• Aucun résultat trouvé

Les propriétés physiques du sol et

Dans le document Disponible à / Available at permalink : (Page 45-145)

La plupart des méthodes utilisées pour la bioremédiation des sols contaminés consistent en une stimulation de l’activité des bactéries endogènes par l’optimisation des conditions environnementales dans lesquelles les organismes peuvent réaliser les réactions de décomposition ou la détoxification des polluants. L’addition des nutriments, l’optimisation du pH, l’humidité et la température accélèrent les réactions de biodégradation (Bollag and Bollag 1995).

La biodégradation des hydrocarbures dans le sol est influencée par la texture du sol (Sond et al.), l’humidité, les nutriments, la température (Dibble & Bartha 1979) et la salinité (Haines et al. 1994). La texture du sol est proportionnelle à la quantité de sable, de limon et d’argile, les propriétés texturales du sol influencent, la surface d’adsorption, la distribution des pores, le mouvement de l’eau et de l’air et la rétention.

concentrations tolérables par la microflore et optimiser la texture du sol pour une bonne circulation de l’eau et d’oxygène. La bioremédiation est accélérée par la protection du sol contre la saturation en eau et la compactation, ceci afin de maintenir des conditions aérobies.

III. les approches de la bioremédation

La bioremédiation est définie par Madsen (1991) comme «un processus aménagé ou spontané dont lequel les catalyses biologiques, principalement microbienne agissent sur les composés polluant, de ce fait ils remédient ou éliminent le contaminant de l'environnement. » Il y a deux types d’approches utilisées en bioremédiation : l’approche microbiologique et l’approche d’écologie microbienne. L’approche microbiologique consiste en l’ajout aux environnements pollués des micro-organismes qui était conditionnés à dégrader le polluant cible. Généralement ces micro-organismes ont été isolés à partir d’environnements anciennement contaminés.

Dans l’approche dite d’écologie microbienne, l’environnement des micro-organismes endogènes est altéré pour l’optimisation de la biodégradation des polluants.

IV. Rôle de la biologie moléculaire dans l’évaluation de la bioremédiation

L’isolement et l’énumération des bactéries capable de dégrader les polluants à partir d’un sol contaminé constituent un critère dans l’aménagement de la bioremédiation. Les méthodes basées sur la culture sous-estiment généralement la population microbienne qualitativement et quantitativement par plusieurs ordres de grandeurs. Donc il est essentiel de développer et d’appliquer des méthodes de biologie moléculaire pour l’étude de l’écologie et la diversité des micro-organismes dans la nature (cf Chap.2). Une meilleure connaissance de l’écologie microbienne est sans doute requise pour une meilleure gestion de la bioremédiation.

Abeliovich, A. 1987. Nitrifying bacteria in wastewater réservoirs. Appl. Environ. Microbiol. 53 :754-760.

Alexander, M., F. E. Clark. 1965. Nitrifying bacteria, p. 1477-1486. In C. A. Black (ed.),

Methods of Soil Analysis, vol. 9. American Society of Agronomy, Madison. Wis.

Alexander, M.1977. introduction to soil microbiology. ed. John Wiley & Sons, New Yor’k. 467 pp.

Alm, E. W., and D. A. Stahl. 1996. Extraction of DNA ffom aquatic sédiment. In Molecular Microbial Ecology Manual. Akkermans et al. Eds., Kluwer, Dordrecht, The Netherlands, pp.

1-19.

Allison, S. M., and J. I. Presser. 1991. Urease activity in neutrophilie autotrophic ammonia- oxidizing bacteria isolated ffom acid soils. Soil Biol. Biochem. 23: 45-51.

Amann, R. I., W. Ludwig, and K. H. Scheidler. 1995. Phylogenetic identification and in situ détection of individual microbial cellswithout cultivation. Microbiol. Rev.59: 143-169.

Anderson, I. C., and J. S. Levine. 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers. Appl. Environ. Microbiol. 51 : 938-945.

Anderson, K. K. and A. B. Hooper. 1983. O2 and H2O are each the source of one O of

HNO2 produced ffom NH3 by Nitrosomonas, ^^N-NMR evidence. FEBS Lett. 164 :236-240.

Arciero D. M., M. Collins, J. Haladjian, P. Bianco, and A. B. Hooper. 1991 Resolution of the four hemes of cytochrome c554 ffom Nitrosomonas europeae by redox potentiometry and optical spectroscopy. Biochem. 30 :11459-11465.

Arciero D. M., and A. B. Hooper. 1994. A di-heme cytochrome c peroxidase ffom

Nitrosomonas europaea catalytically active in both the oxidized and half-reduced States. J. Biol. Chem. 269:11878-11886.

Atlas, R- M. 1981. Microbial dégradation of petroleum hydrocarbons : an environmental perspective. Microbiol. Rev. 45 : 180-209.

Atlas, R. M., and R. Bartha. 1987. Microbial Ecology : Fundamentals and Applications. Benjamin/Cummings, Redwood City, CA.

Aulakh, M. S., D. A. Rennie, and E. A. Paul. 1984. Acetylene and N-serve hâve efFects upon N2O émissions from NFLt* and N03' treated soils under aérobic and anaérobie conditions. Soil Biol. Biochem. 16: 351-356.

B

Bakken, L. R-, 1985. Séparation and purification of soil bacteria by density gradient centrifugation. Appl. Environ. Microbiol. 49 :1482-1487.

Banc, J., J. M. Audic, and G. M. Faup. 1986. Enhancement of Nitrobacter activity by heterotrophic bacteria. WaterRes. 20 : 1375-1381.

Bedard, C. and R- Knowles. 1989. Physiology, biochemistry, and spécifie inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68-84.

Belser, L. W. 1979. Population ecology of nitrifying bacteria. Ann. Rev. Microbiol. 33 :309- 333.

Belser, L. W., and E. L. Schmidt 1978. Diversity in the ammonia oxidizing nitrifiers population of soil. Appl. Environ. Microbiol. 36 :584-588.

Belser, L. W., and E. L. Schmidt 1981. Inhibitory effect of nitrapyrin on three généra of ammonia oxidizing nitrifiers. Appl. Environ. Microbiol. 41: 819-821.

Berben, G. 1996. Nitrobacter wonogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster. Antonie van leeuwenhoek. 69 :305-315.

Bergmann, D., and A. B. Hooper. 1994. Primary structure of cytochrome P-460 of

cluster of Nitrosomonas europaea : genes for two tetraheme cytochrome. J. Bacteriol. 176 : 3148-3153.

Berlier, Y., B. Dabin, and N. Leneuf. 1956. Comparaison physique, chimique et microbiologique entre les sols de foret et de savanne sur les sables tertiaires de la Basse Côte

d’ivoire, p. 499-502. In M. Lemoigne and M. G Bertrand (ed.). Transactions of the ô**'

International Congress on Soil Science. Ch. Bernard, Paris.

Berry, D. F., A. J. Francis, and J.-M. Bollag. 1987. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaérobie conditions. Microbiol. Rev. 51 : 43-59.

Bhuiya, Z. H., and N. Walker. 1977. Autotrophic nitrifying bacteria in acid soils ffom Bangladesh and Sri Lanka. J. Appl. Bacteriol. 42: 253-257.

Blanc, J., J. M. Audic, and G. M. Faup. 1986. Enhancement of Nitrobacter activity by

heterotrophic bacteria. WaterRes. 20:1375-1381.

Bock, E., and H. P. Koops. 1991. The genus Nitrobacter and related généra, p. 2302-2309. In A. Balows, H. G. Trûper, M. D-workin, W. Harder, and K. H. Schleifer (ed.), The procaryotes, 2"“* ed. Springer-Verlag, New York.

Bock, E., H. P. Koops, B. Ahiers, and H. Harms. 1991. Oxidation of inorganic compounds as energy souce. In : : A. Balows, H. G. Trüper, M. Dworkin, W. Harder, and K-H. Schleifer (ed.) The prokaryotes, 2"*^ ed. p.414-430. Springer-Verlag, New York.

Boliag, J. M. and W. B. Bollag. 1995. Soil contamination and the feasibility of biological remediation. Bioremediation ; Science and Application (H. D. Skipper, and R. F. Turco, eds.), Soil Science Society of America, Spécial Puplication No. 43, Madison, WI, p. 1.

Borresen, A. L., E. Hovig, and A. Brogger. 1988. Détection of base mutations in genomic DNA using dénaturing gradient gel electrophoresis (DGGE) followed by transfer and hybridization with gene-specific probes. Mutât. Res. 202: 77-83.

Brar, S . S., and J. Giddens. 1968. Inhibition of nitrification in Bladen grassland soil. Soil Sci. Soc. Am. Proc. 32: 821-823.

Bremner, J. M., A. M. Blackmer, and L. G. Bundy. 1978. Problems in use of nitrapyrin (N-serve) to inhibit nitrification in soils. Soil Biol. Biochem. 10: 441-442.

Bremner, J. M., and A. M. Blackmer. 1978. Nitrous oxide : émission from soils during nitrification of fertilizer nitrogen. Science 199 :295-296.

Bremner, J. M., and A. M. Blackmer. 1979. Effects of acetylene and soil water content on émission of nitrous oxide from soils. Nature (London) 280: 380-381

Brock, T. D., D. W. Smith, and M. T. Madigan. 1984. Biology of microorganisms, 4 th ed., Prentice-Hall, Inc., Englewood N. J. Cliffs.

Brunner, W. H., and D. D. Focht.1983. Persistence of polychlorinated biphenyls (PCB) in soils under aérobic and anaérobie conditions. In Abstr. Annu. Mtg. Am. Soc. Microbiol. P. 266.

Bundy, L. G. and J. M. Bremner. 1973. Inhibition of nitrification in soils. Soil Science Society of America Proceedings. 37: 396-398.

Burrows, K. J., A. Cornish, D. Scott and I. J. Higgins. 1984. Substrate specificities of the soluble and particulate methane mono-oxygenases of Methylosirms tricchosporium OB3b. J. Gen. Microbiol. 13:3327-3333.

c

Cariello, N. F., J. K. Scott, A. G. Kat, and W. G. Thilly. 1988 Resolution of a missense mutant in human genomic DNA by denaturing gradient gel electrophoresis and direct sequencing using in vitro DNA amplification: HPTR.Munich Am. J. Hum. Genet. 42: 726-734.

Casella, S., and W. J. Payne. 1996. Potential of denitrifiers for soil environment protection. FEMS Microbiol. Lett. 140(1) : 1-8.

Cerniglia, C. E. 1992. Biodégradation of polycyclic-aromatic hydrocarbons. Biodégradation 3 : 351-368.

Chandler, D. P., J. K. Fredrickson, adn F. J. Brockman. 1997. Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol. Ecol. 6:475-482.

Chaudhry, R. G., and S. Chapalamadugu. 1991. Biodégradation of halogenated organic compounds. Microbiol Rev. 55 : 59-79.

number” Biométries 6:105-106.

Commutée on In Situ Bioremediation. 1993. In Situ Bioremediation : When Does It Work ? National Academy Press, Washington, DC.

D

Dancer, W. S., L. A. Peterson, and G. Chesters. 1973. Ammonification and nitrification of N as influenced by soil pH and previous N treatments. Soil Sci. Soc. Am. Proc. 37: 67-69.

Dave, H., C. Ramakrishna, B. D. Bhatt, and J. D. Desai. 1994 Biodégradation of slop oil from a petrochemical industry and bioreclamation of slop oil contaminated soil. World J. Microbiol. Biotech. 10 : 653-656.

Delwiche, C. C., and M. S. Finstein. 1965. Carbon and energy sources for the nitrifying autotroph Nitrobacter. J. Bacteriol. 90 :102-107.

Dibble, J. T., and R Bartha. 1979. The effect of environmental parameters on the biodégradation of oil sludge. Appl. Environ. Microbiol. 37 : 729-739.

DiSpirito, A. A., J. D. Lipseomb, and A. B. Hooper 1986. Cytochrome aas ffom

Nitrosomonas Quro'pZQZ.. J. Boil. Chem. 261 :17048-17056.

DiSpirito, A. A., L. R Taaffe, J. D. Lipseomb, and A. B. Hooper. 1985 A « bleu » copper

oxidase Nitrosomonas europaea. Biochem. Biophys. Acta. 827 :320-326.

Drozd, J. S. 1980. Respiration in the ammonia oxidizing chemolithotrophic bacteria. In: Knowles CJ (Ed) Diversity of Bacterial Respiratory Systems. Vol. 2. (pp 81-111) CRC Press, Boca Raton. Fia.

E

Ensign, S. A., M. R. Hyman and D. J. Arp. 1993. In vitro activation of ammonia monooxygenase from M/ro5<3/woA7a5 eî/ropcrea by copper. J. Bacteriol. 175: 1971-1980.

Erb, R. W., and I. Wagner-Dôbler. 1993. Détection of polychlorinated biphenyl dégradation genes in polluted sédiments by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 59: 4065-4073.

Erickson, R. H., and A. B. Hooper. 1978. Preliminary characterization of a variant CO-

binding heme protein Nitrosomonas. Biochim. Biophys. Acta. 275 :231-244.

Evan, W. C., and G. Fuchs. 1988. Anaérobie dégradation of aromatic compounds. Annu. Rev. Microbiol. 42 : 289-317.

F

Faegri, A., V. L. TORSVTK, and J. Goksoyr.1977 Bacterial and flmgal activities in soil: séparation of bacteria and flingi by rapid ffactionated centrifugation technique. Soil Biol. Biochem. 9:105-112.

Farrelly, V., F. A. Rainey, E. Stackebrandt. 1995. Effect of genome size and rm gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl. Environ. Microbiol. 61: 2798-2801.

Fischer, S. G., and L. S. Lerman. 1983. DNA fragments differing by a single base pair substitutions are separated in denaturing gradient gels : correspondence with melting theory. Proc. Natl. Acad. Sci. USA 80: 1579-1583.

Foster, R C. 1988. Microenvironments of soil microorganisms. Biol. Fertil. Soils, 6:189- 203.

Fox, B. G., J. G. Borneman, L. P. Waekett, and J. D. Lipseomb. 1990. Haloalkane

oxidation by the soluble methane mono-oxygenases of Methylosinus tricchosporium OB3b:

mechanistic and environmental implication. Biochem. 29:6419-6427.

Frantz, B., T. Aldrich, and A. M. Chakrabarty. 1987. Microbial dégradation of synthetic récalcitrant compounds. Biotechnol. Adv. 5 : 85-99.

energetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH. Arch. Microbiol. 157: 194-199.

G

Gibson, D. T. 1984. Microbial dégradation of organic compounds. New York/ Marcel Dekker.

Goreau, T. J., W. A. Kaplan, S. C. wofsy, M. B. Mc Elroy, F. W. Valors, and S. W. Walson.1980. Production of NO2' and N2O by nitrifying bacteria at reduced concentration of oxygen. Appl. Environ. Microbiol. 40 :526-532.

Greenland, D. J. 1958. Nitrate fluctuation in tropical soils. J. Agric. Sci. 50: 82-92.

Green, J., and H. Dalton. 1989. Substrate specificity of soluble methane monooxygenase. Mechanistic implications. J. Biol. Chem. 264:17698-17703.

H

Haines, J. R-, M. Kadkhodayan, D. J. Mocsny, C. A. Jone, M. Islam, and A. D. Venosa. 1994. Effect of salinity, oil type, and incubation température on oil dégradation. Applied Biotechnology for Site Remediation (R. E. Hinchee, D. B. Anderson, F. B. Metting, Jr. -, and G. D. Sayles, eds.) Levis, Boca Raton, FL, pp. 75-83.

Hankinson, T. R, and E. L. Schmidt. 1984. Examination of an acid forest soil for ammonia- and nitrite-oxidizing autotrophic bacteria. Can. J. Microbiol. 30:1125-1132.

Hatori, T. 1988. Soil aggregates as microhabitats of microorganisms. Rep. Inst. Agr. Res. Tohoku Univ. 37:23-36

Healy, J. B., Jr., and L. Y. Young. 1979. Anaérobie biodégradation of eleven aromatic compounds to methane. Appl. Environ. Microbiol. 38 : 84-89.

Head, I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy, and J. R. Saunders. 1993. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNAgene sequences. J. Gen. Microbiol. 139: 1147-1153.

Hilger, A. B., and D. D. Myrold. 1991. Method for extraction of Frankia DNA from soil.

Agric. Ecosyst. Environ. 34:107-113.

Hockenbury, M. K., G. T. Daigger, A. M. ASCE, and C. P. L. Grady, Jr. 1977. Factors affecting nitrification. J. Environ. Eng. Div. AM. Soc. Civ. Eng. 103 : 9-19.

Holben, W. E., J. K. Jansson, B. K. Chelm, and J. M. Tiedje 1988 DNA probe method for détection of spécifie microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54:703-711.

Holmes, A. J., A Costello, M. E. Lidstrom, and J. C. Murrell. 1995 Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132: 23-28.

Hollocher T. C., M. E. Tate, and D. J. D. Nicholas. 1981. Oxidation of ammonia by

Nitrosomonas europaea : definitive ^*0-tracer evidence that hydroxylamine formation involves a monooxygenase. J. Biol. Chem. 256 ; 10834-10836.

Hooper A. B. 1968. A nitrite-reducing enzyme from Nitrosomonas europaea preliminary

characterization with hydroxylamine as électron donor. Biochim. Biophys. Acta. 122 :49-65.

Hooper A. B. 1989. Biochemistry of the nitrifying lithotrophic bacteria. In : H. G. Schlegel & B. Bowien (ed.) Autotrophic bacteria, p.239-265.. Science Tech Puplishers, Madison, Wisconsin.

Hooper, A. B., T. Vannelli, D. J. Bergmann, and D. A. Arciero. 1997. Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuvenhock. 71 :59-67.

Hooper, A.B., and K. R. Terry. 1977. Hydroxylamine oxidoreductase of Nitrosomonas.

inactivation by hydrogen peroxide. Biochm. 16 :455-459.

Hooper, A.B., and K. R. Terry. 1979. Hydroxylamine oxidoreductase of Nitrosomonas :

Nitrosomonas. J. Bacteriol. 115: 480-485.

Huesemann, M. H. 1995. Prédictive model for estimating the extent of petroleum hydrocarbon biodégradation in contaminated soils. Environ. Sci. Technol. 29 : 7-18.

Hyman M. R., and P. M. Wood. 1985. Suicidai inactivation and labelling of ammonia monooxygenase by acetylene. Biochem. J. 227 :779-725.

Hyman M. R-, and P. M. Wood. 1983. Methane oxidation by Nitrosomonas europaea.

Biochem. J. 212: 31-37.

Hyman M. R., I. B. Murton, and J. D. Arp. 1988. Interaction of ammonia monooxygenase

from Nitrosomonas europaea with alkanes, alkenes and alkynes. Appl. Environ. Microbiol.

54:3187-3190.

Hyman M. R, C. L. Page, and J. D. Arp. 1994. Oxidation of methyl fluoride and dimethyl

ether by ammonia monooxygenase in Nitrosomonas europaea. Appl. Environ. Microbiol.

60:3033-3135.

I

Ida, S., and M. Alexander. 1965. Permeability of Nitrobacter agilis to organic compounds. J. Bacteriol. 90 :151-156.

J

Jackson, C. R., J. P. Harper, D. Wilioughby, E. E. Roden, and P. F. Churchill. 1997 A simple, efficient method for the séparation of humic substances and DNA ffom environmental simples. Appl. Environ. Microbiol. 63: 4993-4995.

Jacobsen, C. S., and O. F. Rasmussen. 1992. Development and application of a new method to extract bacterial DNA from soil based on séparation of bacteria from soil with cation- exchange resin. Appl. Environ. Microbiol. 58:2458-2462.

Jones, R D., and R. Y. Morita. 1983. Methane oxidation by Nitrosococcus oceanus and

Jones, R. D., R. Y. Morita, H. P. Koops, and S. W. Watson. 1988 A new marine

ammonia-oxidizing bacterium, Nitrosomonas cryotolerans sp, nov. Can. J, Microbiol, 34:

1122-1128.

Juliette L. Y., M. R Hyman and D. J. Arp. 1993. Inhibition of ammonia oxidation in

Nitrosomonas europeae by sulfur compounds: thioethers are oxidized to sulfoxides by ammonia monooxygenase. Appl. Environ. Microbiol. 59:3718-3727.

Juretschko, S., G. Timmermann, M. Schmid, K,-H. Schleifer, A. Pommerening-Rôser, H.-P. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge : Nitrosococcus mobilis and Nitrospira-Like

bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042-3051.

K

Keener, W. K. and J. D. Arp. 1994. Transformation of aromatic compounds by

Nitrosomonas europeae. Appl. Environ. Microbiol. 60: 1914-1920,

Kilbertus, G. 1980. Etude des microhabitats contenus dans les agrégats du sol: leur relation avec la biomasse bactérierme et la taille des procaryotes présents. Rev. Ecol. Biol. Sol.

17:543-557,

Killham, K. S. 1986. Heterotrophic nitrification, in Nitrification ( J. I. Prosser, ed,), IRL Press, Oxford, England, p. 117-126.

Killham, K. S. 1990. Nitrification in coniferous forest soils. Processing of a workshop on nitrogen saturation in forest ecosystems. Plant and soil. 128:31-44.

Kirstein, K., and E. Bock. 1993. Close genetic relatioship hetween Nitrobacter

hamburgensis nitrite oxidoreductase and Echerichia coli nitrate reductases. Arch. Microbiol, 160 : 447-453.

Knackmuss, H. J. 1996. Basic knowledge and perspectives of bioelemination of xenobiotic compounds. J. Biotechnol. 51 : 287-295.

Knowles, G., A. L. Downing, and M. J. Barrett. 1965. Détermination of kinetic constants for nitrifying bacteria in mixed culture with the aid of an electronic computer. J. Gen. Microbiol. 38: 263-273.

ammonia oxidizing bacteria. Arch. Microbiol. 141:214-218,

Koops, H. P., B. Bottcher, U. C. Môller, A. Pommerening-Roser, and G. Stehr. 1990. Description of a new species oïNitrosococcus. Arch. Microbiol. 154:244-248.

Koops, H. P., B. Bottcher, U. C. Môller, A. Pommerening-Roser, and G. Stehr. 1991

Classification of eight new species of ammonia oxidizing bacteria; Nitrosomonas communis

sp. nov., Nitrosomonas ureae sp. nov, Nitrosomonas aestuarii sp. nov, Nitrosomonas marina

sp. nov, Nitrosomonas nitrosa sp, nov, Nitrosomonas eutropha sp. nov, Nitrosomonas

oligotropha sp. nov, Nitrosomonas halophila sp. nov. J. Gen. Microbiol. 137:1689-1699. Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Presser, T. M. Embley, and J. W. Woldendorp. 1997, Analysis of ammonia-oxidizing bacteria of the ^-subdivision of the class

Proteobacteria in Coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments, Appl. Environ. Microbiol. 63:1489-1497.

Kowalchuk, G. A., P. L. E. Bodlier, G. H. J. Heilig, J. R. Stephen, and H. J. Laanbroek.1998. Ommunity analysis of ammonia oxidizing bacteria in relation to oxygen availability in soils and root oxygenated sédiments using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol. Ecol. 27:339-350.

L

LaBelle, B. E., and P. W. Hadley. 1994. Bio beware ! Constraints and considérations when demonstrating bioremediation technologies in the field. J, Soil Contam, 3 : 119-126.

Larsen, N. G., B. L. Olsen, M. J. Maidak, M. J. McCaughey, R Overbeek, J. T. Macke, T. L. Marsh, C. R. Woese. 1993. The Ribosomal Database project. Nucleic Acids Res. 21:3021-3023.

Laskowski, D. A., F. C. O’Melia, J. D. Griffith, A. J. Regoii, C. R Youngston, and C. A. I. Goring. 1985. Effect of 2-chloro-6-(trichloromethyl) pyridine and its hydrolysis product 6- cloropicolinic acid on soil microorganisms. J. Environ. Quai, 4: 412-417,

Lees, H. 1946. Effect of copper enzyme poissons on soil nitrification. Nature (London) 158: 97

Lees, H. 1952. The biochemistry of the nitrifying organisms. I. The ammonia-oxidizing

Lerch. K. 1981. Copper monooxygenases: tyrosinase and dopamine beta-monooxygenase. p. 143-186. In H. sSigel (ed.). Métal ions in biological Systems. Marcel Dekker. Inc., New York. Leung, K. L., S. England, M. B. Cassidy., J. T. Trevors, and S. Weir. 1994. Microbial diversity in soil: efFect of releasing genetically engeneered microorganisms. Mol. Ecol. 3:413- 422.

Liesack, W., H. Weyland, and E. Stackebrandt. 1991. Potential risks of gene amplification by PCR as determined by 16S rDNA analysis of a mixed culture of strict barophilic bacteria. Microb. Ecol. 21:191-198.

Liesack, W., and E. Stackebrandt. 1992. Occurrence of a novel groups of the domain

Bacteria as reveales by anlysis of genetic material isolated ffom an Australian terrestrial environment. J. Bacteriol. 174:5072-5078.

Lipschultz, F., O. C. Zafïriou, S.C. Wofsy, M. B. Mc Elroy. 1981 Production of NO and N2O in soil nitrifying bacteria. Nature (London) 294 :641-643.

Lorgan, J., A., M. J. Prather, S. C. wofsy, and M. B. Mc Elroy. 1981. Tropospheric chemistry : a global perspective. J. Geophys. Res. 86 :7210-7254.

Loveless, J. E., and H. A. Hooper. 1986. The influence of métal ion concentrations and pH

value on the growth of a Nitrosomonas strain isolated from activated sludge. J. Gen.

Microbiol. 52:1-14.

M

Madsen, E. L. 1991. Determining in situ bioremediation. Environ. Sci. Technol. 25 : 1663- 1673.

Martikainen, P. J. 1985. Numbers of autotrophic nitrifiers and nitrification in fertilized forest soil. Soil Biol. Biochem. 17: 245-248.

Martikainen, P. J., and E. L. Nurmiaho-Lassila. 1985. Nitrosopira, an important ammonia- oxidizing bacterium in fertilized coniferous forest soil. Can. J. Microbiol. 31: 190-197.

culture of marine ammonia oxidisers, FEMS Microbiol. Lett. 120: 363-368.

McTavish, H., J. Fuchs, and A. B. Hooper. 1993a. Sequence of the gene for ammonia monooxygenase of Nitrosomonas europaea. J. Bacteriol. 175:2436-2444.

McTavish, H., F. LaQuier, D. Arciero, M. Logan, M. Mundfrom, J. Fuchs, and A. B. Hooper. 1993b. Multiple copies of genes for électron transport proteins in the bacterium

Nitrosomonas europaea. J. Bacteriol. 175:2445-2447.

Meiklejohn, J. 1962. Microbiology of the nitrogen cycle in some Ghana soils. Emp. J. Exp. Agric. 30: 115-126.

Meiklejohn, J. 1968. Numbers of nitrifying bacteria in some Rhodesian soils under natural grass and improved pastures. J. Appl. Ecol. 50: 291-300.

Meincke, M., E. Bock, D. Kastrau, and P. M. H. Kroneck. 1992. Nitrite oxidoreductase ffom Nitrobacter hamburgensis : redox centers and their catalytic rôle. Arch. Microbiol. 158 :

127-131.

Meincke, M., E. Krieg, and E. Bock. 1989. Nitrosovibrio spp., the dominant ammonia

oxidizing bacteria in building sandstone. Appl. Environ. Microbiol. 50:291-300.

Miller, D. J., and P. M. Wood. 1983. The soluble cytochrome oxidase of Nitrosomonas

europaea. J. Gen. Microbiol. 129 ; 1645-1650.

Mobarry, B. K., M. Wagner, V. Urbain, B. E. Rittmann, and D. A. Stahl.1996. phylogenetic probes for analyzing abondance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 62:2156-2162.

Montes, R A., and N. L. Christensen. 1979. Nitrification and succession in the Piedmont of North Carolina. Forest Sci. 25: 287-297.

Murrell, J. C., and A. J. Holmes. 1996. Molecular biology of particulate methane monooxygenase. In: Lidstrom ME & Tabita FR (eds) Proceedings of the 8“* international symposium on Microbial Growth on Ci Corapounds. Kluwer Academie Puplishers, pp. 133- 140.

Muyzer, G., E. C. De Waal, and A. G. Uitterlinden. 1993, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl. Environ. Microbiol, 59: 695-700.

Muyzer, G., S. Hottentrager, A. Teske, C. Wawer. 1996. denaturing gradient gel electrophoresis of PCR amplified 16S rDNA: Anew molecular approach to analyse the genetic diversity of mixed microbial communities. Akkermans et al. eds. Kluwer, Dordrechet, The Netherlands, pp 1-23.

Myers, R. M., S. G. FISCHER, L. S. Lerman, and T. Maniatis. 1985. Nearly ail single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131-3145.

Myers, R. M., T. Maniatis, and L. S. Lerman. 1987. Détection and localization of a single base changes by denaturing gradient gel electrophoresis. Methods Enzymol. 155: 501-527,

Myrold, D. D., K. J. Martin, and N. J. Ritchie. 1995. Gel purification of soil DNA extracts In Molecular Microbial Ecology Manual. Akkermans et al. eds. Kluwer, Dordrecht, The Netherlands, pp. 1-9.

N

Nomoto, T., Y. Fukumori, and T. Yamanaka. 1993. Membrane-bound cytochrome C is an alternative électron donor for cytochrome aa3 in Nitrobacter winogradskyi. J. Bacteriol. 175 : 4400-4404.

Numata, M., T. Saito, T. Yamazaki, Y. Fukumori, T. Yamanaka. 1990 Cytochrome P- 460 of Nitrosomonas europaea : further purification and further characterization. J. Biochem. 108:1016-1023.

O

Orso, S., M. Gouy, E. Navarre, and P. Normand. 1994. Molecular phylogenetic analysis of Nitrobacter spp. Inst. J. Syst, Bacteriol. 44:83-86.

P

Painter, H. A. 1986. Nitrification in the treatment of sewage and waste-waters, p. 185-211. In

énumération of bacteria in soil by direct DNA ejctraction and polymerase chain reaction. Appl. Environ. Microbiol. 58:2717-2722.

Pillai, S. D., K. L. Josephson, R L. Bailey, C. P Gerba, and I. L. Pepper. 1991 Rapid method for processing soil samples for polymerase chain reaction amplification of spécifie gene sequences. Appl. Environ. Microbiol. 57:2283-2286.

Porteous, L. A., R J. Seidier, and L. S. Watnid. 1997. An improved method for purifying DNA ffom soil for polymerase chain reaction amplification and molecular ecology applications. Mol. Ecol. 6:787-791.

Poth, M. 1986. Dinitrogen production ffom nitrite by Nitrosomonas isolate. Appl. Environ. Microbiol. 52 :957-959.

Powell, S. J. and J. I. Presser. 1985. The effect of nitrapyrin and chloropicolinic acid on

Dans le document Disponible à / Available at permalink : (Page 45-145)

Documents relatifs