• Aucun résultat trouvé

MATERIEL ET METHODES

P- pCp grâce à la T4 RNA ligase.

10. Immunoprécipitation des protéines étiquetées TAP-TAG sur billes IgG Sepharose

10.4. Northern blot

L’ARN issu des immunoprécipitations est séparé par migration sur gel d’électrophorèse

agarose/ formaldéhyde 1% pendant 5 min à 140V puis pendant 4 heures à 100V avant

d’être transféré sur membrane Hybond-N (Amersham). Après le cross-link des ARN sur

la membrane par une lumière UV et leur pré-hybridation dans du tampon

d’hybridation ( 25ml : SDS 10% 0,625ml, SSC 20X 7,5ml, Denharts 20X 2,5ml,

tRNA 10mg/ml 2,25ul, H2O 14,3ml), la membrane est séchée quelques min à la

température ambiante avant son hybridation avec une sonde ARN marquée par du 32 P à

son extremité 3’.

Nom Réference Marqueur Source

pACTIIst LEU2 Fromont-Racine et al., 1997

pACT-Kap121 LEU2 Fromont-Racine et al., 1997

pACT-NMD5 LEU2 Fromont-Racine et al., 1997

pAS2ΔΔ TRP1 Fromont-Racine et al., 1997

pAS2ΔΔ-RPS19Hs pAAT-1 TRP1 Cette étude

pAS2ΔΔ-RPS19Sc pAAT-2 TRP1 Cette étude

pAS2ΔΔ-RPS19Pa pAAT-3 TRP1 Cette étude

pAS2ΔΔ-RPS19Pa(86-93)Sc pAAT-4 TRP1 Cette étude

pAS2ΔΔ-N84Δ(RPS19)Sc pAAT-5 TRP1 Cette étude

pAS2ΔΔ-N97Δ(RPS19)Sc pAAT-6 TRP1 Cette étude

pAS2ΔΔ-Δ53C(RPS19)Sc pAAT-7 TRP1 Cette étude

pAS2ΔΔ-Δ77C(RPS19)Sc pAAT-8 TRP1 Cette étude

pAS2ΔΔ-Δ90C(RPS19)Sc pAAT-9 TRP1 Cette étude

pAS2ΔΔ-77_97(RPS19)Sc pAAT-10 TRP1 Cette étude

pAS2ΔΔ-67_97(RPS19)Sc pAAT-11 TRP1 Cette étude

Nom Réference Marqueur Source

pS15-TAP-Term pAAT-109 URA3 Cette étude

pS15-TAP-RPS19Sc-Term pAAT-110 URA3 Cette étude

pS15-TAP-A62S-Term pAAT-111 URA3 Cette étude

pS15-TAP-I15F-Term pAAT-112 URA3 Cette étude

pS15-TAP-R63W-Term pAAT-113 URA3 Cette étude

pS15-TAP-R63Q-Term pAAT-114 URA3 Cette étude

pS15-TAP-W53R-Term pAAT-115 URA3 Cette étude

pS15-TAP-I65P-Term pAAT-116 URA3 Cette étude

pS15-TAP-R57Q-Term pAAT-117 URA3 Cette étude

pS15-TAP-R57E-Term pAAT-118 URA3 Cette étude

pS15-TAP-R63E-Term pAAT-119 URA3 Cette étude

pS15-TAP-G121S-Term pAAT-120 URA3 Cette étude

pS15-TAP-G128Q-Term pAAT-121 URA3 Cette étude

pS15-TAP-R102H-Term pAAT-122 URA3 Cette étude

pS15-TAP-S60E-Term pAAT-123 URA3 Cette étude

pS15-TAP-R102E-Term pAAT-124 URA3 Cette étude

pS15-TAP-R122E-Term pAAT-125 URA3 Cette étude

pS15-TAP-R130-134E-Term pAAT-126 URA3 Cette étude

pS15-TAP-Q106E-Term pAAT-127 URA3 Cette étude

pS15-TAP-RPS19Pa-Term pAAT-128 URA3 Cette étude

Nom Réference Marqueur Source

pS15-Term pAAT-75 URA3 Cette étude

pS15- RPS19Hs-Term pAAT-76 URA3 Cette étude

pS15- RPS19Sc-Term pAAT-77 URA3 Cette étude

pS15- RPS19Pa-Term pAAT-78 URA3 Cette étude

pS15- RPS19Sc-GFP-Term pAAT-79 URA3 Cette étude

pS15-RPS19Sc-Term pAAT-80 URA3 Cette étude

pS15-A62S-Term pAAT-81 URA3 Cette étude

pS15-I15F-Term pAAT-82 URA3 Cette étude

pS15-R63W-Term pAAT-83 URA3 Cette étude

pS15-R63Q-Term pAAT-84 URA3 Cette étude

pS15-W53R-Term pAAT-85 URA3 Cette étude

pS15-R57Q-Term PAAT-86 URA3 Cette étude

pS15-R57E-Term pAAT-87 URA3 Cette étude

pS15-R63E-Term pAAT-88 URA3 Cette étude

pS15-I65P-Term pAAT-89 URA3 Cette étude

pS15-G121S-Term pAAT-90 URA3 Cette étude

pS15-G128Q-Term pAAT-91 URA3 Cette étude

pS15-R102H-Term pAAT-92 URA3 Cette étude

pS15-S60E-Term pAAT-93 URA3 Cette étude

pS15-R102E-Term pAAT-94 URA3 Cette étude

pS15-R122E-Term pAAT-95 URA3 Cette étude

pS15-R130-134E-Term pAAT-96 URA3 Cette étude

pS15-Q106E-Term pAAT-97 URA3 Cette étude

pS15-P2G-Term pAAT-98 URA3 Cette étude

pS15-P46G-Term pAAT-99 URA3 Cette étude

pS15-P47G-Term pAAT-100 URA3 Cette étude

pS15-P90G-Term pAAT-101 URA3 Cette étude

pS15-P118G-Term pAAT-102 URA3 Cette étude

pS15-N84-Term pAAT-103 URA3 Cette étude

pS15-N97-Term pAAT-104 URA3 Cette étude

pS15-Δ53C-Term pAAT-105 URA3 Cette étude

pS15-Δ77C-Term pAAT-106 URA3 Cette étude

pS15-NLSSV40-Term pAAT-107 URA3 Cette étude

pS15-NLSSV40-RPS19Pa-Term pAAT-108 URA3 Cette étude

Tableau 9. Plasmides utilisés pour l’étude de la localisation cellulaire

Nom Réference Marqueur Source

pGAL-GFP URA3 Leger-Sylvestre et al., 2004

pGAL- RPS19Sc-GFP pAAT-12 URA3 Cette étude

pGAL- RPS19Pa-GFP pAAT-13 URA3 Cette étude

pGAL- RPS19Pa(86-93)Sc-GFP pAAT-14 URA3 Cette étude

pGAL-N15Δ-GFP pAAT-15 URA3 Cette étude

pGAL-N52Δ-GFP pAAT-16 URA3 Cette étude

pGAL-N84Δ-GFP pAAT-17 URA3 Cette étude

pGAL-N89Δ-GFP pAAT-18 URA3 Cette étude

pGAL-N92Δ-GFP pAAT-19 URA3 Cette étude

pGAL-N97Δ-GFP pAAT-20 URA3 Cette étude

pGAL-N109Δ-GFP pAAT-21 URA3 Cette étude

pGAL-Δ16C-GFP pAAT-22 URA3 Cette étude

pGAL-Δ53C-GFP pAAT-23 URA3 Cette étude

pGAL-Δ67C-GFP pAAT-24 URA3 Cette étude

pGAL-Δ77C-GFP pAAT-25 URA3 Cette étude

pGAL-Δ80C-GFP pAAT-26 URA3 Cette étude

pGAL-Δ84C-GFP pAAT-27 URA3 Cette étude

pGAL-Δ90C-GFP pAAT-28 URA3 Cette étude

pGAL-Δ103C-GFP pAAT-29 URA3 Cette étude

pGAL-Δ128C-GFP pAAT-30 URA3 Cette étude

pGAL-N74Δ81C-GFP pAAT-31 URA3 Cette étude

pGAL-N78Δ85C-GFP pAAT-32 URA3 Cette étude

pGAL-N83Δ91C-GFP pAAT-33 URA3 Cette étude

pGAL-N85Δ92C-GFP pAAT-34 URA3 Cette étude

pGAL-N86Δ93C-GFP pAAT-35 URA3 Cette étude

pGAL-N90Δ97C-GFP pAAT-36 URA3 Cette étude

pGAL-(16_109)-GFP pAAT-37 URA3 Cette étude

pGAL-(53_109)-GFP pAAT-38 URA3 Cette étude

pGAL-(56_109)-GFP pAAT-39 URA3 Cette étude

pGAL-(67_109)-GFP pAAT-40 URA3 Cette étude

pGAL-(77_109)-GFP pAAT-41 URA3 Cette étude

pGAL-(80_109)-GFP pAAT-42 URA3 Cette étude

pGAL-(90_109)-GFP pAAT-43 URA3 Cette étude

pGAL-(98_109)-GFP pAAT-44 URA3 Cette étude

pGAL-(56_97)-GFP pAAT-45 URA3 Cette étude

pGAL-(67_92)-GFP pAAT-47 URA3 Cette étude

pGAL-(77_89)-GFP pAAT-48 URA3 Cette étude

pGAL-(67_89)-GFP pAAT-49 URA3 Cette étude

pGAL-(67_84)-GFP pAAT-50 URA3 Cette étude

pGAL-(77_89)-GFP pAAT-51 URA3 Cette étude

pGAL-(77_89)-GFP pAAT-52 URA3 Cette étude

pGAL-(77_89)-GFP pAAT-53 URA3 Cette étude

pGAL-(77_97)-GFP pAAT-54 URA3 Cette étude

pGAL-(67_97)-GFP pAAT-55 URA3 Cette étude

pGAL-A62S-GFP pAAT-56 URA3 Cette étude

pGAL-I15F-GFP pAAT-57 URA3 Cette étude

pGAL-R63W-GFP pAAT-58 URA3 Cette étude

pGAL-R63Q-GFP pAAT-59 URA3 Cette étude

pGAL-W53R-GFP pAAT-60 URA3 Cette étude

pGAL-R57Q-GFP pAAT-61 URA3 Cette étude

pGAL-I65P-GFP pAAT-62 URA3 Cette étude

pGAL-G121S-GFP pAAT-63 URA3 Cette étude

pGAL-G128Q-GFP pAAT-64 URA3 Cette étude

pGAL-R102H-GFP pAAT-65 URA3 Cette étude

Tableau 9 (suite). Plasmides utilisés pour l’étude de la localisation cellulaire

Nom Réference Marqueur Source

pET15-RPS19Hs pAAT-129 Cette étude

pET15-RPS19Sc pAAT-130 Cette étude

pET15-RPS19Pa pAAT-131 Cette étude

pET15-RPS24Pa pAAT-132 Cette étude

pET15-RPS24Hs pAAT-133 Cette étude

pET15-RPS5Hs pAAT-134 Cette étude

pET15-RPS16Hs pAAT-135 Cette étude

pET15-RPS18Hs pAAT-136 Cette étude

pGEM-F1-HsARN 18S pAAT-137 Cette étude

pGEM-F2-HsARN 18S pAAT-138 Cette étude

pGEM-F3-HsARN 18S pAAT-139 Cette étude

pGEM-F4-HsARN 18S pAAT-140 Cette étude

Tableau 10. Plasmides utilisés pour la production de protéines recombinantes et la transcription in vitro de différents fragments de l'ARN 18S

BIBLIOGRAPHIE

1. Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12: 1- 11

2. Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA, Gerhardt B, Hardy RR, Oravecz T, Wiest DL (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26: 759-772

3. Angelini M, Cannata S, Mercaldo V, Gibello L, Santoro C, Dianzani I, Loreni F (2007) Missense mutations associated with Diamond-Blackfan anemia affect the assembly of ribosomal protein S19 into the ribosome. Hum Mol Genet 16: 1720-1727

4. Angermayr M, Bandlow W (2002) RIO1, an extraordinary novel protein kinase. FEBS Lett 524: 31-36

5. Antoine M, Reimers K, Wirz W, Gressner AM, Muller R, Kiefer P (2005) Identification of an unconventional nuclear localization signal in human ribosomal protein S2. Biochem Biophys Res Commun 335: 146-153

6. Ayrault O, Andrique L, Larsen CJ, Seite P (2004) Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 23: 8097-8104

7. Ayrault O, Andrique L, Larsen CJ, Seite P (2006) [The negative regulation of ribosome biogenesis: a new Arf-dependent pathway controlling cell proliferation?]. Med Sci (Paris) 22: 519-524

8. Azuma M, Toyama R, Laver E, Dawid IB (2006) Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem 281: 13309-13316

9. Bachmann M, Moroy T (2005) The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726-730

10. Bagnara G, Zauli G, Vitale L, Rosito P, Vecchi V, Paolucci G, Avanzi G,

Ramenghi U, Timeus F, Gabutti V (1991) In vitro growth and regulation of bone marrow enriched CD34+ hematopoietic progenitors in Diamond-blackfan

Anemia. Blood 78: 2203-2210

11. Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ (2004) The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell

3: 1619-1626

12. Bertwistle D, Sugimoto M, Sherr CJ (2004) Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 24: 985-996

13. Bhat KP, Itahana K, Jin A, Zhang Y (2004) Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. Embo J 23: 2402- 2412

14. Bischoff FR, Gorlich D (1997) RanBP1 is crucial for the release of RanGTP from importin beta-related nuclear transport factors. FEBS Lett 419: 249-254

15. Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8: 574-585

16. Buchhaupt M, Meyer B, Kotter P, Entian KD (2006) Genetic evidence for 18S rRNA binding and an Rps19p assembly function of yeast nucleolar protein Nep1p. Mol Genet Genomics 276: 273-284

17. Buenders T, Tonkin L, Freund S, Bycroft M, Warren A. (2008) Structural and

genetic studies in Diamond Blackfan Anemia. 9th Annual Diamond Blackfan

Anemia International Consensus Conference., New York.

18. Carnero A, Hudson JD, Price CM, Beach DH (2000) p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2: 148-155 19. Casadevall N, Croisille L, Auffray I, Tchernia G, Coulombel L (1994) Age-related

alterations in erythroid and granulopoietic progenitors in Diamond-Blackfan anaemia. Br J Haematol 87: 369-375

20. Chatr-Aryamontri A, Angelini M, Garelli E, Tchernia G, Ramenghi U, Dianzani I, Loreni F (2004) Nonsense-mediated and nonstop decay of ribosomal protein S19 mRNA in Diamond-Blackfan anemia. Hum Mutat 24: 526-533

21. Chen S, Warszawski J, Bader-Meunier B, Tchernia G, Da Costa L, Marie I, Dommergues JP (2005) Diamond-blackfan anemia and growth status: the French registry. J Pediatr 147: 669-673

22. Chen W, Bucaria J, Band DA, Sutton A, Sternglanz R (2003) Enp1, a yeast protein associated with U3 and U14 snoRNAs, is required for pre-rRNA processing and 40S subunit synthesis. Nucleic Acids Res 31: 690-699 23. Chiocchetti A, Gibello L, Carando A, Aspesi A, Secco P, Garelli E, Loreni F,

Angelini M, Biava A, Dahl N, Dianzani U, Ramenghi U, Santoro C, Dianzani I (2005) Interactions between RPS19, mutated in Diamond-Blackfan anemia, and the PIM-1 oncoprotein. Haematologica 90: 1453-1462

24. Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A, Leblanc T, Tchernia G, Da Costa L, Gleizes PE (2007) Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109: 1275-1283

25. Choesmel V, Fribourg S, Aguissa-Toure AH, Pinaud N, Legrand P, Gazda HT, Gleizes PE (2008) Mutation of ribosomal protein RPS24 in Diamond-Blackfan anemia results in a ribosome biogenesis disorder. Hum Mol Genet 17: 1253- 1263

26. Chook YM, Blobel G (1999) Structure of the nuclear transport complex karyopherin-beta2-Ran x GppNHp. Nature 399: 230-237

27. Chook YM, Blobel G (2001) Karyopherins and nuclear import. Curr Opin Struct Biol 11: 703-715

28. Cingolani G, Bednenko J, Gillespie MT, Gerace L (2002) Molecular basis for the recognition of a nonclassical nuclear localization signal by importin beta. Mol Cell 10: 1345-1353

29. Cingolani G, Petosa C, Weis K, Muller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399: 221-229

30. Cmejla R, Cmejlova J, Handrkova H, PetraK J, Pospisilova D (2007) Ribosomal protein S17 gene (RPS17) is mutated in Diamond-Blackfan Anemia. Human mutation 28: 1178-1182

31. Cmejlova J, Cerna Z, Votava T, Pospisilova D, Cmejla R (2006) Identification of a new in-frame deletion of six amino acids in ribosomal protein S19 in a patient with Diamond-Blackfan anemia. Blood Cells Mol Dis 36: 337-341

32. Conti E, Izaurralde E (2001) Nucleocytoplasmic transport enters the atomic age. Curr Opin Cell Biol 13: 310-319

33. Conti E, Kuriyan J (2000) Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure 8: 329-338

34. Conti E, Muller CW, Stewart M (2006) Karyopherin flexibility in nucleocytoplasmic transport. Curr Opin Struct Biol 16: 237-244

35. Conti E, Uy M, Leighton L, Blobel G, Kuriyan J (1998) Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94: 193-204

36. Cook A, Fernandez E, Lindner D, Ebert J, Schlenstedt G, Conti E (2005) The structure of the nuclear export receptor Cse1 in its cytosolic state reveals a closed conformation incompatible with cargo binding. Mol Cell 18: 355-367 37. Cormack BP, Bertram G, Egerton M, Gow NA, Falkow S, Brown AJ (1997)

Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143 (Pt 2): 303-311

38. Coute Y, Burgess JA, Diaz JJ, Chichester C, Lisacek F, Greco A, Sanchez JC (2006) Deciphering the human nucleolar proteome. Mass Spectrom Rev 25: 215-234

39. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158: 915-927

40. Da Costa L, Narla G, Willig TN, Peters LL, Parra M, Fixler J, Tchernia G, Mohandas N (2003) Ribosomal protein S19 expression during erythroid differentiation. Blood 101: 318-324

41. Dai MS, Arnold H, Sun XX, Sears R, Lu H (2007) Inhibition of c-Myc activity by ribosomal protein L11. Embo J 26: 3332-3345

42. Dai MS, Lu H (2004) Inhibition of MDM2-mediated p53 ubiquitination and degradation by ribosomal protein L5. J Biol Chem 279: 44475-44482

43. Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR, Lu H (2006) Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-

ubiquitination mechanism. J Biol Chem 281: 24304-24313

44. Dai MS, Sun XX, Lu H (2008) Aberrant expression of nucleostemin activates p53 and induces cell cycle arrest via inhibition of MDM2. Mol Cell Biol

45. Dai MS, Zeng SX, Jin Y, Sun XX, David L, Lu H (2004) Ribosomal protein L23 activates p53 by inhibiting MDM2 function in response to ribosomal

perturbation but not to translation inhibition. Mol Cell Biol 24: 7654-7668 46. Dez C, Tollervey D (2004) Ribosome synthesis meets the cell cycle. Curr Opin

Microbiol 7: 631-637

47. Diamond L, Blackfan K (1938) Hypoplastic anemia. Am J Dis Child. 56: 464-467 48. Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA,

Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417: 967-970

49. Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, Tentler D, Mohandas N, Carlsson B, Dahl N (1999) The gene encoding ribosomal protein S19 is mutated in

Diamond-Blackfan anaemia. Nat Genet 21: 169-175

50. Du YC, Stillman B (2002) Yph1p, an ORC-interacting protein: potential links between cell proliferation control, DNA replication, and ribosome biogenesis. Cell 109: 835-848

51. Ebert BL, Lee MM, Pretz JL, Subramanian A, Mak R, Golub TR, Sieff CA (2005) An RNA interference model of RPS19 deficiency in Diamond-Blackfan anemia recapitulates defective hematopoiesis and rescue by dexamethasone:

identification of dexamethasone-responsive genes by microarray. Blood 105: 4620-4626

52. Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR (2008) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451: 335-339

53. Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4: 757-766

54. Farrar JE, Nater M, Caywood E, McDevitt M, Kowalski J, Takemoto C, Talbot C, Meltzer P, Esposito D, Beggs AH, Schnierder HE, Grabowska A, Ball SE, Niewiadomska E, Sieff CA, Vlachos A, Atsidaftos E, Ellis SR, Lipton JM, Gazda HT, R.J. A (2007) A large ribosomal subunit protein abnormality in Diamond-Blackfan Anemia (DBA). Blood (ASH Meeting Abstracts) 110: 422 55. Fatica A, Oeffinger M, Dlakic M, Tollervey D (2003) Nob1p is required for

cleavage of the 3' end of 18S rRNA. Mol Cell Biol 23: 1798-1807

56. Fatica A, Tollervey D, Dlakic M (2004) PIN domain of Nob1p is required for D- site cleavage in 20S pre-rRNA. Rna 10: 1698-1701

57. Ferreira-Cerca S, Poll G, Gleizes PE, Tschochner H, Milkereit P (2005) Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol Cell 20: 263-275

58. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20: 301-305 59. Flygare J, Aspesi A, Bailey JC, Miyake K, Caffrey JM, Karlsson S, Ellis SR

(2007) Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 109: 980-986

60. Flygare J, Kiefer T, Miyake K, Utsugisawa T, Hamaguchi I, Da Costa L, Richter J, Davey EJ, Matsson H, Dahl N, Wiznerowicz M, Trono D, Karlsson S (2005) Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond-Blackfan anemia. Blood 105: 4627-4634

61. Fontes MR, Teh T, Kobe B (2000) Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-alpha. J Mol Biol 297: 1183-1194

62. Ford CL, Randal-Whitis L, Ellis SR (1999) Yeast proteins related to the

p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res 59: 704-710

63. French SL, Osheim YN, Cioci F, Nomura M, Beyer AL (2003) In exponentially growing Saccharomyces cerevisiae cells, rRNA synthesis is determined by the summed RNA polymerase I loading rate rather than by the number of active genes. Mol Cell Biol 23: 1558-1568

64. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313: 17-42

65. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A,

Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415: 141- 147

66. Gazda HT, Grabowska A, Merida-Long LB, Latawiec E, Schneider HE, Lipton JM, Vlachos A, Atsidaftos E, Ball SE, Orfali KA, Niewiadomska E, Da Costa L, Tchernia G, Niemeyer C, Meerpohl JJ, Stahl J, Schratt G, Glader B, Backer K, Wong C, Nathan DG, Beggs AH, Sieff CA (2006) Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am J Hum Genet 79: 1110-1118 67. Gazda HT, Sheen MR, Darras N, Shneider H, Sieff CA, Ball SE, Niewiadomska

E, Newburger PE, Atsidaftos E, Vlachos A, Lipton JM, Beggs AH (2007) Mutations of the genes for Ribosomal Rroteins L5 and L11are common cause of Diamond-Blackfan Anemia. Blood (ASH Meeting Abstracts) 110: 241

68. Gazda HT, Zhong R, Long L, Niewiadomska E, Lipton JM, Ploszynska A, Zaucha JM, Vlachos A, Atsidaftos E, Viskochil DH, Niemeyer CM, Meerpohl JJ,

Rokicka-Milewska R, Pospisilova D, Wiktor-Jedrzejczak W, Nathan DG, Beggs AH, Sieff CA (2004) RNA and protein evidence for haplo-insufficiency in Diamond-Blackfan anaemia patients with RPS19 mutations. Br J Haematol

127: 105-113

69. Gelperin D, Horton L, Beckman J, Hensold J, Lemmon SK (2001) Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. Rna 7: 1268-1283

70. Gilchrist D, Mykytka B, Rexach M (2002) Accelerating the rate of disassembly of karyopherin.cargo complexes. J Biol Chem 277: 18161-18172

71. Giri N, Kang E, Tisdale JF, Follman D, Rivera M, Schwartz GN, Kim S, Young NS, Rick ME, Dunbar CE (2000) Clinical and laboratory evidence for a trilineage haematopoietic defect in patients with refractory Diamond-Blackfan anaemia. Br J Haematol 108: 167-175

72. Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin alpha: a multipurpose nuclear-transport receptor. Trends Cell Biol 14: 505-514 73. Gorlich D, Dabrowski M, Bischoff FR, Kutay U, Bork P, Hartmann E, Prehn S,

Izaurralde E (1997) A novel class of RanGTP binding proteins. J Cell Biol 138: 65-80

74. Gorlich D, Henklein P, Laskey RA, Hartmann E (1996) A 41 amino acid motif in importin-alpha confers binding to importin-beta and hence transit into the nucleus. Embo J 15: 1810-1817

75. Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15: 607-660

76. Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E (2002) 90S pre- ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10: 105-115

77. Granneman S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296: 43-50

78. Granneman S, Nandineni MR, Baserga SJ (2005) The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol Cell Biol 25: 10352-10364

79. Gustavsson P, Skeppner G, Johansson B, Berg T, Gordon L, Kreuger A, Dahl N (1997a) Diamond-Blackfan anaemia in a girl with a de novo balanced reciprocal X;19 translocation. J Med Genet 34: 779-782

80. Gustavsson P, Willing TN, van Haeringen A, Tchernia G, Dianzani I, Donner M, Elinder G, Henter JI, Nilsson PG, Gordon L, Skeppner G, van't Veer-Korthof L, Kreuger A, Dahl N (1997b) Diamond-Blackfan anaemia: genetic homogeneity for a gene on chromosome 19q13 restricted to 1.8 Mb. Nat Genet 16: 368-371 81. Halperin D, Freedman M (1989) Diamond-Blackfan Anemia: etiology,

pathophysiology, and treatment. Am J Pediatr Hematol Oncol 11: 4

82. Hamaguchi I, Flygare J, Nishiura H, Brun AC, Ooka A, Kiefer T, Ma Z, Dahl N, Richter J, Karlsson S (2003) Proliferation deficiency of multipotent

hematopoietic progenitors in ribosomal protein S19 (RPS19)-deficient diamond- Blackfan anemia improves following RPS19 gene transfer. Mol Ther 7: 613- 622

83. He H, Sun Y (2007) Ribosomal protein S27L is a direct p53 target that regulates apoptosis. Oncogene 26: 2707-2716

84. Hodel AE, Harreman MT, Pulliam KF, Harben ME, Holmes JS, Hodel MR, Berland KM, Corbett AH (2006) Nuclear localization signal receptor affinity correlates with in vivo localization in Saccharomyces cerevisiae. J Biol Chem

281: 23545-23556

85. Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH, Bessler M, Mason PJ (2007) Cells depleted for RPS19, a protein associated with Diamond Blackfan Anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 39: 35-43

86. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y (2003) Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome

Documents relatifs