• Aucun résultat trouvé

Chapitre I Revue de littérature

1.6. Objectifs de recherche

(1) De décrire à l’aide de techniques de modélisation le mouvement vertical de l’eau dans les profils de sol organique cultivé à partir de deux événements de drainage ;

(2) De décrire et de caractériser les principales propriétés hydrauliques des sols organiques cultivés (propriétés de rétention d’eau du sol et de perméabilité) ;

(3) De caractériser le niveau de compaction des sections de profils non perturbés de sols organiques cultivés de Sherrington, une municipalité de la région de la Montérégie, située au sud-ouest de la province de Québec (Canada) ;

(4) De déterminer l’effet de la perturbation du profil de sol au-dessus des drains (modification de la structure physique du profil de sol) sur le drainage des sols organiques cultivés ;

(5) Et de déterminer l’interaction de deux types de profil de sol installés sur les drains avec le volume d’eau qu’il faut drainer à la suite de l’application de trois hauteurs de pluie caractéristiques de la zone d’étude à la surface du sol.

23

Références bibliographiques

Alakukku, L. (1996a). Persistence of soil compaction due to high axle load traffic. I. Short-term effects on the properties of clay and organic soils. Soil and Tillage Research, 37(4), 211–222. http://doi.org/10.1016/0167-1987(96)01016-1

Alakukku, L. (1996b). Persistence of soil compaction due to high axle load traffic. II. Long- term effects on the properties of fine-textured and organic soils. Soil and Tillage Research, 37(4), 223–238. http://doi.org/10.1016/0167-1987(96)01017-3

Alakukku, L., & Elonen, P. (1995). Long-term effects of a single compaction by heavy field traffic on yield and nitrogen uptake of annual crops. Soil and Tillage Research, 36, 141–152. http://doi.org/10.1016/S0167- 1987(96)01024-0

Alakuku, L. (1999). Subsoil compaction due to wheel traffic. Agricultural and Food Science in Finland, 8(June), 333–351. Retrieved from http://www.mtt.fi/afs/pdf/afsf8_333.pdf

Alakukuu, L. (1997). Properties of fine textured subsoils as affected by high axle load traffic. Acta Agriculturae

Scandinavica, Section B — Soil & Plant Science, 47, 81–88. http://doi.org/10.1080/09064719709362444

Amador, J. A., & Jones, R. D. (1993). Nutrient limitations on microbial respiration in peat soils with different total phosphorus content. Soil Biology and Biochemistry, 25(6), 793–801.

Andriesse, J. P. (1988). Nature and management of tropical peat soils. Food and Agriculture Organization. Anshari, G. Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., … Rafiastanto, A. (2010).

Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences, 7(11), 3403–3419. http://doi.org/10.5194/bg-7-3403- 2010

Armentano, T. V. (1980). Drainage of Organic Soils as a Factor in the World Carbon Cycle. BioScience, 30(12), 825–830. http://doi.org/10.2307/1308375

Baker, F. G., Veneman, P. L. M., & Bouma, J. (1974). Limitations of the Instantaneous Profile Method for Field Measurement of Unsaturated Hydraulic Conductivity1. Soil Science Society of America Journal, 38(6), 885. http://doi.org/10.2136/sssaj1974.03615995003800060017x

Batey, T. (2009). Soil compaction and soil management - A review. Soil Use and Management, 25(4), 335–345. http://doi.org/10.1111/j.1475-2743.2009.00236.x

Berglund, K., & Persson, L. (1996). Water Repellence of Cultivated Organic Soils. Acta Agriculturae

Scandinavica, Section B Soil & Plant Science, 46(3), 145–152.

http://doi.org/10.1080/09064719609413127

Berglund, Ö., & Berglund, K. (2011). Influence of water table level and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biology and Biochemistry, 43(5), 923–931. http://doi.org/10.1016/j.soilbio.2011.01.002

Bloemen, G. W. (1983). Calculation of hydraulic conductivities and steady state capillary rise in peat soils from bulk density and solid matter volume. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 146(4), 460– 473. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0- 0020863125&partnerID=40&md5=194c45d883fe5298c84198053dc1ba8e

Boelter, D. H. (1964). Water storage characteristics of several peats in situ. Soil Science Society of America

Journal, 28(3), 433–435. http://doi.org/10.2136/sssaj1964.03615995002800030039x

Boelter, D. H. (1965). Hydraulic conductivity of peats. Soil Science.

24

Congress (Bay), 150–154. Retrieved from http://www.treesearch.fs.fed.us/pubs/12921

Boelter, D. H. (1969). Physical Properties of Peats as Related to Degree of Decomposition. Soil Science Society

of America Journal, 33(4), 606. http://doi.org/10.2136/sssaj1969.03615995003300040033x

Boivin, P., Schäffer, B., & Sturny, W. (2009). Quantifying the relationship between soil organic carbon and soil physical properties using shrinkage modeling. European Journal of Soil Science, 60(2), 265–275. http://doi.org/10.1111/j.1365-2389.2008.01107.x

Bord na Mona. (1985). Fuel peat in developing countries. World Bank Technical Paper (Vol. WTP-41). Retrieved from http://documents.worldbank.org/curated/en/1985/06/439714/fuel-peat-developing-countries

Braudeau, E., Costantini, J. M., Bellier, G., & Colleuille, H. (1999). New Device and Method for Soil Shrinkage Curve Measurement and Characterization. Soil Science Society of America Journal, 63(3), 525–535. http://doi.org/10.2136/sssaj1999.03615995006300030015x

Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers No. 3, Civil

Engineering Dep., Colorado State University, Fort Collins, Co., 37. Retrieved from

http://www.citeulike.org/group/1336/article/711012

Campbell, D. J. (1994). Determination and use of soil bulk density in relation to soil compaction. In Soil

compaction in crop production (pp. 113–139).

Campbell Scientific. (2016). CR100 datalogger : Operator ’ s Manual.

Camporese, M., Ferraris, S., Putti, M., Salandin, P., & Teatini, P. (2006). Hydrological modeling in swelling/shrinking peat soils. Water Resources Research, 42(6), 1–15. http://doi.org/10.1029/2005WR004495

Caron, J., Elrick, D. E., Michel, J. C., & Naasz, R. (1993). Physical Properties of Organic Soils and Growing Media : Water and Air Storage and Flow Dynamics. In Soil sampling and methods of analysis.

Caron, J., Price, J. S., & Rochefort, L. (2015). Physical Properties of Organic Soil: Adapting Mineral Soil Concepts to Horticultural Growing Media and Histosol Characterization. Vadose Zone Journal, 14(6), 0. http://doi.org/10.2136/vzj2014.10.0146

Chamen, T. W. C., Moxey, A. P., Towers, W., Balana, B., & Hallett, P. D. (2015). Mitigating arable soil compaction : A review and analysis of available cost and benefit data. Soil and Tillage Research, 146(PA), 10–25. http://doi.org/10.1016/j.still.2014.09.011

Chan, K. Y., Oates, A., Swan, A. D., Hayes, R. C., Dear, B. S., & Peoples, M. B. (2006). Agronomic consequences of tractor wheel compaction on a clay soil. Soil and Tillage Research, 89(1), 13–21. http://doi.org/10.1016/j.still.2005.06.007

Chason, D. B., & Siegel, D. I. (1986). Hydraulic conductivity and related physical properties of peat, lost river peatland, Northern Minnesota. Soil Science.

Chauveteau, G., & Thirriot, C. L. (1967). Régimes d’écoulement en milieu poreux et limite de la loi de Darcy. La

Houille Blanche, 2, 141–148.

Chertkov, V. (2000). Modeling the pore structure and shrinkage curve of soil clay matrix. Geoderma, 95(3– 4Article English GEODERMA APR), 215–246. http://doi.org/10.1016/S0016-7061(99)00087-7

Chow, A. T., Tanji, K. K., Gao, S., & Dahlgren, R. A. (2006). Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and

Biochemistry, 38(3), 477–488. http://doi.org/10.1016/j.soilbio.2005.06.005

Cook, F. J., & Cresswell, H. P. (2006). Estimation of Soil Hydraulic Properties. In M. R. Carter & E. G. Gregorich (Eds.), Soil Sampling and Methods of Analysis (p. 24).

25

da Silva, F. F., Wallach, R., & Chen, Y. (1993). Hydraulic properties of sphagnum peat moss and tuff (scoria) and their potential effects on water availability. Plant and Soil, 154(1), 119–126. http://doi.org/10.1007/BF00011080

Dai, T. S., & Sparling, J. H. (1973). Measurement of Hydraulic Conductivity of Peats. Canadian Journal of Soil

Science, 53, 21–26. http://doi.org/10.4141/cjss73-003

Danfors, B. (1994). Changes in subsoil porosity caused by heavy vehicles. Soil and Tillage Research, 29(2–3), 135–144. http://doi.org/10.1016/0167-1987(94)90049-3

Davidson, E. A., Janssens, I. A., Marks, D., Murdock, M., Ahl, R. S., Woods, S. W., … Loffler, J. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–73. http://doi.org/10.1038/nature04514

Davis, J. F. (1959). Organic Soils: Their Formation, Distribution, Utilization and Management. (M. S. U. Department of Soil Sciences, Agricultural Experiment Station, Ed.).

Deverel, S. J., Ingrum, T., & Leighton, D. (2016). Present-day oxidative subsidence of organic soils and mitigation in the Sacramento-San Joaquin Delta, California, USA. Hydrogeology Journal, 24(3), 569–586. http://doi.org/10.1007/s10040-016-1391-1

Dexter, A. R., & Watts, C. W. (1992). the Effects of Weather on Soil Strength Les Effets Des Conditions Météorologiques Sur La Résistance Du Sol. Revue Marocaine Des Sciences Agronomiques et

Veterinaires., 15–25.

Drexler, J. Z., Fontaine, C. S., & Deverel, S. J. (2009). The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA. Wetlands, 29(1), 372–386. http://doi.org/10.1672/08-97.1

Durner, W. (1994). Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water

Resources Research, 30(2), 211–223. http://doi.org/10.1029/93WR02676

Eijkelkanp Company. (2013). Penetrologger : operating instructions.

Elder, J. W., & Lal, R. (2008). Tillage effects on physical properties of agricultural organic soils of north central Ohio. Soil and Tillage Research, 98, 208–210. http://doi.org/10.1016/j.still.2007.12.002

Etana, A., & Hakansson, I. (1994). Swedish experiments on the persistence of subsoil compaction caused by vehicles with high axle load. Soil and Tillage Research, 29, 167–172. Retrieved from http://www.sciencedirect.com/science/article/pii/0167198794900515

Everett, K. R. (1983). Histosols. In L. P. Wilding, N. E. Smeck, & G. F. Hall (Eds.), Pedongenesis and soil

taxonomy: The soil orders (p. 399). Retrieved from

https://books.google.ca/books?hl=fr&lr=&id=jp_P2ZzA4hwC&oi=fnd&pg=PP2&dq=Pedogenesis+and+S oil+Taxonomy+II.+The+Soil+Orders.&ots=36_jRW9HJ2&sig=aVlYSTLCbH1e3B6GO5NiD2lBvPQ#v=on epage&q=Pedogenesis and Soil Taxonomy II. The Soil Orders.&f=false

Ewing, J. M., & Vepraskas, M. J. (2006). Estimating Primary and Secondary Subsidence in an Organic Soil 15, 20, and 30 Years After Drainage. Wetlands, 26(1), 119–130. http://doi.org/10.1672/0277- 5212(2006)26[119:epassi]2.0.co;2

FAO. (2001). Lecture Notes on the major Soils of the world. World Soil Resources Reports. http://doi.org/10.1136/gut.27.11.1400-b

Farnham, R. S., & Finney, H. R. (1965). Classification and Properties of Organic Soils. In A. G. Norman (Ed.),

Advances in Agronomy (Vol. 17, pp. 115–162). http://doi.org/10.1016/S0065-2113(08)60413-7

Gambolati, G., Putti, M., Teatini, P., & Gasparetto Stori, G. (2006). Subsidence due to peat oxidation and impact on drainage infrastructures in a farmland catchment south of the Venice Lagoon. Environmental Geology,

26

49(6), 814–820. http://doi.org/10.1007/s00254-006-0176-6

Gardner, C. M., Robinson, D. A., Blyth, K., & Cooper, J. D. (2000). Soil water content. In K. A. Smith & C. E. Mullins (Eds.), Soil analysis: physical methods (pp. 1–74).

Gaultney, L., Krutz, G. W., Steinhardt, G. C., & Liljedahl, J. B. (1982). Effects of Subsoil Compaction on Corn Yields. American Society of Agricultural Engineers, 563–570.

Gebhardt, S., Fleige, H., & Horn, R. (2010). Shrinkage processes of a drained riparian peatland with subsidence morphology. Journal of Soils and Sediments, 10(3), 484–493. http://doi.org/10.1007/s11368-009-0130-9 Gerke, H. H., & van Genuchten, M. T. (1993). Dual-porosity model for simulating the preferential movement of

water and solutes in structured porous media. Water Resources Research, 29(2), 305–319.

Gnatowski, T., Szatylowicz, J., Brandyk, T., & Kechavarzi, C. (2010). Hydraulic properties of fen peat soils in Poland. Geoderma, 154(3–4), 188–195. http://doi.org/10.1016/j.geoderma.2009.02.021

Grønlund, A., Sveistrup, T. E., Søvik, A. K., Rasse, D. P., & Kløve, B. (2006). Degradation of cultivated peat soils in northern norway based on field scale CO2 , N2O and CH4 emission measurements. Archives of

Agronomy and Soil Science, 52(2), 149–159. http://doi.org/10.1080/03650340600581968

Håkansson, I., & Lipiec, J. (2000). A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53(2), 71–85. http://doi.org/10.1016/S0167- 1987(99)00095-1

Håkansson, I., & Reeder, R. C. (1994). Subsoil compaction by vehicles with high axle load-extent, persistence and crop response. Soil and Tillage Research, 29(2–3), 277–304. http://doi.org/10.1016/0167- 1987(94)90065-5

Hallema, D. W., Lafond, J. A., Périard, Y., Gumiere, S. J., Sun, G., & Caron, J. (2015). Long-Term Effects of Peatland Cultivation on Soil Physical and Hydraulic Properties: Case Study in Canada. Vadose Zone

Journal, 14(6), 1–12. http://doi.org/10.2136/vzj2014.10.0147

Hallema, D. W., Périard, Y., Lafond, J. A., Gumiere, S. J., & Caron, J. (2015). Characterization of water retention curves for a series of cultivated histosols. Vadose Zone Journal, 14(6), 8. http://doi.org/10.2136/vzj2014.10.0148

Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121–145. http://doi.org/10.1016/j.still.2004.08.009

Heathwaite, A. L. (1990). The effect of drainage on nutrient release from fen peat and its implications for water quality -a laboratory simulation. Water, Air, and Soil Pollution, 49(1–2), 159–173. http://doi.org/10.1007/BF00279518

Hillel, D. (1988). L’eau et le sol : principes et processus physiques.

Hillel, D., Krentos, V. D., & Stylianou, Y. (1972). Procedure and Test of an Internal Drainage Method for Measuring Soil Hydraulic Characteristics in SITU. Soil Science. http://doi.org/10.1097/00010694- 197211000-00011

Holden, J., Chapman, P. J., & Labadz, J. C. (2004). Artificial Drainage of Peatlands: Hydrological and Hydrochemical Process and Wetland Restoration. Progress in Physical Geography, 28(1), 95–123. http://doi.org/10.1017/CBO9781107415324.004

Hopmans, J., Šimůnek, J., Romano, N., & Durner, W. (2002). Inverse Methods. SSSA Book Series, 5.4, 963– 1008. http://doi.org/10.1016/S1369-7021(03)00336-5

Horton, R., Ankeny, M. D., & Allmaras, R. R. (1994). Effects of compaction on soil hydraulic properties. In Soil

27

Illnicki, P., & Zeitz, J. (2003). Irreversible loss of organic soil functions after reclamation. In Organic soils and

peat materials for sustainable agriculture (p. 208).

Inubushi, K., Otake, S., Furukawa, Y., Shibasaki, N., Ali, M., Itang, A. M., & Tsuruta, H. (2005). Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands. Nutrient

Cycling in Agroecosystems, 71(1), 93–99. http://doi.org/10.1007/s10705-004-5283-8

Kanwar, R. S., Colvin, T. S., & Melvin, S. W. (1986). Comparison of drain plow and trench methods of drainage installation. American Society of Agricultural Engineers, No. 86-205, 6.

Karam, A. (1993). Chemical properties of organic soils. In Soil sampling and methods of analysis (pp. 459–571). Kasimir-Klemedtsson, A., Klemedtsson, L., Berglund, K., Martikainen, P., Silvola, J., & Oenema, O. (1997). Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management, (13), 245– 250. http://doi.org/10.1111/j.1475-2743.1997.tb00595.x

Kechavarzi, C., Dawson, Q., & Leeds-Harrison, P. B. (2010). Physical properties of low-lying agricultural peat soils in England. Geoderma, 154(3–4), 196–202. http://doi.org/10.1016/j.geoderma.2009.08.018

Kechavarzi, C., Dawson, Q., Leeds-Harrison, P. B., Szatyłowicz, J., & Gnatowski, T. (2007). Water-table management in lowland UK peat soils and its potential impact on CO2 emission. Soil Use and

Management, 23(4), 359–367. http://doi.org/10.1111/j.1475-2743.2007.00125.x

Koerselman, W., Van Kerkhoven, M. B., & Verhoeven, J. T. A. (1993). Release of inorganic N, P and K in peat soils; effect of temperature, water chemistry and water level. Biogeochemistry, 20, 63–81. http://doi.org/10.1007/BF00004135

Kosugi, K. (1996). Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties. Water Resources

Research, 32(9), 2697–2703. http://doi.org/10.1029/96WR01776

Kulli, B. (2003). The influence of soil compaction and soil structure on the infiltration pathways of dye tracer

solutions and the quantitative evaluation of flow patterns.

Lafond, J. A., Éliane, B. P., Caron, J., & Guillaume, T. R. (2014). Evaluating fluxes in Histosols for water management in lettuce: A comparison of mass balance, evapotranspiration and lysimeter methods.

Agricultural Water Management, 135, 73–83. http://doi.org/10.1016/j.agwat.2013.12.016

Lähde, E. (1969). Biological activity in some natural and drained peat soils with special reference to oxidation- reduction conditions. Acta Forestalia Fennica. Retrieved from https://helda.helsinki.fi/handle/1975/9141 Langlois, A. (2013). Les tourbières du Canada. Retrieved February 26, 2017, from

http://www.hww.ca/fr/espaces-sauvages/les-tourbieres-du-canada.html?referrer=https://www.google.ca/ Lin, C.-P., Chung, C.-C., Huisman, J. A., & Tang, S.-H. (2008). Clarification and calibration of reflection

coefficient for electrical conductivity measurement by time domain reflectometry. Soil Science Society of

America Journal, 72(4), 1033–1040. http://doi.org/10.2136/sssaj2007.0185

Lipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth.

Geoderma, 116(1–2), 107–136. http://doi.org/10.1016/S0016-7061(03)00097-1

Magnusson, T. (1993). CARBON DIOXIDE AND METHANE FORMATION IN FOREST MINERAL AND PEAT SOILS DURING AEROBIC AND ANAEROBIC INCUBATIONS. Soil Biology and Biochemistry, 25(7), 877– 883.

Malterer, T. J., Verry, E. S., & Erjavec, J. (1992). Fiber Content and Degree of Decomposition in Peats : Review of National Methods. Soil Sci. Soc. Am. J., 56, 1200–1211.

Martin, H. W., Ivanoff, D. B., Graetz, D. A., & Reddy, K. R. (1997). Water Table Effects on Histosol Drainage Water Carbon, Nitrogen, and Phosphorus. Journal of Environmental Quality, 26(4), 1062–1071. Retrieved from http://soils.ifas.ufl.edu/wetlands/publications/PDF-articles/218.Water table effects.pdf

28

Mathur, S. P., & Levesque, M. (1985). Negative effect of depth on saturated hydraulic conductivity of histosols.

Soil Science.

Mathur, S. P., & Levesque, M. P. (1983). Effect of Liming on the Yield, Nutrition and Copper Status of Potatoes, Carrots and Onions Grown Sequentially in Two Peat Soils. Canadian Journal of Soil Science, 63(2), 229– 244. http://doi.org/10.4141/cjss83-024

McDonald, M. R., & Chaput, J. (1998). Management of Organic Soils. Retrieved February 22, 2017, from http://www.omafra.gov.on.ca/english/crops/facts/93-053.htm

McKibbin, R. R., & Stobbe, P. C. (1936). Les sols organiques du sud-ouest du Québec. Ottawa, Canada. Miller, M. H. (1979). Contribution of nitrogen and phosphorus to subsurface drainage water from intensively

cropped mineral and organic soils in Ontario. Journal of Environmental Quality, 8(1), 42–48. http://doi.org/10.2134/jeq1979.00472425000800010011x

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water

Resources Research, 12(3), 513–522. http://doi.org/10.1029/WR012i003p00513

Mullins, C. E., Smith, K. A., & Mullins, C. (2000). Matric potential. In K. A. Smith & C. E. Mullins (Eds.), Soil and

Environmental Analysis: Physical Methods (pp. 65–93).

Murayama, S., & Abu Bakar, Z. (1996a). Decomposition of tropical peat soils : 1. Decomposition kinetics of organic matter of peat soils. Japan Agricultural Research Quarterly, 30, 145–151.

Murayama, S., & Abu Bakar, Z. (1996b). Decomposition of tropical peat soils: 2. Estimation of in situ decomposition by measurement of CO2 flux. Japan Agricultural Research Quarterly, 30(3), 153–158. Nugent, C., Kanali, C., Owende, P. M. O., Nieuwenhuis, M., & Ward, S. (2003). Characteristic site disturbance

due to harvesting and extraction machinery traffic on sensitive forest sites with peat soils. Forest Ecology

and Management, 180(1–3), 85–98. http://doi.org/10.1016/S0378-1127(02)00628-X

Oleszczuk, R., Bohne, K., Szatylowicz, J., Brandyk, T., & Gnatowski, T. (2003). Influence of load on shrinkage behavior of peat soils. Journal of Plant Nutrition and Soil Science, 166(2), 220–224. http://doi.org/10.1002/jpln.200390032

Oleszczuk, R., & Brandyk, T. (2008). The analysis of shrinkage-swelling behaviour of peat-moorsh soil aggregates during drying-wetting cycles. Agronomy Research, 6(1), 131–140.

Oliver, W. F. (1946). PHYSICAL PROPERTIES OF SOME MINERAL AND ORGANIC SOILS OF THE PROVINCE OF QUEBEC. Canadian Journal of Research, 24a(5), 79–92. http://doi.org/10.1139/cjr46a- 007

Osman, K. T. (2014). Physical Deterioration of Soil Physical. In Soil Degradation, Conservation and Remediation (pp. 45–67). http://doi.org/10.1007/978-94-007-7590-9

Päivänen, J. (1973). Hydraulic conductivity and water retention in peat soils. Society of forestry in Finland. Panayiotopoulos, K. P., Papadopoulou, C. P., & Hatjiioannidou, A. (1994). Compaction and penetration

resistance of an Alfisol and Entisol and their influence on root growth of maize seedlings. Soil and Tillage

Research, 31(4), 323–337. http://doi.org/10.1016/0167-1987(94)90039-6

Paquet, J. M., Caron, J., & Banton, O. (1993). In situ determination of the water desorption characteristics of peat substrates. Canadian Journal of Soil Science, 73(3), 329–339. http://doi.org/10.4141/cjss93-035 Parent, L. É., Millette, J. A., & Mehuys, G. R. (1982). Subsidence and erosion of a Histosol. Soil Science Society

of America Journal, 46, 404–408.

Peng, X., & Horn, R. (2005). Modeling Soil Shrinkage Curve across a Wide Range of Soil Types. Soil Science

29

Peng, X., Horn, R., & Smucker, a. (2007). Pore Shrinkage Dependency of Inorganic and Organic Soils on Wetting and Drying Cycles. Soil Science Society of America Journal, 71(4), 1095. http://doi.org/10.2136/sssaj2006.0156

Pepin, S., Plamondon, A. P., & Stein, J. (1991). Peat water content measurement using time domain reflectometry. Canadian Journal of Forest Research, 22, 534–540.

Périard, Y., Caron, J., Lafond, J. A., & Jutras, S. (2015). Root water uptake by romaine lettuce in a muck soil : Linking tip burn to hydric deficit. Vadose Zone Journal, 14(6), 13. http://doi.org/10.2136/vzj2014.10.0139 Price, J. S., & Schlotzhauer, S. M. (1999). Importance of shrinkage and compression in determining water

storage changes in peat: The case of a mined peatland. Hydrological Processes, 13(16 SPEC. ISS.), 2591–2601. http://doi.org/10.1002/(SICI)1099-1085(199911)13:16<2591::AID-HYP933>3.0.CO;2-E R Core Team. (2014). R : A language and environment for statistical computing. R Foundation for Statistical

Computing. Vienna, Austria. Retrieved from http://www.r-project.org/

Raper, R. L. (2005). Agricultural traffic impacts on soil. Journal of Terramechanics, 42(3–4), 259–280. http://doi.org/10.1016/j.jterra.2004.10.010

Reynolds, W. D. (2007). Unsaturated Hydraulic Properties : Instantaneous Profile. In M. R. Carte & E. G. Gregorich (Eds.), Soil Sampling and Methods of Analysis (pp. 1129–1138). CRC Press.

Rivenshield, A., & Bassuk, N. L. (2007). Using Organic Amendments to Decrease Bulk Density and Increase Macroposity in Compacted Soils. Arboriculture & Urban Forestry, 33(2), 140–146. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=24373416&site=ehost-live

Rojstaczer, S., & Deverel, S. J. (1995). Land subsidence in drained histosols and highly organic mineral soils of California. Soil Science Society of America Journal, 59(4), 1162–1167.

Samuel, A., Safya, M., & Claire, C. (1972). The effects of organic inputs over time on soil aggregate stability - A litterature analysis. Soil Biology & Biochemistry J, 90, 75–90.

SAS Institute Inc. (2011). SAS/IML 9.3 : User’s Guide. New York, NY.

SAS Institute Inc. (2013). SAS/ACCESS® 9.4 Interface to ADABAS: Reference. Cary, NC : SAS Institute Inc.). Schlotzhauer, S. M., & Price, J. S. (1999). Soil water flow dynamics in a managed cutover peat field , Quebec :

Field and laboratory investigations. Water Resources Research, 35(12), 3675–3683.

Schothorst, C. J. (1977). Subsidence of low moor peat soils in the western Netherlands. Geoderma, 17(4), 265– 291. http://doi.org/10.1016/0016-7061(77)90089-1

Schothorst, C. J. (1982). Drainage and behaviour of peat soils. In Proceedings of the symposium on peat lands

below sea level (Vol. 3, p. 18). Wageningen: International Institute for Land Reclamation and Improvement.

Schwärzel, K., Renger, M., Sauerbrey, R., & Wessolek, G. (2002). Soil physical characteristics of peat soils.

Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 165(4),

479–486. http://doi.org/10.1002/1522-2624(200208)165:4<479::aid-jpln479>3.0.co;2-8

Schwärzel, K., Renger, M., Sauerbrey, R., & Wessolek, G. (2002). Soil physical characteristics of peat soils.

Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 165(4),

479–486. http://doi.org/10.1002/1522-2624(200208)165:4<479::aid-jpln479>3.0.co;2-8

Schwärzel, K., Šimůnek, J., Stoffregen, H., Wessolek, G., & van Genuchten, M. T. (2006). Estimation of the Unsaturated Hydraulic Conductivity of Peat Soils. Vadose Zone Journal, 5(2), 628. http://doi.org/10.2136/vzj2005.0061

Silins, U. (1998). Forest peatland drainage and subsidence affect soil water retention and transport properties in an Alberta Peatland. Soil Science Society of America Journal, 62(4), 1048.

30 http://doi.org/10.2136/sssaj1998.03615995006200040028x

Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2006). The HYDRUS software package for simulating two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media.

Šimůnek, J., Van Genuchten, M. T., Šejna, M., Jacques, D., & Sakai, M. (1998). HYDRUS-1D for Simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media.

Skopp, J., Jawson, M. D., & Doran, J. W. (1990). Steady-State Aerobic Microbial Activity as a Function of Soil Water Content. Soil Science Society of America Journal, 54(6), 1619. http://doi.org/10.2136/sssaj1990.03615995005400060018x

Soane, B. D. (1990). The role of organic matter in soil compactibility: A review of some practical aspects. Soil

and Tillage Research, 16(1–2), 179–201. http://doi.org/10.1016/0167-1987(90)90029-D

Soane, B. D., & van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. In B. D. Soane & C. van Ouwerkerk (Eds.), Soil compaction in crop production (pp. 1–21).

Soil Classification Working Group. (1998). The Canadian system of Soil classification. (R. H. Haynes, Ed.) (3rd ed.). Ottawa : NRC Research Press Ottawa, Canada.

Soil Survey Staff. (1999). Soil taxonomy : A basic system of soil classification for making and interpeting soil

surveys. Natural Resources Conservation Service United States. U.S. Department of Agriculture, Handbook 436. (2nd ed.). http://doi.org/10.1017/S0016756800045489

Stanek, W., & Silc, T. (1977). Comparisons of four methods for determination of degree of peat humification (decomposition) with emphasis on the von Post method. Canadian Journal of Soil Science, 57, 109–117. Stephens, J. C. (1956). Subsidence of Organic Soils in the Florida Everglades. Soil Sci. Soc. Am. J., 20(1), 77–

80. http://doi.org/10.2136/sssaj1956.03615995002000010019x

Tariq, A.-U.-R., & Durnford, D. S. (1993). Soil volumetric shrinkage measurements: a simple method. Soil