• Aucun résultat trouvé

Chapitre 1 Matrix metalloproteinases and their inhibitors in Fuchs endothelial corneal dystrophy

2.4 Perspectives de recherche

De plus amples expériences sont nécessaires afin de valider le rôle des MMPs dans la DECF. D’ailleurs, une suite à ce projet est déjà prévue. Par exemple, étant donné la baisse importante de MMP-10 observée chez les CECs DECF, nous aimerions

établir si une modulation (inhibition/activation) de la MMP-10 chez l’endothélium cornéen de patients sains et DECF mène à une modification de la MEC (accumulation/diminution). Pour ce faire, nous prévoyons de mettre en culture des CECs DECF et saines sur des lamelles de verre et les incuber avec de la MMP-10 ou TIMPs. Nous voulons par la suite évaluer le dépôt de MEC par IF en détectant la fibronectine, la laminine et le collagène de type IV (les principales composantes des guttae) dans le but d’évaluer l’effet de la MMP-10 et de son inhibition sur la MEC déposée. Nous avons d’ailleurs déjà testé la faisabilité de cette expérience en faisant déposer de la MEC par des CECs DECF et saines. Les CECs commencent à déposer de la MEC dès la première semaine post-confluence. De plus, nous avons observé que les CECs DECF semblent déposer plus de MEC que les CECs saines, confirmant que les CECs DECF conservent leur comportement pathologique in vitro.

Conclusion

Ce projet a mené à de nouvelles découvertes concernant les MMPs dans la DECF. Nous avons observé des différences intéressantes entre le profil des MMPs provenant de CECs DECF et celui provenant des CECs saines, autant au niveau de CECs in vitro que de spécimens natifs ex vivo. De plus, nous avons mis de l’avant l’influence de la morphologie cellulaire sur le profil des MMPs et des TIMPs et plus spécifiquement le fait que les CECs DECF ne sont pas influencées de la même façon que les CECs saines. Nos travaux suggèrent donc une contribution possible des MMPs dans la physiopathologie de la DECF, plus précisément, une contribution dans le processus d’accumulation excessive de MEC dans la DECF.

L’identification éventuelle d’une protéase clé pourrait mener au développement de nouvelles voies thérapeutiques, visant par exemple la dégradation des excroissances de la membrane basale vues dans la DECF, ce qui éviterait le recours aux greffes pour le traitement de cette maladie. En effet, l’utilisation de protéase telle la MMP-3 a déjà été suggérée comme traitement potentiel d’une maladie oculaire partageant un problème de MEC semblable à la DECF [201]. Les résultats de ce projet représentent donc un début qui pourrait aboutir à de réels changements dans les traitements disponibles et donc la vie des patients DECF.

Bibliographie

1. Findlen, P. and R. Bence. A History of the Eye. [cited 2019; Available from: https://web.stanford.edu/class/history13/earlysciencelab/body/eyespages/eye.html. 2. Tortora, G.J. and B. Derrickson, Principes d’anatomie et de physiologie. Éditions du

renouveau pédagogique ed. 2007, Quebec: Biological Sciences Textbooks, Inc. 3. Roat, M.I. Revue générale des troubles conjonctivaux et scléraux. 2018 Avr. 2018

[cited 2019; Available from: https://www.merckmanuals.com/fr- ca/professional/troubles-oculaires/troubles-conjonctivaux-et-

scl%C3%A9raux/revue-g%C3%A9n%C3%A9rale-des-troubles-conjonctivaux-et- scl%C3%A9raux.

4. Dubbelman, M., G.L. Van Der Heijde, and H.A. Weeber, The Thickness of the Aging Human Lens Obtained from Corrected Scheimpflug Images. Optom Vis Sci., 2001.

78(6): p. 411-6.

5. Koretz, J.F., G.H. Handelman, and N.P. Brown, Analysis of Human Crystalline Lens Curvature as a Function of Accommodative State and Age. Vision Res., 1984.

24(10): p. 1141-51.

6. Garner, L.F. and G. Smith, Changes in Equivalent and Gradient Refractive Index of the Crystalline Lens With Accommodation. Optom Vis Sci., 1997. 74(2): p. 114-9. 7. Brown, N., The Changes in Lens Curvature With Age. Exp Eye Res, 1974. 19(2): p.

175-83.

8. Al-Maskari, A. and D.F.P. Larkin, Cornea, in Vaughan & Asbury's General Ophthalmology, 19e, P. Riordan-Eva and J.J. Augsburger, Editors. 2017, McGraw- Hill Education: New York, NY.

9. Goel, M., et al., Aqueous Humor Dynamics: A Review. The Open Ophtalmology Journal, 2010. 4: p. 8.

10. DelMonte, D.W. and T. Kim, Anatomy and physiology of the cornea. J Cataract Refract Surg, 2011. 37(3): p. 588-98.

11. Sridhar, M.S., Anatomy of cornea and ocular surface. Indian J Ophthalmol, 2018.

66(2): p. 190-194.

12. Rüfer, F., A. Schröder, and C. Erb, White-to-White Corneal Diameter: Normal Values in Healthy Humans Obtained With the Orbscan II Topography System. Cornea, 2005. 24(3): p. 3.

13. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Overview of the Cornea: Structure, Function, and Development. Prog Mol Biol Transl Sci, 2015. 134: p. 7-23.

14. Feizi, S., et al., Central and peripheral corneal thickness measurement in normal and keratoconic eyes using three corneal pachymeters. J Ophthalmic Vis Res, 2014.

9(3): p. 296-304.

15. Feizi, S., Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol, 2018. 10: p. 2515841418815802.

16. Tuori, A., et al., The Immunohistochemical Composition of the Human Corneal Basement Membrane. Cornea, 1996. 15(3): p. 9.

17. Jacobsen, I.E., O.A. Jensen, and P. J.U., Structre and Composition of Bowman’s Membrane. Study by Frozen Resin Cracking. Acta Ophthalmol, 1984. 62(1): p. 15. 18. Meek, K.M. and C. Boote, The organization of collagen in the corneal stroma. Exp

Eye Res, 2004. 78(3): p. 503-12.

19. Meek, K.M. and C. Knupp, Corneal structure and transparency. Prog Retin Eye Res, 2015. 49: p. 1-16.

21. Hamrah, P., et al., The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci, 2003. 44(2): p. 581-9.

22. Hamrah, P. and D.M. R., Corneal Antigen-Presenting Cells. Chem Immunol Allergy, 2007. 92: p. 13.

23. Gambato, C., et al., Aging and corneal layers: an in vivo corneal confocal microscopy study. Graefes Arch Clin Exp Ophthalmol, 2015. 253(2): p. 267-75.

24. Rio-Cristobal, A. and R. Martin, Corneal assessment technologies: current status. Surv Ophthalmol, 2014. 59(6): p. 599-614.

25. N.C., J., et al., Cell cycle protein expression and proliferative status in human corneal cells. Invest Ophthalmol Vis Sci, 1996. 37(4): p. 645-655.

26. Bourne, W.M., L.R. Nelson, and D.O. Hodge, Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci, 1997. 38(3): p. 779-782. 27. Mimura, T. and N.C. Joyce, Replication competence and senescence in central and peripheral human corneal endothelium. Invest Ophthalmol Vis Sci, 2006. 47(4): p. 1387-96.

28. McGowan, S.L., et al., Stem Cell Markers in the Human Posterior Limbus and Corneal Endothelium of Unwounded and Wounded Corneas. Mol Vis, 2007. 13: p. 1984-2000.

29. Murphy, C., J. Alvarado, and R. Juster, Prenatal and postnatal growth of the human Descemet’s membrane. Invest Ophthalmol Vis Sci, 1984. 25(12): p. 1402-1415. 30. D.H., J., W.M. Bourne, and J. Campbell, The Ultrastructure of Descemet’s

Membrane: I. Changes With Age in Normal Corneas. Arch Ophthalmol, 1982.

100(12): p. 1942-1947.

31. Weller, J.M., et al., Extracellular Matrix Alterations in Late-Onset Fuchs’ Corneal Dystrophy. Invest Ophthalmol Vis Sci, 2014. 55(6): p. 3700-3708.

32. Roy, O., et al., Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci, 2015. 56(2): p. 1228-37.

33. Vedana, G., G. Villarreal, Jr., and A.S. Jun, Fuchs endothelial corneal dystrophy: current perspectives. Clin Ophthalmol, 2016. 10: p. 321-30.

34. Fischbarg, J., Water channels and their roles in some ocular tissues. Mol Aspects Med, 2012. 33(5-6): p. 638-41.

35. Hedbys, O.B. and C.H. Dohlman, A new method for the determination of the swelling pressure of the corneal stroma in vitro. Exp Eye Res, 1963. 2(2): p. 122-129.

36. Maurice, D.M., The Location of the Fluid Pump in the Cornea. J Physiol, 1972.

221(1): p. 43-54.

37. D., D. and M. D.M., The Metabolic Basis of the Fluid Pump in the Cornea. J Physiol, 1972. 221(1): p. 29-41.

38. Nanda, G. and D.P. Alone, REVIEW: Current understanding of the pathogenesis of Fuchs’ endothelial corneal dystrophy. Mol Vis, 2019. 25: p. 295-310.

39. Sarnicola, C., A.V. Farooq, and K. Colby, Fuchs Endothelial Corneal Dystrophy: Update on Pathogenesis and Future Directions. Eye Contact Lens, 2019. 45: p. 1- 10.

40. E, F., Dystrophia epithelialis corneae. Albr von Groefe’s Arch für Ophtalmol, 1910.

76(10): p. 478-508.

41. Krachmer, J.H., et al., Corneal Endothelial Dystrophy. A Study of 64 Families. Arch Ophthalmol, 1978. 96(11): p. 2036-2039.

42. Eghrari, A.O. and J.D. Gottsch, Fuchs' corneal dystrophy. Expert Rev Ophthalmol, 2010. 5(2): p. 147-159.

43. Adamis, A.P., et al., Fuchs’ endothelial dystrophy of the cornea. Surv Ophthalmol, 1993. 38(2): p. 149-68.

44. Moshirfar, M., et al., Fuchs Endothelial Dystrophy (FED). 2019: StatPearls Publishing LLC.

45. Zoega, G.M., et al., Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology, 2006. 113(4): p. 565-9.

46. Higa, A., et al., Prevalence of and Risk Factors for Cornea Guttata in a Population- Based Study in a South-western Island of Japan. Arch Ophthalmol, 2011. 129(3): p. 332-336.

47. America, E.B.A.o., 2016 Eye Banking Statistical Report. 2017.

48. Gain, P., et al., Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol, 2016. 134(2): p. 167-73.

49. Zhang, X., et al., Association of smoking and other risk factors with Fuchs' endothelial corneal dystrophy severity and corneal thickness. Invest Ophthalmol Vis Sci, 2013. 54(8): p. 5829-35.

50. Liu, C., et al., Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proc Natl Acad Sci U S A, 2020. 117(1): p. 573-583.

51. Yuen, H.K.L., et al., A Morphologic Study of Fuchs Dystrophy and Bullous Keratopathy. Cornea, 2005. 24: p. 319-327.

52. Elhalis, H., B. Azizi, and U. Jurkunas, Fuchs endothelial corneal dystrophy. Ocul Surf, 2010. 8: p. 173-184.

53. Schmedt, T., et al., Molecular bases of corneal endothelial dystrophies. Exp Eye Res, 2012. 95: p. 24-34.

54. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Fuchs Corneal Dystrophy. Prog Mol Biol Transl Sci, 2015. 134: p. 79-97.

55. Bates, A.K., H. Cheng, and R.W. Hiorns, Pseudophakic Bullous Keratopathy: Relationship With Endothelial Cell Density and Use of a Predictive Cell Loss Model. A Preliminary Report. Curr Eye Res, 1986. 5(5): p. May 1986.

56. Hoffer, K.J., Corneal decomposition after corneal endothelium cell count. Am J Ophtalmol, 1979. 87(2): p. 252-3.

57. Iwamoto, T. and A.G. DeVoe, Electron Miscroscopic Studies on Fuchs’ combined Dystrophy. I. Posterior Portion of the Cornea. Invest Ophthalmol, 1971. 10(1): p. 9- 28.

58. Kenney, M.C., Altered Expression of Aquaporins in Bullous Keratopathy and Fuchs' Dystrophy Corneas. Journal of Histochemistry and Cytochemistry, 2004. 52(10): p. 1341-1350.

59. Gottsch, J.D., et al., Fuchs corneal dystrophy: aberrant collagen distribution in an L450W mutant of the COL8A2 gene. Invest Ophthalmol Vis Sci, 2005. 46(12): p. 4504-11.

60. Bourne, W.M., J. D.H., and R.J. Campbell, The ultrastructure of Descemet’s membrane. III. Fuchs’ dystrophy. Arch Ophthalmol, 1982. 100: p. 1952-1955. 61. Zhang, C., et al., Immunohistochemistry and Electron Microscopy of Early-Onset

Fuchs Corneal Dystrophy in Three Cases With the Same L450W COL8A2 Mutation. Trans Am Ophtalmol Soc, 2006. 104: p. 85-97.

62. Goyer, B., et al., Extracellular Matrix and Integrin Expression Profiles in Fuchs Endothelial Corneal Dystrophy Cells and Tissue Model. Tissue Eng Part A, 2018.

24(7-8): p. 607-615.

63. Zaniolo, K., et al., Culture of human corneal endothelial cells isolated from corneas with Fuchs endothelial corneal dystrophy. Exp Eye Res, 2012. 94(1): p. 22-31. 64. Waring III, G.O., Posterior Collagenous Layer of the Cornea

65. Akhtar, S., et al., Ultrastructural Morphology and Expression of Proteoglycans, betaig-h3, tenascin-C, fibrillin-1, and Fibronectin in Bullous Keratopathy. Br J Ophthalmol, 2001. 85(6): p. 720-31.

66. Xia, D., et al., The Ultrastructures and Mechanical Properties of the Descemet’s Membrane in Fuchs endothelial Corneal Dystrophy. Sci Rep, 2016. 6(23096). 67. Brunette, I., et al., 3-D characterization of the corneal shape in Fuchs dystrophy and

pseudophakic keratopathy. Invest Ophthalmol Vis Sci, 2011. 52(1): p. 206-14. 68. Ham, L., et al., Refractive change and stability after Descemet membrane endothelial

keratoplasty. Effect of corneal dehydration-induced hyperopic shift on intraocular lens power calculation. J Cataract Refract Surg, 2011. 37(8): p. 1455-64.

69. Repp, D.J., et al., Fuchs' endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio. Ophthalmology, 2013. 120(4): p. 687-94.

70. Hecker, L.A., et al., Anterior keratocyte depletion in fuchs endothelial dystrophy. Arch Ophthalmol, 2011. 129(5): p. 555-61.

71. Ahuja, Y., et al., Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea, 2012. 31(11): p. 1257-63.

72. Wilson, S.E., M. Netto, and R. Ambrósio, Corneal cells: chatty in development, homeostasis,wound healing, and disease. American Journal of Ophthalmology, 2003. 136(3): p. 530-536.

73. You, L.K., F.E.; Völcker, H.E., Neurotrophic Factors in the Human Cornea. Invest Ophthalmol, 2000. 41(3): p. 692-702.

74. Biswas, S., et al., Missense Mutations in COL8A2, the Gene Encoding the alpha2 Chain of Type VIII Collagen, Cause Two Forms of Corneal Endothelial Dystrophy. Hum Mol Genet, 2001. 10(21): p. 2415-23.

75. Gottsch, J.D., et al., Inheritance of a Novel COL8A2 Mutation Defines a Distinct Early-Onset Subtype of Fuchs Corneal Dystrophy. Invest Ophthalmol, 2005. 46: p. 1934-1939.

76. Hamill, C.E., T. Schmedt, and U. Jurkunas, Fuchs endothelial cornea dystrophy: a review of the genetics behind disease development. Semin Ophthalmol, 2013. 28(5- 6): p. 281-6.

77. Zhang, J. and D.V. Patel, The Pathophysiology of Fuchs’ Endothelial Dystrophy—A review of Molecular and Cellular Insights. Exp Eye Res, 2015. 130: p. 97-105. 78. Zhang, J., C.N.J. McGhee, and D.V. Patel, The Molecular Basis of Fuchs' Endothelial

Corneal Dystrophy. Mol Diagn Ther, 2019. 23(1): p. 97-112.

79. Kelliher, C., et al., A cellular model for the investigation of Fuchs' endothelial corneal dystrophy. Exp Eye Res, 2011. 93(6): p. 880-8.

80. Levy, S.G., et al., The Composition of Wide-Spaced Collagen in Normal and Diseased Descemet’s Membrane. Curr Eye Res, 1996. 15(1): p. 45-52.

81. Jun, A.S., et al., An alpha 2 collagen VIII transgenic knock-in mouse model of Fuchs endothelial corneal dystrophy shows early endothelial cell unfolded protein response and apoptosis. Hum Mol Genet, 2012. 21(2): p. 384-93.

82. Park, M., et al., NaBC1 Is a Ubiquitous Electrogenic Na+ -Coupled Borate Transporter Essential for Cellular Boron Homeostasis and Cell Growth and Proliferation. Mol Cell, 2004. 16(3): p. 331-41.

83. Vilas, G.L., et al., Transmembrane water-flux through SLC4A11: a route defective in genetic corneal diseases. Hum Mol Genet, 2013. 22(22): p. 4579-90.

84. Jalimarada, S.S., et al., Ion transport function of SLC4A11 in corneal endothelium. Invest Ophthalmol Vis Sci, 2013. 54(6): p. 4330-40.

85. Vilas, G.L., et al., A Biochemical Framework for SLC4A11, the Plasma Membrane Protein Defective in Corneal Dystrophies. Biochemistry, 2011. 50(12): p. 2157-69.

86. Vilas, G.L., et al., Oligomerization of SLC4A11 Protein and the Severity of FECD and CHED2 Corneal Dystrophies Caused by SLC4A11 Mutations. Hum Mutat, 2012.

33(2): p. 419-28.

87. Khuc, E., et al., Comprehensive characterization of DNA methylation changes in Fuchs endothelial corneal dystrophy. PLoS One, 2017. 12(4): p. e0175112.

88. Zhang, W., et al., Human SLC4A11 Is a Novel NH3/H+ Co-transporter. J Biol Chem, 2015. 290(27): p. 16894-905.

89. Zhang, W., et al., Glutaminolysis Is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. EBioMedicine, 2017. 16: p. 292-301. 90. Liu, J., et al., Depletion of SLC4A11 causes cell death by apoptosis in an

immortalized human corneal endothelial cell line. Invest Ophthalmol Vis Sci, 2012.

53(7): p. 3270-9.

91. Riazuddin, S.A., et al., Mutations in LOXHD1, a recessive-deafness locus, cause dominant late-onset Fuchs corneal dystrophy. Am J Hum Genet, 2012. 90(3): p. 533- 9.

92. Afshari, N.A., et al., Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat Commun, 2017. 8: p. 14898.

93. Geroski, D.H., et al., Pump Function of the Human Corneal Endothelium. Effects of Age and Cornea Guttata. Ophthalmology, 1985. 92(6): p. 759-63.

94. Macnamara, E., et al., Aquaporin-1 Expression Is Decreased in Human and Mouse Corneal Endothelial Dysfunction. Mol Vis, 2004. 10: p. 51-6.

95. Burns, R.R., W.M. Bourne, and R.F. Brubaker, Endothelial Function in Patients with Cornea Guttata. Invest Ophthalmol Vis Sci, 1981. 20(1): p. 77-85.

96. Bergmanson, J.P., T.M. Sheldon, and J.D. Goosey, Fuchs’ Endothelial Dystrophy: A Fresh Look at an Aging Disease. Ophtalmic Physiol Opt, 1999. 19(13): p. 210-22. 97. Wilson, S.E., et al., Endothelial Function and Aqueous Humor Flow Rate in Patients

With Fuchs’ Dystrophy. Am J Ophtalmol, 1988. 106(3): p. 270-8.

98. McCartney, M.D., T.O. Wood, and B.J. McLaughlin, Moderate Fuchs’ endothelial dystrophy ATPase pump site density. Invest Ophthalmol Vis Sci, 1989. 30(7): p. 1560-4.

99. Kim, E.C., et al., Screening and Characterization of Drugs That Protect Corneal Endothelial Cells Against Unfolded Protein Response and Oxidative Stress. Invest Ophthalmol Vis Sci, 2017. 58(2): p. 892-900.

100. Engler, C., et al., Unfolded protein response in fuchs endothelial corneal dystrophy: a unifying pathogenic pathway? Am J Ophthalmol, 2010. 149(2): p. 194-202 e2. 101. Gottsch, J.D., et al., Serial analysis of gene expression in the corneal endothelium

of Fuchs' dystrophy. Invest Ophthalmol Vis Sci, 2003. 44(2): p. 594-9.

102. Jurkunas, U.V., et al., Evidence of Oxidative Stress in the Pathogenesis of Fuchs Endothelial Corneal Dystrophy. Am J Pathol, 2010. 177(5): p. 2278-89.

103. Matthaei, M., et al., Endothelial Cdkn1a (p21) overexpression and accelerated senescence in a mouse model of Fuchs endothelial corneal dystrophy. Invest Ophthalmol Vis Sci, 2012. 53(10): p. 6718-27.

104. Jurkunas, U.V., et al., Increased clusterin expression in Fuchs' endothelial dystrophy. Invest Ophthalmol Vis Sci, 2008. 49(7): p. 2946-55.

105. Tuberville, A.W., T.O. Wood, and B.J. McLaughlin, Cytochrome Oxidase Activity of Fuchs' Endothelial Dystrophy. Curr Eye Res, 1986. 5(12): p. 939-47.

106. Halilovic, A., et al., Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy. Antioxid Redox Signal, 2016. 24(18): p. 1072-83.

107. Benischke, A.S., et al., Activation of mitophagy leads to decline in Mfn2 and loss of mitochondrial mass in Fuchs endothelial corneal dystrophy. Sci Rep, 2017. 7(1): p. 6656.

108. Hidayat, A.A. and C. G.C., Epithelial Metaplasia of the Corneal Endothelium in Fuchs Endothelial Dystrophy. Cornea, 2006. 25(8): p. 956-9.

109. Okumura, N., et al., Involvement of ZEB1 and Snail1 in excessive production of extracellular matrix in Fuchs endothelial corneal dystrophy. Lab Invest, 2015. 95(11): p. 1291-304.

110. Watanabe, K., et al., A ROCK Inhibitor Permits Survival of Dissociated Human Embryonic Stem Cells. Nat Biotechnol, 2007. 25(6): p. 681-6.

111. Okumura, N., et al., Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci, 2009. 50(8): p. 3680-7.

112. Okumura, N., et al., Enhancement of corneal endothelium wound healing by Rho- associated kinase (ROCK) inhibitor eye drops. Br J Ophthalmol, 2011. 95(7): p. 1006-9.

113. Koizumi, N., et al., New Therapeutic Modality for Corneal Endothelial Disease Using Rho-associated Kinase Inhibitor Eye Drops. Cornea, 2014. 33: p. S25-31.

114. Macsai, M.S. and M. Shiloach, Use of Topical Rho Kinase Inhibitors in the Treatment of Fuchs Dystrophy After Descemet Stripping Only. Cornea, 2019. 38(5): p. 529-534. 115. Okumura, N., et al., The ROCK Inhibitor Eye Drop Accelerates Corneal Endothelium

Wound Healing. Invest Ophthalmol Vis Sci, 2013. 54(4): p. 2493-502.

116. Koizumi, N., et al., Rho-Associated Kinase Inhibitor Eye Drop Treatment as a Possible Medical Treatment for Fuchs Corneal Dystrophy. Cornea, 2013. 32(8): p. 1167-1170.

117. Okumura, N., et al., Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep, 2016. 6: p. 26113.

118. Kinoshita, S., et al., Injection of Cultured Cells With a ROCK Inhibitor for Bullous Keratopathy. N Engl J Med, 2018. 378(11): p. 995-1003.

119. Knezovic, I., et al., Therapeutic Efficacy of 5% NaCl Hypertonic Solution in Patients With Bullous Keratopathy. Coll Antropol, 2006. 30(2): p. 405-8.

120. Sridhar, M.S., et al., Anterior Stromal Puncture in Bullous Keratopathy: A Clinicopathologic Study. Cornea, 2001. 20(6): p. 573-9.

121. Nanavaty, M.A., X. Wang, and A.J. Shortt, Endothelial keratoplasty versus penetrating keratoplasty for Fuchs endothelial dystrophy. Cochrane Database Syst Rev, 2014(2): p. CD008420.

122. Van den Bogerd, B., et al., A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol, 2018. 63(2): p. 149-165.

123. Murphy, G. and H. Nagase, Progress in matrix metalloproteinase research. Mol Aspects Med, 2008. 29(5): p. 290-308.

124. Nagase, H., R. Visse, and G. Murphy, Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006. 69(3): p. 562-73.

125. Iyer, R.P., et al., The history of matrix metalloproteinases: milestones, myths, and misperceptions. Am J Physiol Heart Circ Physiol, 2012. 303(8): p. H919-30.

126. Woessner Jr, J.F., Catabolism of Collagen and Non-Collagen Protein in the Rat Uterus During Post-Partum Involution. Biochem J, 1962. 83(2): p. 304-14.

127. Woessner Jr, J.F., MMPs and TIMPs--an Historical Perspective. Mol Biotechnol, 2002. 22(1): p. 33-49.

128. Osenkowski, P., M. Toth, and R. Fridman, Processing, shedding, and endocytosis of membrane type 1-matrix metalloproteinase (MT1-MMP). J Cell Physiol, 2004.

129. Snoek-Van Beurden, P.A.M. and J.W. Von Den Hoff, Zymographic Techniques for the Analysis of Matrix Metalloproteinases and Their Inhibitors. Biotechniques, 2005.

38(1): p. 73-83.

130. Springman, E.B., et al., Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a "cysteine switch" mechanism for activation. Proc Natl Acad Sci U S A, 1990. 87(1): p. 364-8.

131. Van Wart, H.E. and H. Birkedal-Hansen, The Cysteine Switch: A Principle of Regulation of Metalloproteinase Activity With Potential Applicability to the Entire Matrix Metalloproteinase Gene Family. Proc Natl Acad Sci U S A, 1990. 87(14): p. 5578-82.

132. Park, A.J., et al., Mutational Analysis of the Transin (Rat Stromelysin) Autoinhibitor Region Demonstrates a Role for Residues Surrounding the "Cysteine Switch". J Biol Chem, 1991. 266(3): p. 1584-90.

133. Visse, R. and H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 2003. 92(8): p. 827-39.

134. Nagase, H. and J.F. Woessner Jr, Matrix Metalloproteinases. J Biol Chem, 1999.

274(31): p. 21491-4.

135. Sternlicht, M.D. and Z. Werb, How Matrix Metalloproteinases Regulate Cell Behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516.

136. Chakraborti, S., et al., Regulation of Matrix Metalloproteinases: An Overview. Mol Cell Biochem, 2003. 253(1): p. 269-85.

137. Lee, S., et al., Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol, 2005. 169(4): p. 681-91. 138. Pei, D. and S.J. Weiss, Furin-dependent Intracellular Activation of the Human

stromelysin-3 zymogen. Nature, 1995. 375(6528): p. 244-7.

139. Murphy, G., et al., Stromelysin is an activator of procollagenase. Biochem J, 1987.

248: p. 265-268.

140. Marchenko, G.N., et al., Characterization of Matrix metalloproteinase-26, a Novel Metalloproteinase Widely Expressed in Cancer Cells of Epithelial Origin. Biochem J, 2001. 356: p. 705-18.

141. Jones, C., Matrix metalloproteinases A review of their structure and role in acute coronary syndrome. Cardiovascular Research, 2003. 59(4): p. 812-823.

142. English, W.R., et al., Characterization of the role of the "MT-loop": an eight-amino acid insertion specific to progelatinase A (MMP2) activating membrane-type matrix metalloproteinases. J Biol Chem, 2001. 276(45): p. 42018-26.

143. Knauper, V., et al., Cellular Mechanisms for Human procollagenase-3 (MMP-13) Activation. Evidence That MT1-MMP (MMP-14) and Gelatinase a (MMP-2) Are Able to Generate Active Enzyme. J Biol Chem, 1996. 271(29): p. 17124-31.

144. Ohuchi, E., et al., Membrane Type 1 Matrix Metalloproteinase Digests Interstitial Collagens and Other Extracellular Matrix Macromolecules. J Biol Chem, 1997.

272(4): p. 2446-51.

145. Olson, M.W., et al., Kinetic Analysis of the Binding of Human Matrix metalloproteinase-2 and -9 to Tissue Inhibitor of Metalloproteinase (TIMP)-1 and TIMP-2. J Biol Chem, 1997. 272(47): p. 29975-83.

146. Lee, M.H., S. Atkinson, and G. Murphy, Identification of the extracellular matrix (ECM) binding motifs of tissue inhibitor of metalloproteinases (TIMP)-3 and effective transfer to TIMP-1. J Biol Chem, 2007. 282(9): p. 6887-98.

147. Loffek, S., O. Schilling, and C.W. Franzke, Series "matrix metalloproteinases in lung health and disease": Biological role of matrix metalloproteinases: a critical balance. Eur Respir J, 2011. 38(1): p. 191-208.

148. Gomez, D.E., et al., Tissue Inhibitors of Metalloproteinases: Structure, Regulation and Biological Functions. Eur J Cell Biol, 1997. 74(2): p. 111-22.

149. Hoegy, S.E., et al., Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J Biol Chem, 2001. 276(5): p. 3203-14.

150. Lovelock, J.D., et al., Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol, 2005.

288(2): p. H461-8.

151. Price, B., et al., Neutrophil Tissue Inhibitor of Matrix metalloproteinases-1 Occurs in Novel Vesicles That Do Not Fuse With the Phagosome. J Biol Chem, 2000. 275(36): p. 28308-15.

152. Kenney, M.C., et al., Localization of TIMP-1, TIMP-2, TIMP-3, Gelatinase A and Gelatinase B in Pathological Human Corneas. Curr Eye Res, 1998. 17(3): p. 238-46. 153. Bode, W., et al., Insights Into MMP-TIMP Interactions. Ann N Y Acad Sci, 1999. 878:

p. 73-91.

154. Konttinen, Y.T., et al., Analysis of 16 Different Matrix Metalloproteinases (MMP-1 to MMP-20) in the Synovial Membrane: Different Profiles in Trauma and Rheumatoid

Documents relatifs