• Aucun résultat trouvé

CHAPITRE I : Contexte scientifique et motivations

I.5. Question scientifique, objectifs de la thèse et démarche adoptée

La question scientifique principale est la suivante : quelles sont les conséquences thermiques de la dynamique de subduction dans les domaines arrière-arcs ? Afin de répondre à cette question, nous focaliserons notre étude sur la partie orientale de l’Anatolie, plus précisément sur le Massif du Menderes. Ce massif a la particularité de présenter (i) de nombreux champs géothermaux actuels, qui définiront peut-être de futurs gisements métalliques, mais également (ii) des gisements épithermaux fossiles (connus dans la littérature et observés sur le terrain), (iii) une histoire tectono-métamorphique complexe (épisode de haute-pression et de haute-température) suggérant des rééquilibrages thermiques rapides et

importants à l’échelle de la subduction. Il s’agira en particulier de comprendre l’évolution spatio-temporelle du régime thermique de la lithosphère anatolienne entre 50 Ma et aujourd’hui en s’appuyant sur une approche globale multidisciplinaire basée sur la géologie, la géophysique, la thermicité, la géochimie et la modélisation, de la zone de subduction à la province géothermale. Pour tracer l’histoire d’une anomalie thermique de grande longueur trouvant sa source très probablement dans le manteau, il est en effet nécessaire de travailler sur des constantes de temps suffisantes, en l’occurrence plusieurs dizaines de millions d’années.

Dans le détail, l’exploitation de l’ensemble des données et des reconstructions cinématiques issues de la littérature obtenus lors de ces années, devrait mener à un modèle génétique. Ce dernier pourra être testé par des simulations numériques (3D et 2D), examinant d’une part le comportement thermique et mécanique de la lithosphère, et s’intéressant d’autre part aux circulations hydrothermales dans la croûte supérieure. Ainsi, de nouvelles contraintes sur les mécanismes de production et de transfert de chaleur dans les zones de subductions à différentes échelles seront discutées.

Une autre question également essentielle sera abordée : quelle est la géométrie (i.e. tuyauterie) du système (circulation de la chaleur par conduction puis des fluides chauds par convection) entre le manteau et les expressions de surface ? Cette deuxième question importante traitera des circulations des fluides chauds jusqu’à la surface compte tenu d’une anomalie thermique régionale en profondeur. Il s’agira notamment de positionner en profondeur cette dernière et d’identifier les drains crustaux principaux permettant la mise en place des systèmes géothermaux actuels. En ce sens, il faudra précisément établir le rôle de ces drains dans l’alimentation du réservoir où les circulations de fluides permettent l’homogénéisation de la température sur plusieurs dizaines voire centaines de mètres.

La finalité d’une telle étude pourrait s’appliquer à d’autres zones de subduction dans le monde (e.g. la zone de subduction des Cascades aux Etats-Unis et son arrière-arc) afin d’une part d’améliorer l’exploration géothermale spécifique aux systèmes amagmatiques en développant de nouveaux modèles conceptuels spécifiques, et d’autres part utiliser les données géothermales disponibles sur une région précise afin de mieux contraindre l’évolution thermique de cette zone de subduction.

I.6. Références

Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S., & Savaşçin, M. Y. (2007). The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. Geological Society of America Special Papers, 418, 1-15.

Altherr, R., & Siebel, W. (2002). I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4), 397-415.

Alvarez, W. (1982). Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics. Journal of Geophysical Research: Solid Earth, 87(B8), 6697-6710.

Andritsos, N., Dalambakis, P., Arvanitis, A., Papachristou, M., & Fytikas, M. (2015). Geothermal developments in Greece–Country update 2010-2014. In Proceedings World Geothermal Congress 2015 (pp. 19-24). Annen, C. (2009). From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic

magma in the upper crust. Earth and Planetary Science Letters, 284(3), 409-416.

Arcay, D., Tric, E., & Doin, M. P. (2007). Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes. Earth and Planetary Science Letters, 255(3), 324-338.

Aydın, İ., Karat, H. İ., & Koçak, A. (2005). Curie-point depth map of Turkey. Geophysical Journal International, 162(2), 633-640.

Baba, A. (2015). Application of geothermal energy and its environmental problems in Turkey. International Journal of Global Environmental Issues, 14(3-4), 321-331.

Bal, J. L., & Chabot, B. (2001). Les énergies renouvelables. État de l’art et perspectives de développement. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 333(12), 827-834. Baldi, P., Bertini, G., Cameli, G. M., Decandia, F. A., Dini, I., Lazzarotto, A., & Liotta, D. (1994). Tettonica

distensiva post-collisionale nell’area geotermica di Larderello (Toscana meridionale). Stud. Geol. Camerti, 1, 183-193.

Barazangi, M., & Isacks, B. L. (1976). Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology, 4(11), 686-692.

Becker, T. W., Lebedev, S., & Long, M. D. (2012). On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. Journal of Geophysical Research: Solid Earth, 117(B1). Benderitter, Y., & Cormy, G. (1990). Possible approach to geothermal research and relative costs. Small

geothermal resources: A guide to development and utilization, UNITAR, New York, 59-69.

Benoit, D. (1999). Conceptual models of the Dixie Valley, Nevada geothermal field. Transactions-Geothermal Resources Council, 505-512.

Bense, V. F., & Person, M. A. (2006). Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources Research, 42(5).

Bernabini, M., Bertini, G., Cameli, G. M., Dini, I., & Orlando, L. (1995). Gravity interpretation of Mt. Amiata geothermal area (Central Italy). In Proceedings of the World Geothermal Congress (pp. 859-862). Bertani, R. (2015). Deep geothermal energy for heating and cooling. Renewable Heating and Cooling:

Technologies and Applications, 67.

Bertrand, G., Guillou-Frottier, L., & Loiselet, C. (2014). Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: Insights from a paleotectonic approach. Ore Geology Reviews, 60, 174-190.

Berza, T., Constantinescu, E., & VLAD, S. N. (1998). Upper Cretaceous magmatic series and associated mineralisation in the Carpathian–Balkan Orogen. Resource Geology, 48(4), 291-306.

Bijwaard, H. (1999). Seismic travel-time tomography for detailed global mantle structure. Faculteit Aardwetenschappen.

Bilim, F., Akay, T., Aydemir, A., & Kosaroglu, S. (2016). Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics, 60, 44-57.

Biryol, C. B., Zandt, G., Beck, S. L., Ozacar, A. A., Adiyaman, H. E., & Gans, C. R. (2010). Shear wave splitting along a nascent plate boundary: the North Anatolian Fault Zone. Geophysical Journal International, 181(3), 1201-1213.

Biryol, B.C., Beck, S. L., Zandt, G., & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysical Journal International, 184(3), 1037-1057.

Blackwell, D. D., Golan, B., & Benoit, D. (2000). Thermal regime in the Dixie Valley geothermal system. Geothermal Resources Council Transactions, 24, 223-228.

Bolhar, R., Ring, U., & Allen, C. M. (2010). An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology. Contributions to Mineralogy and Petrology, 160(5), 719-742.

Bonev, N., Burg, J. P., & Ivanov, Z. (2006). Mesozoic–Tertiary structural evolution of an extensional gneiss dome—the Kesebir–Kardamos dome, eastern Rhodope (Bulgaria–Greece). International Journal of Earth Sciences, 95(2), 318-340.

Bonev, N., Ovtcharova-Schaltegger, M., Moritz, R., Marchev, P., & Ulianov, A. (2013). Peri-Gondwanan Ordovician crustal fragments in the high-grade basement of the Eastern Rhodope Massif, Bulgaria: evidence from U-Pb LA-ICP-MS zircon geochronology and geochemistry. Geodinamica Acta, 26(3-4), 207-229.

Bonneau, M., & Kienast, J. R. (1982). Subduction, collision et schistes bleus; l9exemple de l9Egee (Grece). Bulletin de la Société geologique de France, 7(4), 785-791.

Bonté, D., Guillou-Frottier, L., Garibaldi, C., Bourgine, B., Lopez, S., Bouchot, V., Lucazeau, F. (2010). Subsurface temperature maps in French sedimentary basins : new data compilation and interpolation. Bulletin de la Société Géologique de France 181, 377-390

Bouchot, V., & Genter, A. (2009). Exploration guides for active high-temperature geothermal systems as modern analogs for paleo-epithermal systems. Geothermal Resources Council Transactions, 33, 447-453.

Boutelier, D., Chemenda, A., & Burg, J. P. (2003). Subduction versus accretion of intra-oceanic volcanic arcs: insight from thermo-mechanical analogue experiments. Earth and Planetary Science Letters, 212(1), 31-45.

Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica acta, 14(1-3), 3-30.

Bozkurt, E., & Oberhänsli, R. (2001). Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution-a synthesis. International Journal of Earth Sciences, 89(4), 679-708.

Brun, J. P., & Cobbold, P. R. (1980). Strain heating and thermal softening in continental shear zones: a review. Journal of Structural Geology, 2(1-2), 149-158.

Brun, J. P., & Sokoutis, D. (2007). Kinematics of the southern Rhodope core complex (North Greece). International Journal of Earth Sciences, 96(6), 1079-1099.

Brun, J. P., & Faccenna, C. (2008). Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Science Letters, 272(1), 1-7.

Brun, J. P., & Sokoutis, D. (2010). 45 my of Aegean crust and mantle flow driven by trench retreat. Geology, 38(9), 815-818.

Buiter, S. J., Govers, R., & Wortel, M. J. R. (2002). Two-dimensional simulations of surface deformation caused by slab detachment. Tectonophysics, 354(3), 195-210.

Bülbül, A., Özen, T., Tarcan, G. (2011). Hydrogeochemical and hydrogeological investigations of thermal waters in the Alasehir-Kavaklidere area (Manisa-Turkey). Afr. J. Biotechnol. 10, 17223–17240.

Byrdina, S., Ramos, D., Vandemeulebrouck, J., Masias, P., Revil, A., Finizola, A., ... & Macedo, O. (2013). Influence of the regional topography on the remote emplacement of hydrothermal systems with examples of Ticsani and Ubinas volcanoes, Southern Peru. Earth and Planetary Science Letters, 365, 152-164. Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology,

24(11), 1025-1028.

Candela, P. A., & P. M. Piccoli (2005), Magmatic processes in the development of porphyry-type ore systems, Econ. Geol., 100th Anniversary Volume, 25–37.

Cannell, J., Cooke, D. R., Walshe, J. L., & Stein, H. (2005). Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu-Mo deposit. Economic Geology, 100(5), 979-1003.

Caskey, S. J., & Wesnousky, S. G. (2000). Active faulting and stress redistributions in Dixie Valley, Beowawe, and Bradys geothermal fields: Implications for geothermal exploration in the Basin and Range: 25th workshop on Geothermal Reservoir Engineering. In Proceedings, 25th Workshop on Geothermal Reservoir Engineering (pp. 24-26).

Čermák, V., & Haenel, R. (1988). Geothermal maps. In Handbook of Terrestrial Heat-Flow Density Determination (pp. 261-300). Springer Netherlands.

Clark, C., Fitzsimons, I. C., Healy, D., & Harley, S. L. (2011). How does the continental crust get really hot?. Elements, 7(4), 235-240.

Colvine, A. C. (1988). Archean lode gold deposits in Ontario (Vol. 139). Ontario Ministry of Northern Development and Mines.

Conrad, C. P., & Behn, M. D. (2010). Constraints on lithosphere net rotation and asthenospheric viscosity from global mantle flow models and seismic anisotropy. Geochemistry, Geophysics, Geosystems, 11(5). Crittenden, M. D., Coney, P. J., Davis, G. H., & Davis, G. H. (Eds.). (1980). Cordilleran metamorphic core

complexes (Vol. 153). Geological Society of America.

Cumming, W. (2009). Geothermal resource conceptual models using surface exploration data. In Proceedings. Currie, C. A., & Hyndman, R. D. (2006). The thermal structure of subduction zone back arcs. Journal of

Geophysical Research: Solid Earth, 111(B8).

Dalrymple, G. B., Grove, M., Lovera, O. M., Harrison, T. M., Hulen, J. B., & Lanphere, M. A. (1999). Age and thermal history of the Geysers plutonic complex (felsite unit), Geysers geothermal field, California: a 40 Ar/39 Ar and U–Pb study. Earth and Planetary Science Letters, 173(3), 285-298.

Davis, G. H., & Coney, P. J. (1979). Geologic development of the Cordilleran metamorphic core complexes. Geology, 7(3), 120-124.

Davies, J. H., & von Blanckenburg, F. (1995). Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129(1-4), 85-102. De Boorder, H., Spakman, W., White, S. H., & Wortel, M. J. R. (1998). Late Cenozoic mineralization, orogenic collapse and slab detachment in the European Alpine Belt. Earth and Planetary Science Letters, 164(3), 569-575.

Deal, M. M., & Nolet, G. (1999). Slab temperature and thickness from seismic tomography: 2. Izu‐Bonin, Japan, and Kuril subduction zones. Journal of Geophysical Research: Solid Earth, 104(B12), 28803-28812. Delph, J. R., Zandt, G., & Beck, S. L. (2015). A new approach to obtaining a 3D shear wave velocity model of

the crust and upper mantle: An application to eastern Turkey. Tectonophysics, 665, 92-100.

Deon, F., Moeck, I., Sheytt, T., & Jaya, M. S. (2012). Preliminary assessment of the geothermal system of the Tiris volcanic area, East Java, Indonesia. In 74th EAGE Conference and Exhibition incorporating EUROPEC 2012.

Dewey, J.F., (1980). Episodicity, sequence and style at convergent plate boundaries. In: D., Strangway, (Ed.). The Continental Crust and Its Mineral Deposits. Geol. Assoc. Can., Spec. Pap. 20, pp.553–573.

Dickson, M. H., & Fanelli, M. (2013). Geothermal energy: utilization and technology. Routledge.

Dilek, Y., & Altunkaynak, Ş. (2009). Geochemical and temporal evolution of Cenozoic magmatism in western Turkey: mantle response to collision, slab break-off, and lithospheric tearing in an orogenic belt. Geological Society, London, Special Publications, 311(1), 213-233.

Dini, A., Gianelli, G., Puxeddu, M., & Ruggieri, G. (2005). Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos, 81(1), 1-31.

Doglioni, C. (1993). Some remarks on the origin of foredeeps. Tectonophysics, 228(1-2), 1-20.

Duprat-Oualid, S., Yamato, P., & Pitra, P. (2013). Major role of shear heating in intracontinental inverted metamorphism: Inference from a thermo-kinematic parametric study. Tectonophysics, 608, 812-831. Elders, W. A., Friðleifsson, G. Ó., & Albertsson, A. (2014). Drilling into magma and the implications of the

Iceland Deep Drilling Project (IDDP) for high-temperature geothermal systems worldwide. Geothermics, 49, 111-118.

Erkan, K. (2014). Crustal heat flow measurements in western Anatolia from borehole equilibrium temperatures. Solid Earth Disc, 6(1), 403-426.

Erkan, K. (2015). Geothermal investigations in western Anatolia using equilibrium temperatures from shallow boreholes. Solid Earth, 6(1), 103.

Ersoy, E. Y., & Palmer, M. R. (2013). Eocene-Quaternary magmatic activity in the Aegean: implications for mantle metasomatism and magma genesis in an evolving orogeny. Lithos, 180, 5-24.

Faccenna, C., Mattei, M., Funiciello, R., & Jolivet, L. (1997). Styles of back‐arc extension in the central Mediterranean. Terra Nova, 9(3), 126-130.

Faccenna, C., Funiciello, F., Giardini, D., & Lucente, P. (2001a). Episodic back-arc extension during restricted mantle convection in the Central Mediterranean. Earth and Planetary Science Letters, 187(1), 105-116. Faccenna, C., Becker, T. W., Lucente, F. P., Jolivet, L., & Rossetti, F. (2001b). History of subduction and back

arc extension in the Central Mediterranean. Geophysical Journal International, 145(3), 809-820.

Faccenna, C., Becker, T. W., Lallemand, S., & Steinberger, B. (2012). On the role of slab pull in the Cenozoic motion of the Pacific plate. Geophysical Research Letters, 39(3).

Faccenna, C., Becker, T. W., Jolivet, L., & Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth and Planetary Science Letters, 375, 254-269.

Famin, V., Philippot, P., Jolivet, L., & Agard, P. (2004). Evolution of hydrothermal regime along a crustal shear zone, Tinos Island, Greece. Tectonics, 23(5).

Faulds, J. E., Bouchot, V., Moeck, I., & Oguz, K. (2009). Structural controls on geothermal systems in western Turkey: a preliminary report. Geothermal Resources Council Transactions, 33, 375-382

Faulds, J. E., Hinz, N., Kreemer, C., & Coolbaugh, M. (2012). Regional patterns of geothermal activity in the Great Basin Region, Western USA: correlation with strain rates. Geothermal Resources Council Transactions, 36, 897-902.

Filiz, S., Tarcan, G., & Gemici, U. (2000). Geochemistry of the Germencik geothermal fields, Turkey. In Proceedings of WGC-2000 World Geothermal Congress (Vol. 28, pp. 1115-1120).

Finetti, I. R. (2006). Basic regional crustal setting and superimposed local pluton-intrusion-related tectonics in the Larderello-M. Amiata geothermal province, from integrated CROP seismic data. Bollettino della Società geologica italiana, 125(1), 117-146.

Fleitout, L., & Froidevaux, C. (1980). Thermal and mechanical evolution of shear zones. Journal of Structural Geology, 2(1-2), 159-164.

Fukao, Y., Widiyantoro, S., & Obayashi, M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291-323.

Funiciello, F., Faccenna, C., Giardini, D., & Regenauer‐Lieb, K. (2003). Dynamics of retreating slabs: 2. Insights from three‐dimensional laboratory experiments. Journal of Geophysical Research: Solid Earth, 108(B4). Funiciello, F., Moroni, M., Piromallo, C., Faccenna, C., Cenedese, A., & Bui, H. A. (2006). Mapping mantle flow

during retreating subduction: Laboratory models analyzed by feature tracking. Journal of Geophysical Research: Solid Earth, 111(B3).

Garfunkel, Z., Anderson, C. A., & Schubert, G. (1986). Mantle circulation and the lateral migration of subducted slabs. Journal of Geophysical Research: Solid Earth, 91(B7), 7205-7223.

Gautier, P., Brun, J. P., & Jolivet, L. (1993). Structure and kinematics of upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece). Tectonics, 12(5), 1180-1194.

Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U., & Thomson, S. N. (2013). What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana Research, 24(1), 243-274.

Gianelli, G., Manzella, A., & Puxeddu, M. (1997). Crustal models of the geothermal areas of southern Tuscany (Italy). Tectonophysics, 281(3-4), 221-239.

Gill, J. B. (1981), Orogenic andesites and plate tectonics, Minerals and rocks 16, Springer-Verlag, Berlin ; New York.

Gloaguen, E. (2006). Apports d’une étude intégrée sur les relations entre granites et minéralisations filoniennes (Au et Sn-W) en contexte tardiorogénique (Chaîne Hercynienne, Galice centrale, Espagne) (Doctoral dissertation, Université d’Orléans).

Goldfarb, R. J., Groves, D. I., & Gardoll, S. (2001). Orogenic gold and geologic time: a global synthesis. Ore geology reviews, 18(1), 1-75.

Goldfarb, R., Baker, T., Dube, B., Groves, D. I., Hart, C. J., & Gosselin, P. (2005). Distribution, character and genesis of gold deposits in metamorphic terranes. Society of Economic Geologists.

Gottardi, R., Teyssier, C., Mulch, A., Vennemann, T. W., & Wells, M. L. (2011). Preservation of an extreme transient geotherm in the Raft River detachment shear zone. Geology, 39(8), 759-762.

Govers, R., & Wortel, M. J. R. (2005). Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth and Planetary Science Letters, 236(1), 505-523.

Govers, R., & Fichtner, A. (2016). Signature of slab fragmentation beneath Anatolia from full-waveform tomography. Earth and Planetary Science Letters, 450, 10-19.

Groves, D. I., & Bierlein, F. P. (2007). Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164(1), 19-30.

Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., & Robert, F. (1998). Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore geology reviews, 13(1), 7-27.

Groves, D. I., Goldfarb, R. J., Robert, F., & Hart, C. J. (2003). Gold deposits in metamorphic belts: overview of current understanding, outstanding problems, future research, and exploration significance. Economic geology, 98(1), 1-29.

Groves, D. I., Condie, K. C., Goldfarb, R. J., Hronsky, J. M., & Vielreicher, R. M. (2005). 100th Anniversary Special Paper: secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100(2), 203-224.

Guillou-Frottier, L., Buttles, J., & Olson, P. (1995). Laboratory experiments on the structure of subducted lithosphere. Earth and Planetary Science Letters, 133(1-2), 19-34.

Haizlip, J. R., Haklidir, F. T., & Garg, S. K. (2013). Comparison of reservoir conditions in high noncondensible gas geothermal systems. In Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering, Stanford University.

Haklidir, M., & Haklidir, F. T. (2015). Fuzzy control of calcium carbonate and silica scales in geothermal systems. In Proceedings World Geothermal Congress.

Harangi, S., Downes, H., & Seghedi, I. (2006). Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. Geological Society, London, Memoirs, 32(1), 167-190.

Hawkesworth, C., Turner, S., Gallagher, K., Hunter, A., Bradshaw, T., & Rogers, N. (1995). Calc‐alkaline magmatism, lithospheric thinning and extension in the Basin and Range. Journal of Geophysical Research: Solid Earth, 100(B6), 10271-10286.

Hedenquist, J. W., & Lowenstern, J. B. (1994). The role of magmas in the formation of hydrothermal ore deposits. Nature, 370(6490), 519-527.

Heinrich, C. A., & Neubauer, F. (2002). Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan–Carpathian– Dinaride geodynamic province.

Herzberg, C. T., Fyfe, W. S., & Carr, M. J. (1983). Density constraints on the formation of the continental Moho and crust. Contributions to Mineralogy and Petrology, 84(1), 1-5.

Heuret, A. (2005). Dynamique des zones de subduction: étude statistique globale et approche analogique (Doctoral dissertation, Université Montpellier II-Sciences et Techniques du Languedoc).

Heuret, A., & Lallemand, S. (2005). Plate motions, slab dynamics and back-arc deformation. Physics of the Earth and Planetary Interiors, 149(1), 31-51.

Hildreth, W., & Moorbath, S. (1988). Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to mineralogy and petrology, 98(4), 455-489.

Hochstein, M. P. (1988). Assessment and modelling of geothermal reservoirs (small utilization schemes). Geothermics, 17(1), 15-49.

Hulen, J. B., & Nielson, D. L. (1996). The Geysers felsite (No. CONF-960913--). Geothermal Resources Council, Davis, CA (United States).

Hyndman, R. D., Currie, C. A., & Mazzotti, S. P. (2005). Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today, 15(2), 4-10.

Jadamec, M. A., & Billen, M. I. (2010). Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. Nature, 465(7296), 338.

Janković, S. (1997). The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32(5), 426-433.

Jarrard, R. D. (1986). Relations among subduction parameters. Reviews of Geophysics, 24(2), 217-284.

Jiang, Y. H., Jiang, S. Y., Ling, H. F., & Dai, B. Z. (2006). Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd– Pb–Hf isotopic constraints. Earth and Planetary Science Letters, 241(3), 617-633.

Johnson, R. W., & Arculus, R. J. (1978). Volcanic rocks of the Witu Islands, Papua New Guinea: The origin of magmas above the deepest part of the New Britain Benioff zone. Bulletin of Volcanology, 41(4), 609-655. Jolivet, L., & Brun, J. P. (2010). Cenozoic geodynamic evolution of the Aegean. International Journal of Earth

Sciences, 99(1), 109-138.

Jolivet, L., Daniel, J. M., Truffert, C., & Goffé, B. (1994). Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions. Lithos, 33(1-3), 3-30.

Jolivet, L., Maluski, H., Beyssac, O., Goffé, B., Lepvrier, C., Thi, P. T., & Van Vuong, N. (1999). Oligocene-Miocene Bu Khang extensional gneiss dome in Vietnam: geodynamic implications. Geology, 27(1), 67-70.

Jolivet, L., Faccenna, C., Goffé, B., Burov, E., & Agard, P. (2003). Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. American Journal of Science, 303(5), 353-409. Jolivet, L., Famin, V., Mehl, C., Parra, T., Aubourg, C., Hébert, R., & Philippot, P. (2004). Strain localization during crustal-scale boudinage to form extensional metamorphic domes in the Aegean Sea. Geological Society of America Special Papers, 380, 185-210.

Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., ... & Philippon, M. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33.

Jolivet, L., Faccenna, C., Agard, P., Frizon de Lamotte, D., Menant, A., Sternai, P., & Guillocheau, F. (2015). Neo-Tethys geodynamics and mantle convection: from extension to compression in Africa and a conceptual model for obduction. Canadian journal of earth sciences, 53(11), 1190-1204.

Jolivet, L., Menant, A., Clerc, C., Sternai, P., Ringenbach, J-C., … & Gorini, C. (submitted). Extensional crustal tectonics and crust-mantle coupling, a view from the geological record.

Jordán, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A., & Ando, C. J. (1983). Andean tectonics related to geometry of subducted Nazca plate. Geological Society of America Bulletin, 94(3), 341-361.

Karabulut, H., Paul, A., Afacan Ergün, T., Hatzfeld, D., Childs, D. M., & Aktar, M. (2013). Long-wavelength undulations of the seismic Moho beneath the strongly stretched Western Anatolia. Geophysical Journal International, 194(1), 450-464.

Karamanderesi, İ. H., & Helvaci, C. (2003). Geology and hydrothermal alteration of the Aydın-Salavatlı geothermal field, western Anatolia, Turkey. Turkish Journal of Earth Sciences, 12(2), 175-198.

Kaya, A. (2015). The effects of extensional structures on the heat transport mechanism: An example from the Ortakçı geothermal field (Büyük Menderes Graben, SW Turkey). Journal of African Earth Sciences, 108, 74-88.

Kellogg, L. H., Hager, B. H., & van der Hilst, R. D. (1999). Compositional stratification in the deep mantle. Science, 283(5409), 1881-1884.

Kennedy, B. M., & Van Soest, M. C. (2005). Regional and Local Trends in helium isotopes, basin and range province, western North America: Evidence for deep permeable pathways. Lawrence Berkeley National Laboratory.

Kennedy, B. M., & van Soest, M. C. (2006). A helium isotope perspective on the Dixie Valley, Nevada, hydrothermal system. Geothermics, 35(1), 26-43.

Kennedy, B. M., Fischer, T. P., & Shuster, D. L. (2000). Heat and helium in geothermal systems. In a Proceedings of the Twenty-fifth Workshop on Geothermal Reservoir Engineering (pp. 167-173).

Documents relatifs