• Aucun résultat trouvé

STORAGE AND TRANSPORT OF HYDROGEN

6.4. CHEMICAL HEAT PUMP SYSTEMS

Chemical heat pump systems are important, if the utilization of low-quality heats (« 80 °C), e.g., solar or geothermal or nuclear (LWR) heat, waste heat in factories, is considered for heat storage and temperature upgrading to improve the total efficiency of the system. Among the many chemical cycles that have been considered to store and transport heat energy in the form of chemical reaction enthalpy, the coupled processes of hydrogenation / dehydrogenation can be adapted here.

A chemical heat pump system consists in principle of two reactors H and L where the following processes proceed:

Reactor L contains the compound BC where heat is added to cause an endothermal reaction liberating C as a gas. C is routed to the reactor H which contains A to undergo an exothermal reaction where high-temperature heat becomes available.

The reactions are of either liquid-gas (wet) or solid-gas (dry) type. Dry processes show high reaction rates enabling compactness, but a poor heat and mass transfer behavior compared with wet processes [19]. The examples of the 2-propanol - acetone system [44, 56], the cyclohexane-benzene system [31], the hydride system [30], and the sponge iron system [54] are given in more detail in appendix C.

REFERENCES TO CHAPTER 6

[I] ABE, A., et al., Studies of the Large-Scale Sea Transportation of Liquid Hydrogen, Int. J. Hydrogen Energy 23 (1998) 115-121.

[2] BECKURTS, K.-H., DIETRICH, G., Proj'ekt Fernwarme Versorgung fur Millionen-Stadte, Bild der Wissenschaft, 13 (1976) January 64-70.

[3] BEKKEDAHL, T.A., HEBEN, M.J., Advanced Materials for Hydrogen Storage:

Carbon Nanotubules, (DOE/NREL Hydrogen Program Review, Livermore, 1994).

[4] BOLTENDAHL, U., HARTH, R., Warmetransport auf kaltem Wege, Bild der Wissenschaft 17 (1980) April 44-55.

[5] BRUDERER, H., Die Krux mit dem Akku, Technische Rundschau, January 17, 1997.

[6] CAMUS, J.-M., L'Air Liquide, Sassenage, Personal Communication (1998).

[7] CHAHINE, R., BOSE, T.K., Characterization and Optimization of Adsorbents for Hydrogen Storage, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZUROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1259-1263.

[8] DANEELI, E., Praxair, Danbury, Personal Communication (1997).

[9] DECHEMA, A Study for the Generation, Inter-Continental Transport, and Use of Hydrogen as a Source of Clean Energy on the Basis of Large-Scale and Cheap Hydro-Electricity, Final Report on Contract No. EN3S-0024-D(B), Deutsche Gesellschaft fur Chemisches Apparatewesen, Frankfurt (1987).

[10] DILLON, A.C., JONES, K.M., HEBEN, M.J., Carbon Nanotube Materials for Hydrogen Storage, 1996 US-DOE Hydrogen Program Review (Conf., Miami,

1996), Proc. Vol 2, US-Department of Energy (1996) 747-763.

[II] EDESKUTY, F.J., Nuclear Propulsion, in: VANCE, R. W. (Ed.), Cryogenic Technology, John Wiley & Sons Inc., New York (1963).

[12] EDESKUTY, F.J., WILLIAMSON, K.D., Storage and Handling of Cryogens, Adv.

Cryo. Eng. 17 (1972) 56-68.

[13] EDESKUTY, F.J., STEWART, W.F., Safety in the Handling of Cryogenic Fluids, The International Cryogenics Monograph Series, Plenum Press, New York (1996).

[14] EPSTEIN, M., Recent Test Results of CO2 Reforming of Methane in a Closed Loop, (3rd JAERI Symp., Oarai, 1996), Proc. JAERI-Conf 96-010, Japan Atomic Energy Research Institute (1996) 228.

[15] FASOLD, H.-G., Wasserstoffgas - ein potentieller EnergietrSger des 21. Jahrhun-derts? Mdglichkeiten von Transport, Verteilung und Speicherung, Gas Erdgas 129 (1988) 281-291.

[16] FTNNSTROM, B., Hydrogen - A Study of Efficiencies, in: IEA, Programme of Research and Development on the Production of Hydrogen from Water, Annual Progress Report 1989, International Energy Agency (1990).

[17] PURER, G., Untertagespeicherung von Gas: Energie nach Bedarf, Spektrum der Wissenschaft 7 (1984) September 26-40.

[18] GIACOMAZZI, G., GRETZ, J., Euro-Quebec Hydro-Hydrogen Project (EQHHPP):

A Challenge to Cryogenic Technology, Cryogenics 33 (1993) 767-771.

[19] HAHNE, E., Heat Storage Media, in: Solar Technology, Ullmann's Encyclopedia of Industrial Chemistry, VCH Verlagsgesellschaft, Weinheim (1993) 406-418.

[20] HANNEMAN, R.E., VAKIL, H., WENTORF, R.H.Jr., Closed Loop Chemical Systems for Energy Transmission, Conversion and Storage, Proc. Intersoc. Energy Conversion Eng. Conf. (1974) 435-441.

[21] HANSEL, J.G., MATERN, G.W., MILLER, R.N., Safety Considerations in the Design of Hydrogen-Powered Vehicles, Int. J. Hydrogen Energy 18 (1993) 783-790.

[22] HARTH, R., JANSING, W., TEUBNER, H., Experience Gained from the EVA E and KVK Operation, Nucl. Eng. Des. 121 (1990) 173-182.

[23] HEIMANN, G., Eine riesige Thermoskanne voll Wasserstoff, Newspaper article in Der Tagesspiegel, Berlin, August 29, 1996.

[24] HIRAOKA, K., et al., Research and Development of Internal Reheat Hydrogen Gas Turbine at Ship Research Institute, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 345-348.

[25] HIRATA, M., A Proposal of Trans-Asian Gas Pipeline Network - Hydrogen Transportation in 21 Century, Hydrogen and Clean Energy (Int. Symp., Tokyo,

1995), NEDO (1995) 149-156.

[26] HOFFMANN, P., (Ed.), Hydrogen & Fuel Cells Letter 12 (1997) February.

[27] HOHLEIN, B., et al., Methane from Synthesis Gas and Operation of High-Temperature Methanation, Nucl. Eng. Des. 78 (1984) 241-250.

[28] HYNEK, S., MOORE, R., Liquefied Hydrogen Storage Aboard Automobiles?, (Proc. 7th Canadian Hydrogen Workshop, 1995, Quebec City), MEHTA, S.K., BOSE, T.K. (Ed.), Canadian Hydrogen Association (1995) 231-240.

[29] HYNEK, S.J., FULLER, W.D., Stationary Hydrogen Storage Using a Phase Change Material, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZTRO-GLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1197-1202.

[30] ISHIYAMA, S., UGACffl, H., ETO, M., Performance of High Temperature Chemi-cal Heat Pump with Metal Hydride Reaction, (3rd JAERI Symp., Oarai, 1996), Proc.

JAERI-Conf 96-010, Japan Atomic Energy Research Institute (1996) 435-449.

[31] JTOH, N., Liquid Chemical Carriers in Hydrogen Storage and Transport, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 279-282.

[32] IWATA, A., KAMIYA, S., KAWAGOE, E., Technical Development for Large Storage of Liquid Hydrogen in WE-NET, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1163-1168.

[33] KESTEN, M., MEYER, G., Offene und geloste Probleme bei Wasserstofftransport und -speicherung, Auf dem Weg zur Wasserstoffenergie - Wie kommen wir weiter?,

(BAM-Seminar, Berlin, 1995), Federal Institute for Materials Research and Testing, Berlin (1997) 47-55.

[34] KLUYSKENS, D., Hydro Quebec, Montreal, Personal Communication (1997).

[35] PETERSEN, U., WURSIG, G., KRAPP, R., Design and Safety Considerations for Large-Scale Sea-Bome Hydrogen Transport, Int. J. Hydrogen Energy 19 (1994) 597-604.

[36] LOVEGROVE, K.M., High Pressure Ammonia Dissociation Experiments for Solar Energy Transport and Storage, Int. J. Energy Research 20 (1996) 965-978.

[37] LUND, P., Improved Possibilities in Energy Storage Through Hydrogen Techno-logy, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 981-992.

[38] LYNCH, F.E., Hydrogen Storage, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 99-106.

[39] MARKEWTTZ, P., Leitungsgebundene Energietrager, in: HAKE, J.-F., et al.

(Eds.), 2. Ferienkurs Energieforschung, Konferenzen des Forschungszentrums Julich, Vol 20, Part I, Research Center Julich (1996) 257- 289.

[40] MATTHIES, R., HORN, R., Novel Insulation System for Large Scale Liquid Hydrogen Tanks, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1223-1227.

[41] MERATLA, Z., Large Scale Liquid Hydrogen Transport by Air, (llth World Hy-drogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., HyHy-drogen Energy Progress XI, International Association for Hydrogen Energy (1996)

1347-1353.

[42] MICHEL, F., et al., Onboard Equipment for Liquid Hydrogen Vehicles, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1063-1077.

[43] MOHTTPOUR, M., PIERCE, C.L., GRAHAM, P., Design Basis Developed for H2 Pipeline, Oil & Gas Journal, May 28 (1990) 83-94.

[44] MURADOV, N., T-RAISSI, A., DOI, T., Dehydrogenation of 2-Propanol Using Heteropolyacids for Solar-Driven Chemical Heat Pump Application, (llth World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hy-drogen Energy Progress XI, International Association for HyHy-drogen Energy (1996) 2679-2685.

[45] NAKATSUGAWA, I., LUO, A., Recent Process of Hydrogen Storage and Trans-portation Technologies in North America, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 275-278.

[46] NATIONAL HYDROGEN ASSOCIATION, Handling Hydrogen Safely, World Wide Web, http://www.ttcorp.com/nha/hhs_2.htm, National Hydrogen Association (1997).

[47] NEDO, International Clean Energy Network Using Hydrogen Conversion (WE-NET), 1995 Annual Summary Report on Results NEDO-WE-NET-95, NEDO, Tokyo (1996).

[48] OGDEN, J., Hydrogen Energy Systems Studies, World Wide Web, http://www.eren.doe.gov/hydrogen/hydengy.htm, US Department of Energy (1997).

[49] OSUMI, Y., Present Status and Prospects od Development of Hydrogen Absorbing Alloys, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995)

131-138.

[50] PEHR, K., Experimental Examinations on the Worst Case Behavior of LH2/LNG Tanks for Passenger Cars, (llth World Hydrogen Energy Conf., Stuttgart, FRG,

1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 2169-2186.

[51] PESCHKA, W., Liquid Hydrogen: Fuel of the Future, Springer-Verlag Wien New York (1992).

[52] PETERSEN, U., WURSIG, G., WOHREN, N., Investigation into the Operating Behaviour of 61 M3 Liquid Hydrogen Tank, to be presented at the Hypothesis n, August 18-22, 1997, Crimstad, Norway (1997).

[53] PIKE, J., The Death-Beam Gap, World Wide Web, http://www.fas.org/spp/eprint/keegan.htm, Federation of American Scien-tists, Washington (1992).

[54] PLZAK, V., et al., Investigations of the Kinetics and Catalysis of the Iron/Steam-Magnetite/Hydrogen-System in Low Temperature Regime with Regard of its Use to Produce and Store Hydrogen, (11th World Hydrogen Energy Conf., Stuttgart, FRG, 1996), VEZIROGLU, T.N., et al., Hydrogen Energy Progress XI, International Association for Hydrogen Energy (1996) 1175-1183.

[55] RAMBACH, G., Hydrogen Storage in Engineered Microspheres, World Wide Web, http://www.eren.doe.gov/hydrogen/hydstor.htm, US Department of Energy (1997).

[56] SATTO, Y., Chemical Heat Pump and Hydrogen Transportation, Hydrogen and Clean Energy (Int. Symp., Tokyo, 1995), NEDO (1995) 123-130.

[57] SCHMIDT, T., GOTZEN, P., Unterirdische Speicherung von Erdgas in Salzkaver-nen und Porenspeichem, VDI Berichte No. 1129, VDI-Verlag, Dusseldorf (1994)

101-120.

[58] SCHULZ, R., BOILY, S., Nanocrystalline Metal Hydrides, (Proc. 7th Canadian Hydrogen Workshop, 1995, Quebec City), MEHTA, S.K., BOSE, T.K. (Ed.), Canadian Hydrogen Association (1995) 405-411.

[59] SHERIF, S.A., ZEYTINOGLU, N., VEZIROGLU, T.N., Liquid Hydrogen: Po-tential, Problems, and a Proposed Research Program, Int. J. Hydrogen Energy 22 (1997) 683-688.

[60] STUCKI, S., SCHUCAN, T., Speicherung und Transport von Wasserstoff in Form organischer Verbindungen, VDI Berichte No. 1129, VDI-Verlag, Dusseldorf (1994) 175-194.

[61] TAYLOR, J.B., Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen, Int. J. Hydrogen Energy 11 (1986) 5-22.

[62] TRILL, R., Sicherheit bei Transport, Lagerung und Nutzung von gasformigem und flussigem Wasserstoff, VDI Berichte No. 1201, VDI-Verlag, Dusseldorf (1995) 245-249.

[63] TRILL, R., Linde AG, Hollriegelskreuth, Personal Communication (1997).

[64] VO6, A., WffiSE, A., KALTSCHMITT, M., Technische, okonomische und okologische Aspekte eines "GLOBAL LINK", VDI Berichte No. 1129, VDI-Verlag, Dusseldorf , M) 195-213.

[65] WANG, S., LU, G.Q., Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art, Energy & Fuels 10 (1996) 896-904.

[66] WEITKAMP, J., et al., Wasserstoff-Speicherung in Zeoliten, Wasserstoff als Ener-gietrager, (Coll. of Sonderforschungsbereich 270, Stuttgart, 1994) (1994) 287-300.

[67] WtJRSIG, G.-M., Shipping Liquid Hydrogen, MER (1991) December 10-14.

[68] WtJRSIG, G.-M., Beitrag zur Auslegung von mit Wasserstoff betriebenen Haupt-antriebsanlagen fur Flussigwasserstoff-Tankschiffe, Ph.D. Thesis, Verlag Mainz, Wissenschaftsverlag Aachen (1996).

[69] WtJRSIG, G., SCHMIDTCHEN, U., Flussig-Wasserstoff sicher transportieren - Versuche zum Verhalten von tiefkaltem Flussiggas an einem 61 m3 -FlQssig-Wasserstoff-Tank, Tt 38 (1997) No. 4 26-30.

[70] WURSTER, R., Randbedingungen und Systemaspekte fur Transport und Speiche-rung von Wasserstoff, VDI Berichte No. 1129, VDI-Verlag, Dusseldorf (1994)

141-158.

[71] WURSTER, R., Transport von Energie in Form von Wasserstoff uber groBe Ent-fernungen, Wasserstoff als Energietrager, (Status Seminar, Wurzburg, 1995), Pro-jekttrager Biologic, Energie, Okologie, Research Center Julich (1995) 129-140.

[72] ZAIDMAN, B., WIENER, H., SASSON, Y., Formate Salts as Chemical Carriers in Hydrogen Storage and Transportation, Int. J. Hydrogen Energy 11 (1986) 341-347.

NEXT PAQE(S) left BLANK

Chapter 7