• Aucun résultat trouvé

Ce projet de recherche a permis de comprendre les mécanismes de base du chauffage par résistance électrique dans des systèmes utilisant du béton électriquement conducteur, en passant de la formulation du mélange au transfert d’électricité au béton par les électrodes et à l’optimisation de la consommation de l’énergie par automatisation. Toutefois, certaines lacunes restent à combler quant à la durabilité du matériau ainsi qu’à l’enregistrement des données. Des efforts de recherche doivent donc être orientés en ce sens.

Afin de pousser plus en profondeur l’ensemble des développements de ce projet, des projets de recherche pourraient être mis en place afin de développer des applications concrètes autres que des chaussées, comme par exemple des systèmes préfabriqués chauffants de drainage pour tunnels, des mobiliers urbains chauffants, des toitures chauffantes, des pistes cyclables, etc. La configuration d’électrodes développée peut être utilisée dans pratiquement n’importe quelle forme géométrique, en autant que la distance entre la phase et le neutre du courant alternatif soit respectée. La géométrie pour permettre la mise en place d’isolation pour minimiser les pertes de chaleur dans des formes complexes (mobilier urbain, drainage, etc.) représente également un défi, et il serait intéressant de l’étudier dans des travaux futurs. Enfin, tel que mentionné au chapitre 3, il sera intéressant d’étudier la prédiction de la résistivité électrique de mélanges de béton conducteur d’un point de vue micromécanique, permettant ainsi d’optimiser des mélanges sans avoir à refaire une panoplie de mélanges en laboratoire.

107

Bibliographie

[1] S. Yehia, C. Y. Tuan, D. Ferdon, and B. Chen, “Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning, Optimization, and Properties,” ACI Materials Journal, pp. 172– 181, Apr-2000.

[2] A. Benedetto, “A decision support system for the safety of airport runways: the case of heavy rainstorms,” Transp. Res. Part Policy Pract., vol. 36, no. 8, pp. 665–682, Oct. 2002.

[3] Institut Canadien d’Information sur la Santé (ICIS), “Statistiques sur les visites au service d’urgence et les hospitalisations à la suite d’un traumatisme ou d’une blessure, 2015-2016.” Jul- 2017.

[4] P.-A. NORMANDIN, “Déneiger coûte plus d’un milliard par an au Québec,” LaPresse, 11-Dec- 2014.

[5] US Department of Transportation, Federal Highway Administration, “Heated bridge technology, Publication No. FHWA-RD-99-158.” Jun-1999.

[6] S. Yehia and C. Tuan, “Thin conductive concrete overlay for bridge deck deicing and anti-icing,” Transp. Res. Rec. J. Transp. Res. Board, no. 1698, pp. 45–53, 2000.

[7] A. Sassani, H. Ceylan, S. Kim, A. Arabzadeh, P. C. Taylor, and K. Gopalakrishnan,

“Development of Carbon Fiber-modified Electrically Conductive Concrete for Implementation in Des Moines International Airport,” Case Stud. Constr. Mater., vol. 8, pp. 277–291, Jun. 2018. [8] FRÉDÉRIQUE GIGUÈRE, “Le père de Gregory Charles rend l’âme: sept morts dans des

accidents de déneigement cette année,” Le Journal de Montréal, 31-Jan-2018.

[9] Stephen A. Ketcham, Edward J. Fleege, L. David Minsk, and Robert R. Blackburn, “Manual of Practice for an Effective Anti-icing Program: A Guide For Highway Winter Maintenance Personnel.” FHWA, Jun-1996.

[10] C. M. Hansson, A. Poursaee, and S. J. Jaffer, “Corrosion of Reinforcing Bars in Concrete,” pp. 106–124, Dec-2012.

[11] Jean-Philippe Robitaille, “LES SELS DE VOIRIE AU QUÉBEC : PROPOSITION D’UNE DÉMARCHE DE GESTION ENVIRONNEMENTALE SPÉCIFIQUE AUX ZONES

VULNÉRABLES,” CENTRE UNIVERSITAIRE DE FORMATION EN ENVIRONNEMENT - Université de Sherbrooke, Sherbrooke, Canada, 2011.

[12] Victoria R. Kelly, Stuart E. G. Findlay, William H. Schlesinger, Kirsten Menking, and Allison Morrill Chatrchyan, “ROAD SALT MOVING TOWARD THE SOLUTON.” The Cary Institute of Ecosystem Studies.

[13] Ministère du Développement durable, de l’Environnement et des Parcs (MDDEP) 2002b, “Guide d’aménagement des lieux d’élimination de neige et mise en oeuvre du Règlement sur les lieux d’élimination de neige. In MDDEP. Ministère du Développement durable, de l’Environnement et des Parcs. Neiges usées.” 2002.

[14] JAMES MITCHELL CROW, “The concrete conundrum,” Chemistry world, pp. 62–66, 27-Feb- 2008.

[15] J. Zhang, D. K. Das, and R. Peterson, “Selection of Effective and Efficient Snow Removal and Ice Control Technologies for ColdRegion Bridges,” Journal of Civin, Environmental, and Architectural Engineering, 2009.

[16] A. Arabzadeh, H. Ceylan, S. Kim, K. Gopalakrishnan, and A. Sassani, “Superhydrophobic Coatings on Asphalt Concrete Surfaces: Toward Smart Solutions for Winter Pavement Maintenance,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2551, pp. 10–17, Jan. 2016.

108

[17] H. Yan et al., “Super water-repellent surfaces with fractal structures and their potential

application to biological studies,” Colloids Surf. Physicochem. Eng. Asp., vol. 284–285, pp. 490– 494, Aug. 2006.

[18] “Anti-Icing on Structures Using Fixed Automated Spray Technology (FAST),” p. 19. [19] C. Nardi, “Pont déglacé sans saleuse,” Journal de Montréal, 25-Feb-2016.

[20] H. T. Zwahlen, A. Russ, and S. Vatan, “Evaluation of ODOT Roadway/Weather Sensor Systems for Snow and Ice Removal Operations PART I: RWIS. Final Report.” Human Factors and Ergonomics Laboratory Ohio Research Institute for Transportation and the Environment, Jun- 2003.

[21] H. Abdualla, H. Ceylan, S. Kim, K. Gopalakrishnan, P. C. Taylor, and Y. Turkan, “System Requirements for Electrically Conductive Concrete Heated Pavements,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2569, pp. 70–79, Jan. 2016.

[22] C. Y. Tuan, “Conductive concrete for bridge deck deicing and anti-icing - A Final Report submitted to Nebraska Department of Roads.” Jul-2004.

[23] Y. Lai, Y. Liu, and D. Ma, “Automatically melting snow on airport cement concrete pavement with carbon fiber grille,” Cold Reg. Sci. Technol., vol. 103, pp. 57–62, Jul. 2014.

[24] R. Mirzanamadi, C.-E. Hagentoft, P. Johansson, and J. Johnsson, “Anti-icing of road surfaces using Hydronic Heating Pavement with low temperature,” Cold Reg. Sci. Technol., vol. 145, pp. 106–118, Jan. 2018.

[25] H. Wang, L. Liu, and Z. Chen, “Experimental investigation of hydronic snow melting process on the inclined pavement,” Cold Reg. Sci. Technol., vol. 63, no. 1–2, pp. 44–49, Aug. 2010. [26] P. Pan, S. Wu, Y. Xiao, and G. Liu, “A review on hydronic asphalt pavement for energy

harvesting and snow melting,” Renew. Sustain. Energy Rev., vol. 48, pp. 624–634, Aug. 2015. [27] P. Xie, P. Gu, and J. J. Beaudoin, “Electrical percolation phenomena in cement composites

containing conductive fibres,” J. Mater. Sci., vol. 31, no. 15, pp. 4093–4097, 1996.

[28] J. P. Joule, “XXXVIII. On the heat evolved by metallic conductors of electricity, and in the cells of a battery during electrolysis,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 19, no. 124, pp. 260– 277, Oct. 1841.

[29] “Qu’est-ce que l’effet Joule,” Connaissance des énergies, 09-Jul-2013. .

[30] P. Xie and J. J. Beaudoin, “Electrically conductive concrete and its application in deicing,” ACI Spec. Publ., vol. 154, pp. 399–399, 1995.

[31] Christopher Y. Tuan, “Electrical Resistance Heating of Conductive Concrete Containing Steel Fibers and Shavings,” ACI Mater. J., vol. 101, no. 1, 2004.

[32] ASHRAE, “ASHRAE Handbook 2011 - Chapter 51.” 2011.

[33] Z. Hou, Z. Li, and J. Wang, “Electrical conductivity of the carbon fiber conductive concrete,” J. Wuhan Univ. Technol.-Mater Sci Ed, vol. 22, no. 2, pp. 346–349, Jun. 2007.

[34] Z. Hou, Z. Li, and J. Wang, “Electrically conductive concrete for heating using steel bars as electrodes,” J. Wuhan Univ. Technol.-Mater Sci Ed, vol. 25, no. 3, pp. 523–526, Jun. 2010. [35] E. Heymsfield, A. Osweiler, P. Selvam, and M. Kuss, “Developing Anti-Icing Airfield Runways

Using Conductive Concrete with Renewable Energy,” J. Cold Reg. Eng., vol. 28, no. 2, p. 04014001, Jun. 2014.

[36] J. Wu, J. Liu, and F. Yang, “Three-phase composite conductive concrete for pavement deicing,” Constr. Build. Mater., vol. 75, pp. 129–135, Jan. 2015.

[37] Y. Bai, W. Chen, B. Chen, and R. Tu, “Research on Electrically Conductive Concrete with Double-Layered Stainless Steel Fibers for Pavement Deicing,” ACI Mater. J., vol. 114, no. 6, Dec. 2017.

109

[38] H. Abdualla et al., “Configuration of Electrodes for Electrically Conductive Concrete Heated Pavement Systems,” 2017, pp. 1–9.

[39] S. A. Yehia and C. Y. Tuan, “Airfield Pavement Deicing with Conductive Concrete Overlay,” p. 13.

[40] C. Y. Tuan, “Implementation of conductive concrete for deicing (Roca Bridge),” 2008. [41] M. Weber and M. R. Kamal, “Estimation of the volume resistivity of electrically conductive

composites,” Polym. Compos., vol. 18, no. 6, pp. 711–725, Dec. 1997.

[42] F. Lux, “Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials,” J. Mater. Sci., vol. 28, no. 2, pp. 285–301, 1993.

[43] X. Liang, L. Ling, C. Lu, and L. Liu, “Resistivity of carbon fibers/ABS resin composites,” Mater. Lett., vol. 43, no. 3, pp. 144–147, 2000.

[44] M.-S. Cao, X.-X. Wang, W.-Q. Cao, and J. Yuan, “Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding,” J. Mater. Chem. C, vol. 3, no. 26, pp. 6589–6599, 2015.

[45] “‘Properties of Commercial Metals and Alloys’ in CRC Handbook of Chemistry and Physics, 98th Edition (Internet Version 2018), John R. Rumble, ed., CRC Press/Taylor & Francis, Boca Raton, FL.” .

[46] R. A. Matula, “Electrical resistivity of copper, gold, palladium, and silver,” J. Phys. Chem. Ref. Data, vol. 8, no. 4, pp. 1147–1298, Oct. 1979.

[47] S. Türkel and V. Alabas, “The effect of excessive steam curing on Portland composite.pdf.” Cement and Concrete Research 35 405-411, 2005.

[48] B. Graybeal, J. Hartamann, and V. Perry, “Ultra-high performance concrete for highway bridge,” in FIB Symposium, Avignon-26-28 April, 2004.

[49] ASTM International, West Conshohocken, PA, “ASTM Standard C39/C39M-17b, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.” 2017.

[50] ASTM International, West Conshohocken, PA, “ASTM Standard C496/C496M-17,Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens.” 2017.

[51] L. E. Nielsen, “The Thermal and Electrical Conductivity of Two-Phase Systems,” Ind. Eng. Chem. Fundam., vol. 13, no. 1, pp. 17–20, Feb. 1974.

[52] P. Lura, O. M. Jensen, and K. van Breugel, “Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms,” Cem. Concr. Res., vol. 33, no. 2, pp. 223–232, Feb. 2003.

[53] W. Wilson, V. Labattaglia, A. Tagnit-Hamou, and L. Sorelli, “Will Blended-Cement Systems with Similar ASTM C1202 Chloride Penetration Potentials Resist Similarly to Corrosion,” p. 5. [54] M. Safiuddin, M. Yakhlaf, and K. A. Soudki, “Key mechanical properties and microstructure of

carbon fibre reinforced self-consolidating concrete,” Constr. Build. Mater., vol. 164, pp. 477–488, Mar. 2018.

[55] H. W. Whittington, J. McCarter, and M. C. Forde, “The conduction of electricity through concrete,” pp. 48–60, Mar-1981.

[56] P. Taylor, H. Ceylan, E. Yurdakul, and F. Bektas, “Development of Performance Properties of Ternary Mixtures and Concrete Pavement Mixture Design and Analysis MDA : Effect of Paste Quality on Fresh and Hardened Properties of Ternary Mixtures.” National Concrete Pavement Technology Center, Jul-2012.

[57] K. L. Scrivener, A. K. Crumbie, and P. Laugesen, “The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete,” Interface Sci., vol. 12, no. 4, pp. 411–421, Oct. 2004. [58] R. F. Lebrasseur, D. Conciatori, and L. Sorelli, “Development of electrically conductive concrete

110

[59] W. Chen and P. Gao, “Performances of Electrically Conductive Concrete with Layered Stainless Steel Fibers,” 2012, pp. 164–172.

[60] National Snow and Ice Data Center, Boulder, Colorado USA, “How Snow Forms.” .

[61] A. A. Mutiu, O. O. Samson, S. O. Oladipupo, and Z. M. Fatimah, “Evaluation of splitting tensile and compressive strength relationship of self-compacting concrete,” J. King Saud Univ. – Eng. Sci., 2017.

[62] “Ouranos (2015). Vers l’adaptation. Synthèse des connaissances sur les changements climatiques au Québec. Partie 1 : Évolution climatique au Québec. Édition 2015. Montréal, Québec : Ouranos, 114 p.” .

[63] A. M. Soliman and M. L. Nehdi, “Effect of drying conditions on autogenous shrinkage in ultra-high performance concrete at early-age,” Mater. Struct., vol. 44, no. 5, pp. 879–899, Jun. 2011. [64] ASTM International, West Conshohocken, PA, “ASTM C642-13, Standard Test Method for

Density, Absorption, and Voids in Hardened Concrete.” 2013.

[65] F. Abbasy, F. P. Hassani, S. A. G. Madiseh, J. Côté, and M. R. Nokken, “An Experimental Study on the Effective Parameters of Thermal Conductivity of Mine Backfill,” Heat Transf. Eng., vol. 35, no. 13, pp. 1209–1224, Sep. 2014.

[66] ASTM International, West Conshohocken, PA, “ASTM C666/C666M−15, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing.” 2015.

[67] ASTM International, West Conshohocken, PA, “ASTM C1202-17, Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration.” 2017.

[68] J. P. Vincler, D. Conciatori, and L. Sorelli, “MODIFIED ACCELERATED CHLORIDE MIGRATION TESTS FOR ULTRA-HIGH-PERFORMANCE FIBER REIFNORCED CONCRETE: EFFECT OF THE FIBER KIND AND VOLUME CONTENT,” p. 14, Apr. 2018.

[69] Nordtest, “Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments (NT BUILD 492).” Approved-1999.

[70] Bureau de normalisation du Québec, “BNQ 2621-905/2012, Détermination de la résistance à l’écaillage du béton soumis à des cycles de gel-dégel en contact avec des sels de déglaçage.” 2012.

[71] J.-P. Ollivier and J.-M. Torrenti, “Durabilité des bétons. Chapitre 3: La structure poreuse des bétons et les propriétés de transfert.” .

[72] Ministère des Transports, de la Mobilité Durable et de l’Électrification des Transports, “Norme 3101 - Tome VII - Matériaux - Chapitre 3 - Bétons et produits connexes.” 15-Dec-2017. [73] S. AFGC, “Bétons fibrés à ultra-hautes performances–Recommandations,” AFGC Fr., 2013. [74] Ministère des Transports, de la Mobilité Durable et de l’Électrification des Transports, “Manuel de

conception des structures,” no. Révision 1, p. 386, Dec. 2017.

[75] T. L. Bergman and F. P. Incropera, Eds., Fundamentals of heat and mass transfer, 7th ed. Hoboken, NJ: Wiley, 2011.

[76] P. Spiesz and H. J. H. Brouwers, “Study on the Chloride Diffusion Coefficient in Concrete Obtained in Electrically Accelerated Tests,” in Durability of Reinforced Concrete from Composition to Protection, C. Andrade, J. Gulikers, and R. Polder, Eds. Cham: Springer International Publishing, 2015, pp. 169–178.

[77] ASP construction, “Cours Santé et sécurité générale sur les chantiers de construction - Guide de l’apprenant 5e édition - Module 13 : Électricité 1.” .

Documents relatifs