• Aucun résultat trouvé

Chapitre 5. Discussion et conclusion

5.6 Limites de l’étude

Une limite de l’étude est la petite taille d’échantillon des deux groupes. Malgré l’hétérogénéité de nos échantillons, un comportement navigationnel de base et une coordination temporelle similaire ont tout de même été démontrés entre les deux groupes. De plus, les résultats de cette étude sont applicables seulement dans des environnements prédictifs. Des tâches locomotrices plus complexes avec des obstacles en mouvement ou des interactions avec d’autres personnes (ex. : dans un centre d’achat) pourraient impliquer des stratégies davantage réactives. Afin de mieux comprendre l’effet de l’expérience sur le comportement visuo-locomoteur, un plus grand nombre de sujets ayant le même nombre d’années d’expérience seraient requis.

5.7 Conclusions

Cette étude fournit de nouvelles connaissances sur le comportement visuo-locomoteur chez les usagers expérimentés en fauteuil roulant manuel et motorisé. Indépendamment

59

du type de fauteuil roulant utilisé, les usagers adoptent des stratégies navigationnelles et une coordination temporelle du corps et du fauteuil roulant similaires lors de changement de direction et de contournement d’obstacle. Le comportement visuel semble dépendre principalement des exigences environnementales. Combiné avec les résultats d’une étude précédente chez les usagers novices en fauteuil roulant manuel ainsi qu’à la marche bipède chez des sujets sains, les résultats de la présente étude démontrent une généralisation dans les stratégies de coordination visuo-locomotrice entre différents modes de locomotion et ce, peu importe le nombre d’années d’expérience en fauteuil roulant.

Bibliographie

Best, K. (2014). Manual wheelchair users: Understanding participation and skill development. University of British Columbia.

Best, K., Kirby, R., Smith, C., & MacLeod, D. (2005). Wheelchair Skills Training for Community-Based Manual Wheelchair Users: A Randomized Controlled Trial. Arch Phys Med Rehabil, 86(12), 2316-2323.

Blouin, M., Lalumiere, M., Gagnon, D. H., Chenier, F., & Aissaoui, R. (2015). Characterization of the

immediate effect of a training session on a manual wheelchair simulator with haptic biofeedback: towards more effective propulsion. IEEE Trans Neural Syst Rehabil Eng, 23(1), 104-115.

Brault, M. W. (2012). American with disabilities: 2010. US Departement of Commerce, Economics and Statistics Administration. US Census Bureau.

Chang, F. H., Wang, Y. H., Jang, Y., & Wang, C. W. (2012). Factors associated with quality of life among people with spinal cord injury: application of the International Classification of Functioning, Disability and Health model. Arch Phys Med Rehabil, 93(12), 2264-2270.

Charette, C., Routhier, F., & McFadyen, B. J. (2015). Visuo-locomotor coordination for direction changes in a manual wheelchair as compared to biped locomotion in healthy subjects. Neurosci Lett, 588, 83-87.

Cinelli, M., Patla, A., & Stuart, B. (2007). Involvement of the head and trunk during gaze reorientation during standing and treadmill walking. Exp Brain Res, 181(1), 183-191.

Cinelli, M., Patla, A., & Stuart, B. (2008). Age-related differences during a gaze reorientation task while standing or walking on a treadmill. Exp Brain Res, 185(1), 157-164.

Cooper, R. A., Boninger, M. L., Spaeth, D. M., Ding, D., Guo, S., Koontz, A. M., . . . Collins, D. M. (2006). Engineering better wheelchairs to enhance community participation. IEEE Trans Neural Syst Rehabil Eng, 14(4), 438-455.

Cooper, R. A., Thorman, T., Cooper, R., Dvorznak, M. J., Fitzgerald, S. G., Ammer, W., . . . Boninger, M. L. (2002). Driving characteristics of electric-powered wheelchair users: How far, fast, and often do people drive? Arch Phys Med Rehabil, 83(2), 250-255.

Cutting, J., Visthon, P., & Braren, P. (1995). How we avoid collisions with stationary and moving obstacles. Psychol.Rev, 102(4), 627-651.

Fajen, B. R., & Warren, W. H. (2003). Behavioral dynamics of steering, obstable avoidance, and route selection. J Exp Psychol Hum Percept Perform, 29(2), 343-362.

Farry, A., & Baxter, D. (2010). The incidence and prevalence of spinal cord injury in Canada. Rick Hansen Institut and Urban Futures. December 2010. 57 pages.

Gagnon, D. H., Babineau, A. C., Champagne, A., Desroches, G., & Aissaoui, R. (2014). Pushrim

biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury. J Rehabil Res Dev, 51(5), 789-802.

61

Gerin-Lajoie, M., Richards, C. L., & McFadyen, B. J. (2005). The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Motor control, 9(3), 242-269.

Gibson, J. J. (1950). Perception of the visual world. Boston: Houghton Mifflin.

Gibson, J. J. (1958). Visually controlled locomotion and visual orientation in animals. . Brit Jour Psych, 182- 194.

Gibson, J. J. (1972). The ecological approach to visual perception. New York, NY: Lawrence Erlbaum Associates.

Grasso, R., Prévost, P., Ivanenko, Y. P., & Berthoz, A. (1998). Eye-head coordination for the steering of locomotion in humans: an anticipatory synergy. Neurosci Lett, 253(2), 115-118.

Hicheur, H., Vieilledent, S., & Berthoz, A. (2005). Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms. Neurosci Lett, 383(1-2), 87-92.

Higuchi, T. (2013). Visuomotor control of human adaptive locomotion: understanding the anticipatory nature. Front Psychol, 4, 277.

Higuchi, T., Cinelli, M. E., Greig, M. A., & Patla, A. E. (2006). Locomotion through apertures when wider space for locomotion is necessary: adaptation to artificially altered bodily states. Exp Brain Res, 175(1), 50-59. Higuchi, T., Cinelli, M. E., & Patla, A. E. (2009). Gaze behavior during locomotion through apertures: the effect of locomotion forms. Hum Mov Sci, 28(6), 760-771.

Higuchi, T., Hatano, N., Soma, K., & Imanaka, K. (2009). Perception of spatial requirements for wheelchair locomotion in experienced users with Tetraplegia. J Physiol Anthropol, 28(1), 15-21.

Higuchi, T., Takada, H., Matsuura, Y., & Imanaka, K. (2004). Visual estimation of spatial requirements for locomotion in novice wheelchair users. J Exp Psychol Appl, 10(1), 55-66.

Hollands, M., Patla, A., & Vickers, J. (2002). "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion. Exp Brain Res, 143(2), 221-230.

Hollands, M., Sorensen, K., & Patla, A. (2001). Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering. Exp Brain Res, 140(2), 223-233.

Hosseini, S., Oyster, M., Kirby, R., Harrington, A., & Boninger, M. (2012). Manual wheelchair skills capacity predicts quality of life and community integration in persons with spinal cord injury. Arch Phys Med Rehabil, 93(12), 2237-2243.

Hwang, S., Lin, Y.-S., Hogaboom, N. S., Wang, L.-H., & Koontz, A. M. (2016). Relationship between linear velocity and tangential push force while turning to change the direction of the manual wheelchair. Biomed Eng.-Biomed.Tech, aop.

Imai, T., Moore, S. T., Raphan, T., & Cohen, B. (2001). Interaction of the body, head, and eyes during walking and turning. Exp Brain Res, 136(1), 1-18.

Kairy, D., Rushton, P. W., Archambault, P., Pituch, E., Torkia, C., El Fathi, A., . . . Gourdeau, R. (2014). Exploring powered wheelchair users and their caregivers' perspectives on potential intelligent power wheelchair use: a qualitative study. Int J Environ Res Public Health, 11(2), 2244-2261.

Kaye, H. S., Kang, T., & LaPlante, M. P. (2000). Mobility device use in the United States. National Institute on disability and rehabilitation research.

Kirby, R., Miller, W., Routhier, F., Demers, L., Mihailidis, A., Polgar, J. M., . . . Sawatzky, B. (2015). Effectiveness of a Wheelchair Skills Training Program for Powered Wheelchair Users: A Randomized Controlled Trial. Arch Phys Med Rehabil, 96(11), 2017-2026.

Kirshblum, S. C., Burns, S. P., Biering-Sorensen, F., Donovan, W., Graves, D. E., Jha, A., . . . Waring, W. (2011). International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med, 34(6), 535-546.

Lackner, J. R., & DiZio, P. (1988). Visual stimulation affects the perception of voluntary leg movements during walking. Perception, 17, 71-80.

Lalumiere, M., Gagnon, D. H., Routhier, F., Bouyer, L., & Desroches, G. (2014). Upper extremity kinematics and kinetics during the performance of a stationary wheelie in manual wheelchair users with a spinal cord injury. J Appl Biomech, 30(4), 574-580.

Land, M., & Lee, D. (1994). Where we look when we steer. Nature, 369, 742-744.

Land, M. F. (2006). Eye movements and the control of actions in everyday life. Prog Retin Eye Res, 25(3), 296-324.

Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. . Perception, 5, 437-459.

Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. . Nature, 293, 293- 294.

Lemay, V., Routhier, F., Noreau, L., Phang, S. H., & Martin Ginis, K. A. (2011). Relationships between wheelchair skills, wheelchair mobility and level of injury in individuals with spinal cord injury. Spinal Cord, 50(1), 37-41.

MacPhee, A. H., Kirby, R. L., Coolen, A. L., Smith, C., MacLeod, D. A., & Dupuis, D. J. (2004). Wheelchair skills training program: a randomized clinical trial of wheelchair users undergoing initial rehabilitation. Arch Phys Med Rehabil, 85(1), 41-50.

Mars, F. (2008). Driving around bends with manipulated eye-steering coordination. J Vis, 8(11), 10.11-11. McFadyen, B. J., & Carnahan, H. (1997). Anticipatory locomotor adjustments for accommodating versus avoiding level changes in humans. Exp Brain Res, 114(3), 500-506.

Nguyen, T., Su, S., & Nguyen, H. (2011). Robust Neuro-Sliding Mode Multivariable Control Strategy for Powered Wheelchairs. IEEE Trans Neural Syst Rehabil Eng, 19(1), 105-111.

Nguyen, T., Su, S., & Nguyen, H. (2014). Neural Network Based Diagonal Decoupling Control of Powered Wheelchair Systems. IEEE Trans Neural Syst Rehabil Eng, 22(2), 371-378.

63

Noonan, V. K., Fingas, M., Farry, A., Baxter, D., Singh, A., Fehlings, M. G., & Dvorak, M. F. (2012). Incidence and prevalence of spinal cord injury in Canada: a national perspective. Neuroepidemiology, 38(4), 219-226. Noreau, L., & Fougeyrollas, P. (2009). Long-term consequences of spinal cord injury on social participation: the occurrence of handicap situations. Disabil and Rehabil, 22(4), 170-180.

National Spinal Cord Injury Statistical Center. 2015 Annual Statistical Report for the Spinal Cord Injury Model Systems Public Version. University of Alabama at Birmingham: Birmingham, Alabama. https://www.nscisc.uab.edu/reports.aspx Last access: December 2015.

Onyango, S. O., Hamam, Y., Djouani, K., Daachi, B., & Steyn, N. (2016). A Driving Behaviour Model of Electrical Wheelchair Users. Comput Intell Neurosci, 2016, 7189267.

Pailhous, J., Ferrandez, A. M., Fluckiger, M., & Baumberger, B. (1990). Unintentional modulations of human gait by optical flow. Behav Brain Res, 38, 275-281.

Paquette, M. R., & Vallis, L. A. (2010). Age-related kinematic changes in late visual-cueing during obstacle circumvention. Exp Brain Res, 203(3), 563-574.

Patla, A., Adkin, A., & Ballard, T. (1999). Online steering: coordination and control of body center of mass, head and body reorientation. Exp Brain Res, 129(4), 629-634.

Patla, A., Prentice, S., Robinson, C., & Neufeld, J. (1991). Visual control of locomotion: Strategies for changing direction and for going over obstacles. J Exp Psychol Hum Percept Perform, 17(3), 603-634.

Patla, A. E. (1995). A framework for understanding mobility problems in the elderly. In: Craik RL, Oatis CA, editors. Gait analysis: theory and application. (pp. 436-449). St. Louis: Mosby-Year Book, Inc

Pradeep Ambati, V. N., Murray, N. G., Saucedo, F., Powell, D. W., & Reed-Jones, R. J. (2013). Constraining eye movement when redirecting walking trajectories alters turning control in healthy young adults. Exp Brain Res, 226(4), 549-556.

Riggins, M. S., Kankipati, P., Oyster, M. L., Cooper, R. A., & Boninger, M. L. (2011). The relationship between quality of life and change in mobility 1 year postinjury in individuals with spinal cord injury. Arch Phys Med Rehabil, 92(7), 1027-1033.

Routhier, F., Kirby, R. L., Demers, L., Depa, M., & Thompson, K. (2012). Efficacy and retention of the French- Canadian version of the wheelchair skills training program for manual wheelchair users: a randomized controlled trial. Arch Phys Med Rehabil, 93(6), 940-948.

Rushton, P. W., Kirby, R. L., & Miller, W. C. (2012). Manual wheelchair skills: objective testing versus subjective questionnaire. Arch Phys Med Rehabil, 93(12), 2313-2318.

Rushton, P. W., Kirby, R. L., Routhier, F., & Smith, C. (2014). Measurement properties of the Wheelchair Skills Test - Questionnaire for powered wheelchair users. Disabil Rehabil Assist Technol, 1-7.

Rushton, P. W., Miller, W. C., Lee Kirby, R., Eng, J. J., & Yip, J. (2011). Development and content validation of the Wheelchair Use Confidence Scale: a mixed-methods study. Disabil Rehabil Assist Technol, 6(1), 57-66.

Rushton, P. W., Routhier, F., Miller, W. C., Auger, C., & Lavoie, M. P. (2015). French-Canadian translation of the WheelCon-M (WheelCon-M-F) and evaluation of its validity evidence using telephone administration. Disabil Rehabil, 37(9), 812-819.

Rushton, S. K., Harris, J. M., Lloyd, M. R., & Wann, J. P. (1998). Guidance of locomotion on foot uses perceived target location rather than optic flow. Curr Biol, 8(21), 1191-1194.

Salminen, A. L., Brandt, A., Samuelsson, K., Toytari, O., & Malmivaara, A. (2009). Mobility devices to promote activity and participation: a systematic review. J Rehabil Med, 41(9), 697-706.

Shields, M. (2004). Use of wheelchairs and other mobility support devices. Statistics Canada.

Simpson, R., LoPresti, E., & Cooper, R. (2008). How many people would benefit from a smart wheelchair? The J Rehabil Res Dev, 45(1), 53-72.

Smith, E. M., Giesbrecht, E. M., Mortenson, W. B., & Miller, W. C. (2016). Prevalence of Wheelchair and Scooter Use Among Community-Dwelling Canadians. Phys Ther, 96(8), 1135-1142.

Statistics Canada. (2012). The Canadian Population in 2011: Age and Sex [Internet]. 2012. Available from: http://www12.statcan.gc.ca/census-recensement/2011/assa/98-311-x/98-311-x2011001-eng.pdf.

Torkia, C., Reid, D., Korner-Bitensky, N., Kairy, D., Rushton, P. W., Demers, L., & Archambault, P. S. (2015). Power wheelchair driving challenges in the community: a users' perspective. Disabil Rehabil Assist Technol, 10(3), 211-215.

Vallis, L. A., & McFadyen, B. J. (2003). Locomotor adjustments for circumvention of an obstacle in the travel path. Exp Brain Res, 152(3), 409-414.

Wann, J., & Land, M. (2000). Steering with or without the flow: is the retrieval of heading necessary? Trends Cogn Sci, 4(8), 319-324.

Wann, J. P., & Swapp, D. K. (2000). Why you should look where you are going. Nat Neurosci, 3(7), 647-648. Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nat Neurosci., 4(2), 213-216.

Warren, W. H., Mestre, D., Blackwell, A. W., & Morris, M. W. (1991). Perception of circular heading from optical flow. J Exp Psychol Hum Percept Perform, 17(1), 28-43.

Wilkie, R. M., Kountouriotis, G. K., Merat, N., & Wann, J. P. (2010). Using vision to control locomotion: looking where you want to go. Exp Brain Res, 204(4), 539-547.

Wilkie, R. M., Wann, J. P., & Allison, R. S. (2008). Active gaze, visual look-ahead, and locomotor control. J Exp Psychol Hum Percept Perform, 34(5), 1150-1164.

65 Annexes

0 = absent 1 = altered 2 = normal NT = not testable 0 = absent 1 = altered 2 = normal NT = not testable C2 C3 C4 S3 S2 L5S1 L5 L4 L3 L2 L1 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 C4 C3 C2 T2 C5 T1 C6 Palm Dorsum C6C8 C7 0 = absent 1 = altered 2 = normal NT = not testable Dorsum C6 C8 C7 S4-5

Key Sensory Points 0 = absent 1 = altered 2 = normal NT = not testable 0 = absent 1 = altered 2 = normal NT = not testable C2 C3 C4 S3 S2 L5S1 L5 L4 L3 L2 L1 T12 T11 T10 T9 T8 T7 T6 T5 T4 T3 C4 C3 C2 T2 C5 T1 C6 Palm Dorsum C6C8 C7 0 = absent 1 = altered 2 = normal NT = not testable Dorsum C6 C8 C7 S4-5

Key Sensory Points C5 C6 C7 C8 T1 L2 L3 L4 L5 S1 MOTOR KEY MUSCLES SENSORY

KEY SENSORY POINTS

Documents relatifs