• Aucun résultat trouvé

23.1. Nuclear Steam Reformer

2.4.2. Materials Testing at JAERI

The material chosen for the IHX and the steam reformer of the Japanese HTTR is HASTELLOY XR. Corrosion tests and long-term creep tests in helium atmosphere in the temperature range 800 - 1000 °C have been conducted reaching 50,000 hours. No significant degradation in creep properties was observed even after carburization. Creep rupture was found to be caused by nucleation, growth, and link-up of grain boundary cavities [26].

Satisfactory behavior of Hastelloy XR material has been found with respect to weldability, tensile and creep properties through optical microscopy and corresponding tests in air at room temperature and at high temperatures up to 950 °C, respectively [40].

Also the investigation of the potential use of SiC ceramics for heat exchanger and vessels, high-temperature properties and oxidation behavior has been started, e.g., on a

SiC-coated vessel with potential use for thermal chemical reactions for hydrogen processes.

Other tests conducted at JAERI examine the corrosion exposure in boiling sulfuric acid.

Mechanical bending tests are planned at the Research Center Jiilich.

Further work will be focusing on lifetime prediction methods for gas turbine materials (superalloys) and experiments on fracture mechanics in superalloys as well as finite element calculations of multiaxial loaded tubes and validation of multiaxial tests (tension, torsion, internal pressure).

REFERENCES TO CHAPTER 2

[I] BARNERT, H., Der Verbund von Kohle, Stahl und Kernenergie, Report Jiil-2085, Research Center Julich (1986).

[2] BARNERT, H., The Status of the High Temperature Reactor and H2 Related R &

D Work, Hydrogen Production, (2nd IEA Technical Workshop, Julich, FRG, 1991), STRUCK, B.D. (Ed.), Implementing Agreement for a Programme of Research and Development on the Production of Hydrogen from Water, Document HUF-6, Research Center Julich (1991) 113-132.

[3] BARNERT, H., Energy Alcohol from Plant Biomass plus High Temperature Heat, the CO2-Neutral, Environmentally Benign, and Consumer Friendly Future Alterna-tive, Report Jul-3089, Research Center Julich (1995).

[4] BECKURTS, K.-H., DffiTRICH, G., Projekt Femwarme Versorgung fur Millionen-Stadte, Bild der Wissenschaft, 13 (1976) January 64-70.

[5] BIRNBAUM, U., RIENSCHE, E., SUMMING, U., Optimization of Small SOFC Plants with Flexible Power/Heat Ratios and their Future Application, (5th Int.

Symp., Aachen, 1997), SUMMING, U., et al. (Eds.), Solid Oxide Fuel Cells V, Volume 97-40, The Electrochemical Society, Inc., Pennington, USA (1997)

112-123.

[6] BROCKERHOFF, P., et al., Status of Design and Testing of Hot Gas Ducts, Nucl.

Eng. Des. 78 (1984) 215-221.

[7] ENGELHARDT, H.R., EinsatzmOglichkeiten und Einsatzpotential von Hochtem-peraturreaktoren in der Industriegruppe Chemie unter Beriicksichtigung von tech-nischen, okonomischen und okologischen Aspekten, Report Jul-966-RG, Research Center Julich (1973).

[8] FARBMAN, G.H., Studies of the Use of Heat from High Temperature Nuclear Sources for Hydrogen Production Processes, Report NASA-CR-134918, NASA Lewis Research Center (1976).

[9] FROHLING, W., NEEF, H.J., Synthetisches Naturgas aus Kohle und Hochtemperatur-Reaktorwarme, KFA Annual Report 1977, Research Center Julich (1978) 15-24.

[10] GAO, Z., Auslegungsuntersuchung fur den HTR zur ErschlieBung von Schwer-stollagerstatten, Report Jiil-1977, Research Center Julich (1985).

[II] HADA, K., FUJIMOTO, N., SUDO, Y., Design of Steam Reforming Hydrogen and Methanol Co-Production System to be Connected to the HTTR, (TCM, Oarai, 1992), High Temperature Applications of Nuclear Energy, Report IAEA-TECDOC-761, International Atomic Energy Agency, Vienna (1994) 124-134.

[12] HAD A, K., Improvements of Reforming Performance of a Nuclear Heated Steam Reforming Process, Report JAERI-Research-96-054, Japan Atomic Energy Rese-arch Institute (1996) (in Japanese).

[13] HADA, K., et al., Universally Applicable Design Concept of Stably Controlling an HTGR Hydrogen Production System, Nippon Genshiryoku Gakkai-Shi 38 (1996) 834-844 (in Japanese).

[14] HANNEMAN, R.E., VAKIL, H., WENTORF, R.H.JR., Closed Loop Chemical Systems for Energy Transmission, Conversion and Storage, Proc. Intersoc. Energy Conversion Eng. Conf. (1974) 435-441.

[15] IAEA, Design and Development Status of Small and Medium Reactor Systems 1995, IAEA-TECDOC-881, International Atomic Energy Agency, Vienna (1996).

[16] IAEA, Fuel Performance and Fission Product Behavior in Gas-Cooled Reactors - A Compilation Produced within the IAEA Coordinated research program on Validation of Predictive Methods for Fuel and Fission Product Behavior in Gas-Cooled Reac-tors, IAEA-TECDOC-978, International Atomic Energy Agency, Vienna (1997).

[17] IDE, A., TAKENAKA, Y., MAEDA, S., Utilization of Heat of Modular High Temperature Gas-cooled Reactors, Proc. ASME-JSME 4th Int. Conf. on Nuclear Engineering, RAO, A.S., DUFFEY, R.B., ELIAS, D. (Eds.), The American Society of Mechanical Engineers (1996) 255-261.

[18] JAGER, W., WEISBRODT, I., HORNING, H., Nuclear Process Heat Applications for the Modular HTR, Nucl. Eng. Des. 78 (1984) 137-145.

[19] JOBSKY, T., Ermittlung von Potentialen zur industriellen ProzeBdampfversorgung mit nuklearen Anlagen, Report Jiil-2411, Research Center Jiilich (1990).

[20] KNOCHE, K.F., Stand der Arbeiten zur Wasserstoff-Erzeugung mit nuklearer ProzeBwarme, Chem.-Ing.-Tech. 49 (1977) 238-242.

[21] KOIKEGAMI, H., et al., Design and Fabrication of He-He Intermediate Heat Exchanger for HTTR, (3rd JAERI Symp., Oarai, 1996), Proc. JAERI-Conf 96-010, Japan Atomic Energy Research Institute (1996) 305-321.

[22] KUGELER, K., et al., The Pebble-Bed High-Temperature Reactor as a Source of Nuclear Process Heat, Vol 3: System Considerations on the Nuclear Reactor, Report Jul-1115-RG, Research Center Jiilich (1974).

[23] KUGELER, K., et al., The Pebble-Bed High-Temperature Reactor as a Source of Nuclear Process Heat, Vol 4: System Considerations on Nuclear-Heated Steam Reformers, Report Jul-1116-RG, Research Center Julich (1974).

[24] KUGELER, K., PHLIPPEN, P.-W., The Potential of the Self-Acting Safety Features of High Temperature Reactors, Kerntechnik 61 (1996) 239-244.

[25] KUPITZ, J., Role of IAEA in Electric Applications of Nuclear Energy, Non-Electric Applications of Nuclear Energy, (Advisory Group Meeting, Jakarta, Indo-nesia, 1995), IAEA-TECDOC-923, International Atomic Energy Agency, Vienna (1997) 119-131.

[26] KURATA, Y., et al., Evaluation of Long-Term Creep Properties of Hastelloy XR in Simulated High-Temperature Gas-Cooled Reactor Helium, (3rd JAERI Symp., Oarai, 1996), Proc. JAERI-Conf 96-010, Japan Atomic Energy Research Institute (1996) 338-352.

[27] LIEBHOLZ, W.-M., (Ed.), Jahrbuch der Atomwirtschaft 1997, Vol. 28, Verlags-gruppe Handelsblatt Fachverlag, Dusseldorf (1997).

[28] MANTHEY, C, Einsatz von Hochtemperaturreaktoren in der Eisen- und Stah-lindustrie unter besonderer Berucksichtigung des Einflusses auf die Standort- und Umweltprobleme dieses Industriezweiges, Report Jul-1180, Research Center Julich (1975).

[29] MAUS, W., et al., The He / He Heat Exchanger - Design and Semitechnical Testing, Nucl. Eng. Des. 78 (1984) 195-214.

[30] MIYAMOTO, Y., et al., Overview of HTGR Utilization System Developments at JAERI, High Temperature Gas Cooled Reactor (HTGR) Development, (Techn.

Comm. Meeting, Johannesburg, South Africa, 1996), IAEA-TECDOC in Prepara-tion, International Atomic Energy Agency, Vienna (1997).

[31] NABIELEK, H., FUKUDA, K., KAMA, M.J., Fuels Technology, Closed-Cycle Gas-Turbine Modular High-Temperature Gas-Cooled Reactor, (Int. Workshop, Cambridge MA, 1991), PENFIELD, S.R., KASTEN, P.R., Massachusetts Institute of Technology (1991) 4-8 - 4-16.

[32] NICKEL, H., SCHUBERT, F., SCHUSTER, H., Evaluation of Alloys for Advanced High-Temperature Reactor Systems, Nucl. Eng. Des. 78 (1984) 251-265.

[33] NIEBEN, H.F., et al., Erprobung und Versuchsergebnisse des PNP-Testrohrenspalt-ofens in der EVA-H-Anlage, Report Jiil-2231, Research Center Julich (1988).

[34] PESCHEL, W., Analyse der Erzeugung von Methanol bzw. Wasserstoff aus einem modifizierten Hochofengichtgas unter Einsatz von Kernenergie aus dem Hochtemperaturreaktor, Report Jul-2031, Research Center Julich (1985).

[35] SANDSTEDE, G., Moglichkeiten zur Wasserstoff-Erzeugung mit verminderter Kohlendioxid-Emission fur zukunftige Energiesysteme, Chem.-Ing.-Tech. 63 (1991) 575-592.

[36] SCHULTEN, R., et al., The Pebble-Bed High-Temperature Reactor as a Source of Nuclear Process Heat, Vol 1: Conceptual Design, Report Jul-1113-RG, Research Center Julich (1974).

[37] SIMNAD, M.T., GOODJOHN, A.J., KUPJTZ, J., High-Temperature Helium Gas-Cooled Nuclear Reactors: Past Experience, Current Status and Future Prospects, Energy 16 (1991) No. 1/2, Special Issue, Pergamon Press, Oxford (1991).

[38] SINGH, Y., et al., The Nuclear Heated Steam Reformer - Design and Semitechnical Operating Experiences, Nucl. Eng. Des. 78 (1984) 179-194.

[39] STARR, C., SEARL, M.F., ALPERT, S., Energy Sources: A Realistic Outlook, Science 256 (1992) 981-987.

[40] WATANABE, K., et al., Evaluation of Materials Performance of Hastelloy Alloy XR for the High Temperature Engineering Test Reactor Components - Weldability and High Temperature Strength Properties, (3rd JAERI Symp., Oarai, 1996), Proc.

JAERI-Conf 96-010, Japan Atomic Energy Research Institute (1996) 368-382.

[41] WEISBRODT, I.A., Summary Report on Technical Experiences from High-Temperature Helium Turbomachinery Testing in Germany, (TCM, Beijing, 1995), Design and Development of Gas Cooled Reactors with Closed Cycle Gas Turbines, Report IAEA-TECDOC-899, International Atomic Energy Agency, Vienna (1996)

177-248.

[42] YAMADA, M., et al., A Preliminary Study on Co-Generation Systems with the Modular HTGR for Japanese Conditions, (TCM, Oarai, 1992), High Temperature Applications of Nuclear Energy, Report IAEA-TECDOC-761, International Atomic Energy Agency, Vienna (1994) 46-54.

Chapter 3

SAFETY CONSIDERATIONS CONCERNING