. Ingraffea, Universal Crack Closure Integral for SIF Estimation. Engineering Fracture Mechanics, vol. 60, pp. 133-146, 1998.

[64] D. S. Dugdale, Yielding of Steel Sheets Containing Slits. Journal of the Mechanics and Physics of Solids, vol. 8, pp. 100-104, 1960.

[65] G. N. Barenblatt, The Matematical Theory of Equilibrium Cracks in Brittle Fracture. Advances in Applied Mechanics, vol. 7, pp. 55-129, 1962.

[66] A. Hillerberg, M. Modeer and P. E. Peterson, Analysis of Crack Formation and Crack Growth in Concrete by Fracture Mechanics and Finit Elements. Cement and Concrete Research, vol. 6, pp. 773-782, 1976.

[67] A. Needleman, A Continuum Model for Void Nucleation bu Inclusion Debonding. Journal of Applied Mechanics, vol. 54, pp. 525-531, 1987.

[68] X. P. Xu and A. Needleman, Numerical Simulation of Fast Crack Growth in Brittle Solids. Journal of Mechanics and Physics of solids, vol. 32, pp. 1397-1434, 1994.

[69] E. D. Reedy, F. J. Mello and T. R. Guess, Modeling the Initiation and Growth of Delamination in Composite Structures. Journal of Composite Materials, vol. 31, pp. 512-531, 1997.

[70] Y. Mi, Progressive Delamination Using Interface Element. Journal of Composite Materials, vol. 32, pp. 347-358, 1998.

[71] G. Alfano and M. A. Crisfield, Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues. International Journal for Numerical Methods in Engineering, vol. 50, pp. 1701-1736, 2001.

[72] O. Allix, O. Ladevèze and A. Corigliano, Damage Analysis of Interlaminar Fracture Specimens Composite Structures, vol. 31, pp. 61-74, 1995.

[73] O. Allix and A. Corigliano, Modeling and Simulation of Crack Propagation in Mixed-Modes Interlaminar Fracture Specimens. lnternationalJournal of Fracture, vol. 77, pp. 111-140, 1996. [74] L. Champaney and N. Valoroso, Evaluation of Interface Models for the Analysis of Non-Linear

Behaviour of Adhesively Bonded Joints. Proceedings of the European Conference on Computational Mechanics ECCM-2001, Crcow, Poland, 2001.

[75] A. Needleman, An Analysis of Tensile Decohesion Along an Interface. Journal of the Mechanics and Physics of Solids, vol. 38, pp. 289-324, 1990.

[76] N. Chandra, H. Li and H. Ghonem, Some Issues in the Application of Cohesive Zone Models for Metal-ceramic Interfaces. Solids and Structures, vol. 39, pp. 2827-2855, 2002.

[77] V. Tvergaard and J. W. Hutchinson, The Influence of Plasticity on Mixed Mode Interface Toughness. Journal of Mechanics and Physics of Solids, vol. 41, pp. 1119-1135, 1993.

[78] G. Alfano, On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models. Composite Science and Technology, vol. 66, pp. 723-730 , 2006.

[79] R. L. Ramkumar and W. J. D, Characterization of Mode I and Mixed Mode Delamination growth in t300/5208 Graphite/Epoxy. Delamination and Debonding of Materials ASTM STP 876, pp. 315-335, 1985.

136

[80] X. J. Gong and M. L. Benzeggah, Determination of the Mixed Mode Delamination Toughness Using an Imposed Displacement Cantilever Beam Test Method. ECCM 5, Bordeaux, 1992. [81] J. C. Brewer, Quadratic Stress Criterion for Initiation of Delamination. Journal of Composite

137

CONCEPTION STRUCTURELLE D’UN CARENAGE

D’HYDROLIENNE

Table des matières

5.1 INTRODUCTION ... 138 5.2 PROJECTION DES CHARGEMENTS ET FIXATION DE LA TURBINE ... 138 5.2.1 Transfert des pressions ... 138 Interpolation spatiale ... 141 5.2.2 Conditions aux limites (fixation du carénage) ... 145 5.3 CONCEPTION D’UN CARENAGE D’HYDROLIENNE EN COMPOSITE ... 146 5.3.1 Matériaux utilisés dans la modélisation ... 147 5.3.2 Modélisation du plan de stratification de la tuyère ... 148 5.3.3 Détermination de la stratification adéquate ... 149 5.3.4 Convergence du maillage ... 150 5.3.5 Influence de la géométrie ... 151 5.4 COMPARAISON DES GEOMETRIES DE CARENAGE ... 152 5.5 ETUDE D’UNE GEOMETRIE OPTIMALE ... 157 5.5.1 Paramètres d’optimisation ... 157 5.5.2 Géométrie optimale de longeron ... 158 5.5.3 Optimisation des épaisseurs ... 167 5.5 CONCLUSION ... 172 Bibliographie ... 173

Les objectifs de puissance justifient l’intérêt considérable porté à l’égard des hydroliennes.

Ceci implique des structures de grandes dimensions. Le besoin d’alléger les hydroliennes

devient cependant primordial. L’allégement est principalement dû aux coûts de transport,

d’acheminement au site marin et de maintenance. C’est ici que les composites donnent de

véritables atouts.

Les matériaux composites jouent un rôle essentiel dans le développement des systèmes de

conversion d’énergie marine renouvelable. Compte tenu de l’environnement marin sévère, les

matériaux composites présentent d’excellentes propriétés, ils constituent donc un choix

indéniable. Ces matériaux étant généralement utilisés pour la conception des pales, nous nous

sommes interrogés ici sur leur possible application aux systèmes de carénage.

A ce jour, les pales équipant les hydroliennes de la classe des mégawatts sont le plus souvent