• Aucun résultat trouvé

CONVENTIONAL AND ADVANCED HYDROGEN PRODUCTION METHODS

5.42. Liquefaction Plants

5.4.3. Production of Slush Hydrogen

Most slush hydrogen has been produced so far by means of the freeze-thaw method [22]. In this technique the gaseous phase above the liquid hydrogen is pumped to pull a vacuum until the liquid is cooled down below the freezing point (13.8 K) and a film of solid hydrogen forms on the surface. The system pressure is then stopped and the solid

phase allowed to settle into the liquid. After decreasing the pressure again, the formation of a new solid layer on the surface is initiated.

The time of the freezing period can be extended by spraying triple point liquid hydrogen onto the surface, the spray / freeze method, which could be a step towards a continuous process with no further need of a thawing period [40].

Some other production methods apply liquid helium for cooling. In the Auger method, a hollow cylinder is placed in liquid hydrogen. An annular interior of the cylinder is then cooled with liquid helium. Hydrogen freezes on the surface of the heat exchanger and is scraped off by means of a rotating auger. This method provides a stable, continuous, and contamination-free slush production. Another way is to have the cold helium bubbling through the liquid hydrogen.

A Small Scale Slush Hydrogen Facility has been constructed by NASA to study ways of optimizing the SLHj production process and provide a test bed for advanced instrumentation. The tank with a total volume of 0.76 m3 is vacuum jacketed and wrapped in several inches multilayer insulation plus a liquid nitrogen shield in the upper tank part. A 1 kW heater is used to simulate a heat leak or a warming up. The tank also offers the option to install a liquid helium slush auger for research on this method of production. In a 17 m long and 0.05 m diameter vacuum jacketed transfer line, studies on flow characteristics and instrumentation can be conducted [40].

A smaller slush hydrogen production system has been constructed in Japan with a volume of 60 liters. Both the "freeze-thaw" and the "auger" production method have been investigated revealing the creation of finer fractions with a higher fluidity with the latter method [61].

REFERENCES TO CHAPTER 5

[1] ANAND, M., Sorption-Enhanced Reaction (SER) Process for Production of Hy-drogen, World Wide Web, http://www.eren.doe.gov/hydrogen/sorption.htm, US De-partment of Energy (1997).

[2] ANON, Pilot Plant Demonstration of Methanol Production Using the HYDROCARB Process with Biomass Feedstock, World Wide Web, http://es.inel.gov/new/funding/serdp/fy93en7.html, EnviroSense (1996).

[3] ANON, 10 % Efficient Photoelectrochemical Cell (PEC), World Wide Web, http://www.nrel.gov/basic_sciences/chemsci.html, National Renewable Energy La-boratory, Golden (1998), and KHASELEV, O., TURNER, J.A., A Monolit-hic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting, Science 280 (1998) 425-427.

[4] ANON, Membran hilft bei der Trennung von Gasen - Gewinnung von Wasserstoff wird zum lohnenden Geschaft, Newspaper article in Blick durch die Wirtschaft, Frankfurt, September 23, 1997,.

[5] ANON, Reaktor gewinnt Brennstoffe aus Biomasse - Erzeugung von Methanol aus pflanzlichen Abfallen, insbesondere aus Holz, Newspaper article in Blick durch die Wirtschaft, Frankfurt, December 1, 1997.

[6] ANON, Wasserstoff aus Biomasse, Wasserstoff-Spiegel No. 1/98, Deutscher Wasserstoff-Verband (1998).

[7] ANON, Gasoline-Type Fuels for Fuel Cell Vehicles, Fuel Cells UK Newsletter, ETSU, Harwell (1998) Issue 6

[8] ANON, Erste Anlage nach neuem Verfahren zur Wasserstoffgewinnung aus fossilen Brennstoffen wird in Canada gebaut, Brennstoffzelle (1998) Issue l, Deutsches Brennstoffzellenforum e.V.

[9] ARAUZO, J., et a!., Catalytic Pyrogasification of Biomass - Evaluation of Modified Nickel Catalysts, Ind. and Eng. Chem. Res. 36 (1997) 67-75.

[ 10] B AG AUTDINOV, A.Z., et al., Clean Method of Hydrogen Production - Plasmache-mical Dissociation of Hydrogen Sulfide, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 269-272.

[11] BARNERT, H., Energy Alcohol from Plant Biomass plus High Temperature Heat, the Œ>2-Neutral, Environmentally Benign, and Consumer Friendly Future Alterna-tive, Report Jul-3089, Research Center Jülich (1995).

[12] BECKMANN, G., Wasserstoff- ein Energiemittel?, Nachr. Chem. Tech. Lab. 39 (1991) 503-508.

[13] BECKURTS, K.-H., DIETRICH, G., Projekt Femwärme Versorgung für Millionen-Städte, Bild der Wissenschaft 13 (1976) January 64-70.

[14] BEHRENS, D. (Ed.), Wasserstofftechnologie - Perspektiven für Forschung und Entwicklung, DECHEMA, Frankfurt/M (1986).

[15] BENEMANN, J.R., Feasibility Analysis of Photobiological Hydrogen Production, (10th World Hydrogen Energy Conf., Cocoa Beach, USA, 1994), BLOCK, D.L., VEZIROGLU, T.N., Hydrogen Energy Progress X, International Association for Hydrogen Energy (1994) 931-940.

[16] BOLTENDAHL, U., HARTH, R., Wärmetransport auf kaltem Wege, Bild der Wissenschaft 17 (1980) April 44-55.

[17] BOUTON, J.R., Solar Photoproduction of Hydrogen, IEA Technical Report IEA/H2/TR-96, Internal Energy Agency (1996) and Solar Energy 57 (1996) 37-50.

[18] BROMBERG, L., Hydrogen Production from Plasma Reforming, World Wide Web, http://www.eren.doe.gov/hydrogen/hyplsma3.htm, US Department of Energy (1997).

[19] CHORNET, E., et al., Biomass to Hydrogen via Fast Pyrolysis and Catalytic Steam Reforming, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 973-978.

[20] COX, B.G., PRÜDEN, B.B., JEJE, A.A., Ceramic Reactor/Exchanger for H2S Dissociation, (Proc. 7th Canadian Hydrogen Workshop, 1995, Quebec City), MEHTA, S.K., BÖSE, T.K. (Ed.), Canadian Hydrogen Association (1995) 329-352.

[21] DICKS, A.L., Hydrogen Generation from Natural Gas for the Fuel Cell Systems of Tomorrow, J. Power Sources 61 (1996) 113-124.

[22] EDESKUTY, F.J., STEWART, W.F., Safety in the Handling of Cryogenic Fluids, The International Cryogenics Monograph Series, Plenum Press, New York (1996).

[23] ERDLE, E., Hochtemperaturelektrolyse von Wasserdampf HOT ELLY, Wasserstoff als Energieträger, (Status Seminar, Würzburg, 1995), Projektträger Biologie, Ener-gie, ÖkoloEner-gie, Research Center Jülich (1995) 1-10.

[24] FOLDEAKI, M., CHAHINE, R., BOSE, T.K., Material Selection for Magnetic Refrigerator Design, (Proc. 7th Canadian Hydrogen Workshop, 1995, Quebec City), MEHTA, S.K., BOSE, T.K. (Ed.), Canadian Hydrogen Association (1995) 439-453.

[25] FUJISHIMA, A., Photocatalytic Reactions - Water Splitting and Environmental Applications, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 23-30.

[26] FUNK, J.E., Hydrogen Production, Tutorial during the 1 Oth World Hydrogen Energy Conf., Cocoa Beach, USA, June 19, 1994.

[27] HOFFMANN, P., (Ed.), Hydrogen & Fuel Cells Letter 12 (1997) November.

[28] HOHMANN, F.W., Improve Steam Reformer Performance, Hydrocarbon Proces-sing 75 (1996) March 71-74.

[29] KALYONASUNDARAM, K., GRATZEL, M. (Eds.), Photosensitization and Photo-catalysis Using Inorganic and Organometallic Compounds, Kluwer Academic Press (1993).

[30] KONIG, S., BARNERT, H., SINGH, J., Prinzip-Auslegung und sicherheitstechni-sche Untersuchung der Wasserdampf-Kohle-Vergasung von Braunkohle mit HTR-Warme, Internal Report KFA-ISR-IB-5/91, Research Center Julich (1991).

[31] KUBIAK, H, PAPAMICHALIS, A., VAN HEEK, K.H., Production of Hydrogen by Allothermal Gasification of Biomass, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 621-629.

[32] KUGELER, K., et al., The Pebble-Bed High-Temperature Reactor as a Source of Nuclear Process Heal, Vol 4: System Considerations on Nuclear-Heated Steam Reformers, Report Jul-1116-RG, Research Center Julich (1974).

[33] LIPMAN, T.E., DELUCCffl, M.A., Hydrogen-Fuelled Vehicles, Int. J. of Vehicle Design 17 (1996) 562-589.

[34] LYNCH, F.E., Hydrogen Storage, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 99-106.

[35] MANTHEY, C, Einsatz von Hochtemperaturreaktoren in der Eisen- und Stah-lindustrie unter besonderer Beriicksichtigung des Einflusses auf die Standort- und Umweltprobleme dieses Industriezweiges, Report Jul-1180, Research Center Julich (1975).

[36] MEISSNER, D., Photoelectrochemical Solar Energy Conversion, in: Solar Techno-logy, Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft, Weinheim (1993) 400-406.

[37] MOORE, R.B., RAMAN, V., Hydrogen Infrastructure for Fuel Cell Transportation, (11th World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 133-142.

[38] MULLER, R., TANGER, U., Solarer Wasserstoff, VGB Kraftwerkstechnik 72 (1992) 197-203.

[39] MURADOV, N., Production of Hydrogen by Thermocatalytic Cracking of Na-tural Gas, World Wide Web, http://www.eren.doe.gov/hydrogen/crackin.htm, US Department of Energy (1997).

[40] NASA, Small Scale Slush Hydrogen Test Facility, World Wide Web, http://lerc.nasa.gov/WWW/slush, NASA (1997).

[41] OPPERMANN, M., STREICHER, R., Fortschrittliche Wasserelektrolyse, Wasser-stoff als Energietrager, (Status Seminar, Wiirzburg, 1995), Projekttrager Biologic, Energie, Okologie, Research Center Julich (1995) 11-20.

[42] PACALOWSKA, B., WHYSALL, M., NARASIMHAN, M.V., Improve Hydrogen Recovery from Refinery Offgases, Hydrocarbon Processing 75 (1996) November 55-59.

[43] PESCHKA, W., Liquid Hydrogen: Fuel of the Future, Springer-Verlag Wien New York (1992).

[44] PRUSCHEK, R., et ah, Minimum CO2 Emissions from IGCC Power Plants by Methanol Production with HI, (11th World Hydrogen Energy Conf., Stuttgart, FRG,

1996), VEZIROGLU, T.N., et ah, Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1439-1446.

[45] RECHENBERG, L, Hydrogen Production by Means of an Artificial Bacterial Algal Symbiosis, Report on Experiments in the Sahara, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et ah, Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 2427-2435.

[46] REINEKE, R., Wirkungsgrade elektrochemischer Zellen, in: Winsel, A. (Ed.), Elektrochemie in Energie- und Umwelttechnik, Dechema-Monographien 124 (1991) 623-627.

[47] ROCHELEAU, R., Photoelectrochemical Production of Hydrogen, World Wide Web, http://www.eren.doe.gov/hydrogen/photelch.htm, US Department of Energy (1997).

[48] ROYCHOWDHURY, S., COX, D., Hydrogen Production Potential From Sewage Waste, Proc. New Energy Systems & Conversion, (3rd Int. Conf., Kazan, 1997) 59-62.

[49] SANDSTEDE, G., Moglichkeiten zur Wasserstoff-Erzeugung mit verminderter Kohlendioxid-Emission fur zukiinftige Energiesysteme, Chem.-Ing.-Tech. 63 (1991) 575-592.

[50] SCHARF, H.-L, SCHRADER, L., TEGGERS, H., Results from the Operation of a Semitechnical Test Plant for Brown Coal Hydrogasification, Nuch Eng. Des. 78 (1984) 223-231.

[51] SCHOLZ, W.H., Verfahren zur groBtechnischen Erzeugung von Wasserstoff und ihre Umweltproblematik, Linde Berichte aus Technik und Wissenschaft 67 (1992) 13-21.

[52] SCHUG, C.A., Operational Characteristics of High-Pressure, High-Efficiency Water-Hydrogen-Electrolysis, (11th World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et ah, Hydrogen Energy Progress XI, International As-sociation for Hydrogen Energy (1996) 569-578.

[53] SOCHER, M., RIEKEN, T., TA-Projekt "Risiken bei einem verstarkten Wasser-stoff einsatz", TAB Working Report No. 13, Biiro fur Technikfolgen-Abschatzung des Deutschen Bundestages, Bonn (1992).

[54] STARR, C, SEARL, M.F., ALPERT, S., Energy Sources: A Realistic Outlook, Science 256 (1992) 981-987.

[55] STEINBERG, M., CHENG, H.C., Modern and Prospective Technologies for Hy-drogen Production from Fossil Fuels, Int. J. HyHy-drogen Energy 14 (1989) 797-820.

[56] STUCKI, S., SCHUCAN, T., Speicherung und Transport von Wasserstoff in Form organischer Verbindungen, VDI Berichte No. 1129, VDI-Verlag, Dusseldorf (1994)

175-194.

[57] SZAMER, R., Safety Requirements for Small and Medium Sized Electrolysis Plants, (11th World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 2213-2219.

[58] TAKASAKI, K., KOHNO, M., HATTORI, T., Development of Environmentally Friendly Technology for the Production of Hydrogen, (11th World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 61-70.

[59] TAKENAKA, H., R&D on Solid Polymer Electrolyte Water Electrolysis in Japan, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 165-170.

[60] TAMME, R., LEFDAL, P.M., Neue ressourcenschonende H2-Herstellungsverfahren - Kohlenwasserstoffspaltung und Reforming Prozesse, VDI Berichte No. 1201, VDI-Verlag, Dusseldorf (1995) 13-26.

[61] TAMURA, H., et al., Experiment on Slush Hydrogen Production with Auger Method, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 219-222.

[62] TOWLER, G.P., LYNN, S., Sulfur Recovery with Reduced Emissions, Low Capital Investment and Hydrogen Co-Production, Chem. Engng. Commun. 155 (1996) 113-143.

[63] TRAMM-WERNER, S., et al., Photobiological Hydrogen Production Using a New Plate Loop Reactor, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 2407-2416.

[64] VALENTI, M., Bringing Coal into the 21st Century, Mechanical Engineering 117 (1995) 68-74.

[65] VOLLMAR, H.E., DRENCKHAHN, W., Stationary PEMFCs and SOFCs in the City of Tomorrow, European Fuel Cell News 5 (1998) January 17-18.

[66] WALDE, H., KROPP, B., Wasserstoff als Energietrager

[67] WANG, D., et al., The Fast Pyrolysis/Reforming Route for the Production of H2 from Biomass and Wastes, (Proc. 7th Canadian Hydrogen Workshop, 1995, Quebec City), MEHTA, S.K., BOSE, T.K. (Ed.), Canadian Hydrogen Association (1995) 353-364.

[68] WANG, S., LU, G.Q., Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art, Energy & Fuels 10 (1996) 896-904.

[69] WEAVER, P., Microbes and Bioreactors for Photobiological Hydrogen, World Wide Web, http://www.eren.doe.gov/hydrogen/micrbes.htm, US Department of Energy (1997).

[70] WEBER, R., Wasserstoff - Wie aus Ideen Chancen werden, Informationszentrale der Elektrizitatswirtschaft (IZE), Frankfurt (1991).

[71] WURSTER, R., Hydrogen Research and Development Activities in Europe, Auf dem Weg zur Wasserstoffenergie - Wie kommen wir weiter?, (BAM-Seminar, Berlin, 1995), Federal Institute for Materials Research and Testing, Berlin (1997)

11-24.

[72] WURZEL, T., Ruhr-Universitat Bochum, Dissertation in preparation and newspaper article in Handelsblatt, Diisseldorf, June 3, 1997.

[73] YILDIZ, A., Electrochemical and Photoelectrochemical Hydrogen Production, Uti-lization of Hydrogen and Future Aspects, (Conf., Akcay, Turkey, 1994), YURUM, Y. (ed.), NATO Advanced Study Institute on Hydrogen Energy System, Kluwer Academic Publishers (1995) 45-52.

[74] YURtJM, Y., Hydrogen Production Methods, Utilization of Hydrogen and Future Aspects, (Conf., Akcay, Turkey, 1994), YURtM, Y. (ed.), NATO Advanced Study Institute on Hydrogen Energy System, Kluwer Academic Publishers (1995) 15-30.

NEXT PAGE(S) left BLANK

Chapter 6