• Aucun résultat trouvé

Nous avons proposé un concept de cellules élémentaires bi-stables compatibles entre elles, de sorte que le seul facteur à prendre en considération dans la détermination du comportement de la chaîne soit la bi-stabilité de la cellule élémentaire. Dans le but de comprendre comment fonctionne la plaque indentée, il serait interessant d’introduire l’effet des incompatibilités des déformations dans le cas unidirectionnel des bandes indentées, et d’étendre l’étude de ces effets d’incompatibilités aux plaques indentées. On pourrait alors voir si il possible d’identifier un modèle phénoménologique tenant compte à la fois de la bi-stabilité et de l’accommodation des cellules entre elles.

Nous avons vu dans le chapitre5qu’il y a plusieurs façon d’obtenir une réponse inhomogène. Le phénomène de propagation, et donc l’introduction d’inhomogénéité, est indispensable afin de pouvoir modéliser correctement le mécanisme de transition d’une chaîne de cellule bi-stable. Une autre perspective intéressante serait d’étudier la meilleur façon d’introduire cette inhomogénéité.

Abeyaratne, R. and Knowles, J. K. (2006). Evolution of phase transitions : a continuum theory. Cambridge University Press.

Allaire, G. (2005). Analyse numérique et optimisation : Une introductiona la modélisation ma-thématique eta la simulation numérique. Mathematiques appliquees. Ecole polytechnique, Pa-laiseau, page 25.

Antman, S. S. (2005). Problems in nonlinear elasticity. Nonlinear Problems of Elasticity, pages 513–584.

Ashby, M. and Brechet, Y. (2003). Designing hybrid materials. Acta materialia, 51(19) :5801– 5821.

Audoly, B. (2013). Thin structures.

Audoly, B. and Pomeau, Y. (2010). Elasticity and geometry : from hair curls to the non-linear response of shells.

Balay, S., Abhyankar, S., Adams, M., Brune, P., Buschelman, K., Dalcin, L., Gropp, W., Smith, B., Karpeyev, D., Kaushik, D., et al. (2016). Petsc users manual revision 3.7. Technical report, Argonne National Lab.(ANL), Argonne, IL (United States).

Baldelli, A. L., Maurini, C., and Pham, K. (2014). A gradient approach for the macroscopic modeling of superelasticity in softening shape memory alloys. International Journal of Solids and Structures.

Benichou, I. and Givli, S. (2013). Structures undergoing discrete phase transformation. Journal of the Mechanics and Physics of Solids, 61(1) :94–113.

Bertoldi, K. and Boyce, M. (2008). Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures. Physical Review B, 77(5) :052105.

Chapelle, D. and Bathe, K.-J. (1998). Fundamental considerations for the finite element analysis of shell structures. Computers &amp ; Structures, 66(1) :19–36.

Charlotte, M. and Truskinovsky, L. (2008). Towards multi-scale continuum elasticity theory. Continuum Mechanics and Thermodynamics, 20(3) :133–161.

Del Piero, G. and Truskinovsky, L. (2009). Elastic bars with cohesive energy. Continuum Me-chanics and Thermodynamics, 21(2) :141–171.

Deuflhard, P. (2011). Newton methods for nonlinear problems : affine invariance and adaptive algorithms, volume 35. Springer Science &amp ; Business Media.

Drucker, D. C. (1957). A definition of stable inelastic material. Technical report, DTIC Docu-ment.

Ericksen, J. (1975). Equilibrium of bars. Journal of Elasticity, 5(3-4) :191–201.

Ericksen, J. (2008). On the cauchy—born rule. Mathematics and Mechanics of Solids, 13(3-4) :199–220.

Ericksen, J. L. (1998). Introduction to the Thermodynamics of Solids, volume 131. Springer.

Fedelich, B. and Zanzotto, G. (1992). Hysteresis in discrete systems of possibly interacting elements with a double-well energy. Journal of Nonlinear Science, 2(3) :319–342.

Galerkin, B. G. (1915). Développement en série des solutions de quelques problèmes d’équilibre élastique des poutres et des plaques. In Vestnik Ingenerovi Tekhnikov.

Geymonat, G., Müller, S., and Triantafyllidis, N. (1993). Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity. Archive for rational mechanics and analysis, 122(3) :231–290.

Gibson, L. J. and Ashby, M. F. (1999). Cellular solids : structure and properties. Cambridge university press.

Gong, L., Kyriakides, S., and Jang, W.-Y. (2005). Compressive response of open-cell foams. part i : Morphology and elastic properties. International Journal of Solids and Structures, 42(5-6) :1355–1379.

Hallai, J. F. and Kyriakides, S. (2013). Underlying material response for lüders-like instabilities. International Journal of Plasticity, 47 :1–12.

Halphen, B. and Nguyen, Q. S. (1975). Sur les matériaux standard généralisés. Journal de mécanique, 14 :39–63.

Hamouche, W., Maurini, C., Vincenti, A., and Vidoli, S. (2016). Basic criteria to design and produce multistable shells. Meccanica, 51(10) :2305–2320.

Hernandez, V., Roman, J. E., and Vidal, V. (2005). Slepc : A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Transactions on Mathematical Software (TOMS), 31(3) :351–362.

Hughes, T. J. (2012). The finite element method : linear static and dynamic finite element analysis. Courier Corporation.

Kelley, C. T. and Keyes, D. E. (1998). Convergence analysis of pseudo-transient continuation. SIAM Journal on Numerical Analysis, 35(2) :508–523.

Kohn, R. V. (1991). The relaxation of a double-well energy. Continuum Mechanics and Ther-modynamics, 3(3) :193–236.

Langtangen, H. P., Barth, T. J., and Griebel, M. (2006). Python scripting for computational science, volume 3. Springer.

Logg, A., Mardal, K.-A., and Wells, G. (2012). Automated solution of differential equations by the finite element method : The FEniCS book, volume 84. Springer Science &amp ; Business Media.

Luenberger, D. G., Ye, Y., et al. (1984). Linear and nonlinear programming, volume 2. Springer.

Maddalena, F., Percivale, D., Puglisi, G., and Truskinovsky, L. (2009). Mechanics of reversible unzipping. Continuum Mechanics and Thermodynamics, 21(4) :251–268.

Marigo, J. (1989). Constitutive relations in plasticity, damage and fracture mechanics based on a work property. Nuclear Engineering and Design, 114(3) :249 – 272.

Mielke, A. and Ortiz, M. (2008). A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM : Control, Optimisation and Calculus of Variations, 14(3) :494–516.

Mielke, A. and Roubícek, T. (2015). Rate-independent systems. Theory and Application (in preparation).

Moumni, Z. (1995). Sur la modélisation du changement de phase solide : application aux maté-riaux à mémoire de forme et à l’endommagement fragile partiel. PhD thesis, Ecole Nationale des Ponts et Chaussées.

Müller, I. and Xu, H. (1991). On the pseudo-elastic hysteresis. Acta metallurgica et materialia, 39(3) :263–271.

Müller, S. (1977). A model for an elastic-plastic body. Archive for Rational Mechanics and Analysis.

Müller, S. (1999). Variational models for microstructure and phase transitions, volume 1713, pages 85–210. Springer Berlin Heidelberg.

Nocedal, J. and Wright, S. J. (2006). Numerical optimization, second edition. Numerical opti-mization, pages 497–528.

Patoor, E., Eberhardt, A., and Berveiller, M. (1989). Thermomechanical behavior of shape memory alloys. In European Symposium on Martensitic Transformations, pages 133–140. EDP Sciences.

Pham, K. (2014). An energetic formulation of a one-dimensional model of superelastic sma. Continuum Mech. Thermodyn., 26(6) :833–857.

Puglisi, G. and Truskinovsky, L. (2000). Mechanics of a discrete chain with bi-stable elements. Journal of the Mechanics and Physics of Solids, 48(1) :1–27.

Puglisi, G. and Truskinovsky, L. (2002a). A mechanism of transformational plasticity. Continuum Mechanics and Thermodynamics, 14(5) :437–457.

Puglisi, G. and Truskinovsky, L. (2002b). Rate independent hysteresis in a bi-stable chain. Journal of the Mechanics and Physics of Solids, 50(2) :165–187.

Puglisi, G. and Truskinovsky, L. (2005). Thermodynamics of rate-independent plasticity. Journal of the Mechanics and Physics of Solids, 53(3) :655–679.

Rall, L. (1974). A note on the convergence of newton’s method. SIAM Journal on Numerical Analysis, 11(1) :34–36.

Reissner, E. (1972). On one-dimensional finite-strain beam theory : the plane problem. Zeitschrift für angewandte Mathematik und Physik (ZAMP), 23(5) :795–804.

Seffen, K. (2006). Mechanical memory metal : a novel material for developing morphing engi-neering structures. Scripta materialia, 55(4) :411–414.

Seydel, R. (2009). Practical bifurcation and stability analysis, volume 5. Springer Science &amp ; Business Media.

Shaw, J. A. and Kyriakides, S. (1995). Thermomechanical aspects of niti. Journal of the Me-chanics and Physics of Solids, 43(8) :1243–1281.

Simo, J. C. (1985). A finite strain beam formulation. the three-dimensional dynamic problem. part i. Computer methods in applied mechanics and engineering, 49(1) :55–70.

Sun, Q. and He, Y. (2008). A multiscale continuum model of the grain-size dependence of the stress hysteresis in shape memory alloy polycrystals. International Journal of Solids and Structures, 45(13) :3868 – 3896.

Sun, Q. P. and Hwang, K. C. (1993a). Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—i. derivation of general relations. Journal of the Mechanics and Physics of Solids, 41(1) :1–17.

Sun, Q. P. and Hwang, K. C. (1993b). Micromechanics modelling for the constitutive behavior of polycrystalline shape memory alloys—ii. study of the individual phenomena. Journal of the Mechanics and Physics of Solids, 41(1) :19–33.

Truskinovsky, L. and Vainchtein, A. (2004). The origin of nucleation peak in transformational plasticity. Journal of the Mechanics and Physics of Solids, 52(6) :1421–1446.

Truskinovsky, L. and Zanzotto, G. (1996). Ericksen’s bar revisited : Energy wiggles. Journal of the Mechanics and Physics of Solids, 44(8) :1371–1408.

Vainchtein, A., Healey, T., Rosakis, P., and Truskinovsky, L. (1998). The role of the spinodal region in one-dimensional martensitic phase transitions. Physica D : Nonlinear Phenomena, 115(1) :29–48.

Walt, S. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array : a structure for efficient numerical computation. Computing in Science &amp ; Engineering, 13(2) :22–30.

Documents relatifs