• Aucun résultat trouvé

VI – Applications des polymères conducteurs

VI- 2 – Les applications de type (bio)capteurs

Les propriétés intrinsèques au polypyrrole permettent son utilisation dans diverses

applications telles que les capteurs et biocapteurs chimiques135, 136, 137, 138, 139, 140, les

dispositifs biomédicaux141, 142, les batteries143, 144, 145, les piles à combustible146, 147, 148, les

supercondensateurs électrochimiques149, 150, 151, la protection des métaux contre la

corrosion152, 153, etc.154, 155 Nous allons particulièrement nous intéresser à l’utilisation de

polypyrrole nanostructuré dans les applications de type capteurs et biocapteurs pour la détection et la détermination des analytes en solution ou des gaz.

Depuis la première mesure électrochimique de concentration en glucose en 1962 par

Clark et Lyons156, la recherche sur le développement des biocapteurs a connu un essor

considérable. Le champ d’application de ces dispositifs n’a cessé de s’étendre allant du domaine médical au contrôle environnemental en passant par la chimie ou l’agro-alimentaire.

Un biocapteur peut être défini comme étant un dispositif analytique conçu pour transformer un phénomène de reconnaissance en un signal mesurable. Il associe un composant biochimique appelé biorécepteur (enzyme, anticorps, antigène, ADN, etc.) à un transducteur qui représente le mode de détection et qui transforme la reconnaissance moléculaire en un signal mesuré. Le principe de fonctionnement de ce dispositif est décrit sur la figure 1-15.

Figure 1-15: Principe de fonctionnement d’un biocapteur.

Un biocapteur électrochimique est un biocapteur avec un transducteur

électrochimique157. Il existe différents types de capteurs électrochimiques classés selon leur

mode de détection : les capteurs potentiométriques, conductimétriques et ampérométriques. La figure 1-16 résume les différents modes de détection électrochimique.

Figure 1-16: Différents modes de détection électrochimique.

L’utilisation de films de polymères conducteurs électroniques pour l’immobilisation

d’enzymes a fait l’objet de nombreuses recherches au cours des deux dernières décennies 158,

159

. En effet la polymérisation électrochimique en présence d’enzymes est un moyen simple et

rapide pour immobiliser ces molécules à la surface d’une électrode.160,161

Pour les capteurs ampérométriques et conductimétriques, les films de polypyrrole nanostructurés, du fait de leur très grande densité surfacique, permettent d’une part d’avoir une plus grande sensibilité et d’autre part de réduire le temps de réponse des capteurs par rapport aux films compacts.

Nous pouvons citer l’exemple entre autres de la détection de la spermidine (NH2

-(CH2)4-NH-(CH2)3-NH2) pour laquelle un biocapteur électrochimique a été développé par

Ghanbari et al.55 Pour cela, un film de polypyrrole nanostructuré (nanofibres) a été synthétisé

par voie électrochimique en utilisant des impulsions de potentiels. Par la suite, un double brin d’ADN a été physisorbé sur ce film de polypyrrole. Ce biocapteur ampérométrique est basé sur l’oxydation des guanines de l’ADN. En fait, la présence de la spermidine dans le milieu conduit à la diminution de l’oxydation de la guanine. Ceci est dû au fait que la liaison entre la spermidine et les guanines protège ces groupements et inhibe ainsi leur oxydation conduisant à la diminution du courant anodique, proportionnellement à la concentration en spermidine

dans le milieu (voir figure 1-17). La limite de détection de ce capteur est de 0,02 µM et le

polypyrrole classique et compact, le même phénomène est observé, à savoir une diminution du courant anodique, mais le domaine de linéarité apparaît pour des concentrations plus

élevées et comprises entre 1 µM et 15 µM.

Figure 1-17: DPV (Differential Pulse Voltammetry) à différentes concentrations en spermidine (de 0,02 µM à 1 µM). L’insert correspond à la variation du courant de pic en fonction de la concentration en spermidine. L’électrode utilisée est constituée d’ADN

adsorbée sur un film de nanofibres de polypyrrole.55

Des capteurs de gaz sont également basés sur le polypyrrole parce qu’en présence de

diverses vapeurs chimiques, sa conductivité est modifiée162, 163. En effet il a été démontré que

la conductivité du polypyrrole augmente en présence d’ammoniac49,164 alors qu’elle diminue

REFERENCES

(1) Odian, G. Principle of polymerization, 4th edition; Wiley: New York, 2004.

(2) Letheby, H. On the production of a blue substance by the electrolysis of sulphate of

aniline. Journal of Chemical Society 1862, 15, 161-163.

(3) Gyorgy, I. Conducting Polymers: A New Era in Electrochemistry; Springer2008.

(4) Hush, N. S. An overview of the first half-century of molecular electronics. Molecular

Electronics Iii 2003, 1006, 1-20.

(5) Walatka, V. V.; Labes, M. M.; Perlstei.Jh. Polysulfur nitride - One dimensional chain

with a metallic ground-state. Physical Review Letters 1973, 31, 1139-1142.

(6) Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. Synthesis

of electrically conducting organic polymers - Halogen derivatives of polyacetylene, (CH)X. Journal of the Chemical Society-Chemical Communications 1977, 578-580.

(7) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.;

Gau, S. C.; Macdiarmid, A. G. Electrical-conductivity in doped polyacetylene.

Physical Review Letters 1977, 39, 1098-1101.

(8) Huang, W. S.; Humphrey, B. D.; Macdiarmid, A. G. Polyaniline, a novel conducting

polymer - Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society-Faraday Transactions I 1986, 82, 2385.

(9) Bakhshi, A. K. Electrically conducting polymers - from fundamental to

applied-research. Bulletin of Materials Science 1995, 18, 469-495.

(10) Kim, Y. T.; Kim, W. S.; Rhee, H. W.; Song, M. K. Iron corrosion protection by ultra-thin conductive films based on polypyrrole/poly(methyl methacrylate) composite.

Molecular Crystals and Liquid Crystals 2006, 445, 193-200.

(11) Tan, L. S.; Simko, S. R.; Bai, S. J.; Vaia, R. A.; Taylor, B. E.; Houtz, M. D.; Alexander, M. D.; Spry, R. J. Phase-separated, conducting composites from polyaniline and benzobisthiazole rigid-rod polymer. Journal of Polymer Science Part

B-Polymer Physics 2001, 39, 2539-2548.

(12) Broadbent, S. R.; Hammersley, J. M. Percolation processes. Mathematical

Proceedings of the Cambridge Philosophical Society 1957, 53, 629-641.

(13) Zhang, Q. H.; Jin, H. F.; Wang, X. H.; Jing, X. B. Morphology of conductive blend fibers of polyaniline and polyamide-11. Synthetic Metals 2001, 123, 481-485.

(14) Scrosati, B. Conducting polymers: Advanced materials for new design, rechargeable lithium batteries. Polymer International 1998, 47, 50-55.

(15) Payerne, R. Structure et propriétés électroniques à différentes échelles de systèmes modèles de polymères conducteurs et semi-conducteurs. Thèse de l'Université Joseph Fourier, France 2004.

(16) Blouin, N. Conception, synthèse et caractérisation de poly(2,7-carbazole)s et poly(indolo[3,2-B]carbazole)s pour des applications en électronique organique. Thèse de l'Université Laval 2008.

(17) De Bruyne, A. Contribution à l’étude de la formation des propriétés des films de poly-2-vinylpyridine et de polypyrrole obtenus par électropolymérisation en solutions aqueuses. Thèse de l'Université libre de Bruxelles, Belgique 1995.

(18) Hien, N. T. L. Elaboration de films de polypyrrole par électropolymérisation sur un substrat fer et caractérisation de leurs propriétés de protection contre la corrosion. Thèse de l'Université de Paris VI, France 2002.

(19) Cornil, J.; Bredas, J. L. Nature of the optical-transitions in charged oligothiophenes.

Advanced Materials 1995, 7, 295-297.

(20) Modern aspects of electrochemistry; Edited by R.E. White, J. Bockris, B.E. Conway1999.

(21) Querner, C. Synthèse et caractérisation de matériaux hybrides

organiques-inorganiques à base d’architectures π-conjuguées et de nanocristaux de

semi-conducteurs II-VI. Thèse de l'Université Joseph Fourier 2005.

(22) Su, W. P.; Schrieffer, J. R.; Heeger, A. J. Soliton excitations in polyacetylene.

Physical Review B 1980, 22, 2099-2111.

(23) Pron, A.; Rannou, P. Processible conjugated polymers: from organic semiconductors to organic metals and superconductors. Progress in Polymer Science 2002, 27, 135-190.

(24) Joo, J.; Oh, E. J.; Min, G.; Macdiarmid, A. G.; Epstein, A. J. Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes. Synthetic Metals 1995, 69, 251-254.

(25) Jin, Z.; Su, Y. X.; Duan, Y. X. Development of a polyaniline-based optical ammonia sensor. Sensors and Actuators B-Chemical 2001, 72, 75-79.

(26) Nicho, M. E.; Trejo, M.; Garcia-Valenzuela, A.; Saniger, J. M.; Palacios, J.; Hu, H. Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas. Sensors and Actuators B-Chemical

(27) Bredas, J. L.; Street, G. B. Polarons, bipolarons and solitons in conducting polymers.

Accounts of Chemical Research 1985, 18, 309-315.

(28) Inzelt, G.; Pineri, M.; Schultze, J. W.; Vorotyntsev, M. A. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta 2000,

45, 2403-2421.

(29) Trznadel, M.; Chauvet, O.; Lapkowski, M.; Pron, A. EPR study of regioregular poly(3-hexylthiophene). Synthetic Metals 1999, 101, 358-358.

(30) Lankinen, E.; Sundholm, G.; Talonen, P.; Grano, H.; Sundholm, F. Synthesis, electropolymerization and electrochemical characterization of some new acrylate substituted thiophene derivatives. Journal of Electroanalytical Chemistry 1999, 460, 176-187.

(31) Fichou, D.; Horowitz, G.; Garnier, F. Polaron and bipolaron formation on isolated-model thiophene oligomers in solution. Synthetic Metals 1990, 39, 125-131.

(32) Krinichnyi, V. I. 2-mm Waveband electron paramagnetic resonance spectroscopy of conducting polymers. Synthetic Metals 2000, 108, 173-222.

(33) Laforgues, A. Synthèse et caractérisation de polymères conducteurs – application au stockage de l’énergie. Thèse de l'Université Paris XII-Val de Marne 2001.

(34) Adhikari, A. Conducting Polyaniline and Polypyrrole: Studies of their catalytic properties. Thèse de l'Université de Pune, Inde 2004.

(35) Bouhadid, M. Conception, caractérisation et mise en oeuvre de matériaux organiques conducteurs pour des applications dans le domaine des capteurs chimiques. Thèse de l'Université de Pau et des Pays de l'Adour 2008.

(36) Long, Y. Z.; Li, M. M.; Gu, C. Z.; Wan, M. X.; Duvail, J. L.; Liu, Z. W.; Fan, Z. Y. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Progress in Polymer Science 2011, 36, 1415-1442. (37) Forzani, E. S.; Zhang, H. Q.; Nagahara, L. A.; Amlani, I.; Tsui, R.; Tao, N. J. A

conducting polymer nanojunction sensor for glucose detection. Nano Letters 2004, 4, 1785-1788.

(38) Voisin, P. Lithographie de nouvelle génération par nanoimpression assistée par UV :

étude et développement de matériaux et procédés pour l’application

microélectronique. Thèse de l'Université Joseph Fourier de Grenoble, France 2007. (39) Hernandez, R.; Diaz, A. F.; Waltman, R.; Bargon, J. Surface characteristics of thin

films prepared by plasma and electrochemical polymerizations. Journal of Physical

(40) Adhikari, A. Conducting Polyaniline and Polypyrrole: Studies of their catalytic properties. Thèse de l'Université de Pune, Ind 2004.

(41) Armour, M.; Davies, A. G.; Upadhyay, J.; Wasserma.A. Colored electrically conducting polymers from furan, pyrrole and thiophene. Journal of Polymer Science

Part a-1-Polymer Chemistry 1967, 5, 1527.

(42) Bazzaoui, M. Electrosynthèse de films de polypyrrole sur substrats zingués en milieux organiques nitrobenzène, acétonitrile et carbonate de propylène et en solution aqueuse de tartrate de sodium. Caractérisation structurale et évaluation des propriétés des revêtements, Thèse de l'Université de Porto 2002.

(43) Potts, H. A.; Smith, G. F. The structure of pyrrole trimer. Journal of the Chemical

Society 1957, 4018-4022.

(44) Pecher, J.; Mecking, S. Nanoparticles of Conjugated Polymers. Chemical Reviews

2010, 110, 6260-6279.

(45) Stejskal, J. Colloidal dispersions of conducting polymers. Journal of Polymer

Materials 2001, 18, 225-258.

(46) Nuraje, N.; Su, K.; Yang, N.-L.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. Acs Nano 2008,

2, 502-506.

(47) Cawdery, N.; Obey, T. M.; Vincent, B. Colloidal dispersions of electrically conducting polypyrrole particles in various media. Journal of the Chemical Society-Chemical

Communications 1988, 1189-1190.

(48) Li, X.-G.; Li, A.; Huang, M.-R.; Liao, Y.; Lu, Y.-G. Efficient and Scalable Synthesis of Pure Polypyrrole Nanoparticles Applicable for Advanced Nanocomposites and Carbon Nanoparticles. Journal of Physical Chemistry C 2010, 114, 19244-19255. (49) Tran, H. D.; Shin, K.; Hong, W. G.; D'Arcy, J. M.; Kojima, R. W.; Weiller, B. H.;

Kaner, R. B. A template-free route to polypyrrole nanofibers. Macromolecular Rapid

Communications 2007, 28, 2289-2293.

(50) Tran, H. D.; Wang, Y.; D'Arcy, J. M.; Kaner, R. B. Toward an understanding of the formation of conducting polymer nanofibers. Acs Nano 2008, 2, 1841-1848.

(51) Gurunathan, K.; Murugan, A. V.; Marimuthu, R.; Mulik, U. P.; Amalnerkar, D. P. Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices.

(52) Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. Electrochemical polymerization of pyrrole. Journal of the Chemical Society-Chemical Communications 1979, 635-636. (53) Debiemme-Chouvy, C. Template-free one-step electrochemical formation of

polypyrrole nanowire array. Electrochemistry Communications 2009, 11, 298-301. (54) Maiti, S.; Das, D.; Sen, K. Electrochemical Polymerization of Pyrrole: Key Process

Control Parameters. Journal of the Electrochemical Society 2012, 159, E154-E158. (55) Ghanbari, K.; Bathaie, S. Z.; Mousavi, M. F. Electrochemically fabricated polypyrrole

nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosensors &

Bioelectronics 2008, 23, 1825-1831.

(56) Bozlar, M. Modification de surface des nanotubes de carbone par un polymère conducteur électrogénéré pour la réalisation de nanocomposites multifonctionnels. Ecole Centrale des Arts et Manufactures "Ecole Centrale de Paris"2009.

(57) Genies, E. M.; Bidan, G.; Diaz, A. F. Spectroelectrochemical study of polypyrrole films. Journal of Electroanalytical Chemistry 1983, 149, 101-113.

(58) Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The mechanisms of pyrrole electropolymerization. Chemical Society Reviews 2000, 29, 283-293.

(59) Kim, K. J.; Song, H. S.; Kim, J. D.; Chon, J. K. Mechanism of electropolymerization of pyrrole in acidic aqueous solutions. Bulletin of the Korean Chemical Society 1988,

9, 248-251.

(60) Asavapiriyanont, S.; Chandler, G. K.; Gunawardena, G. A.; Pletcher, D. The electrodeposition of poly-N-methylpyrrole films from aqueous solutions. Journal of

Electroanalytical Chemistry 1984, 177, 245-251.

(61) Qiu, Y. J.; Reynolds, J. R. Electrochemically initiated chain polymerization of pyrrole in aqueous media. Journal of Polymer Science Part a-Polymer Chemistry 1992, 30, 1315-1325.

(62) Hou, Y.; Zhang, L.; Chen, L. Y.; Liu, P.; Hirata, A.; Chen, M. W. Raman characterization of pseudocapacitive behavior of polypyrrole on nanoporous gold.

Physical Chemistry Chemical Physics 2014, 16, 3523-3528.

(63) Ogasawara, M.; Funahashi, K.; Demura, T.; Hagiwara, T.; Iwata, K. Enhancement of electrical-conductivity of polypyrrole by stretching. Synthetic Metals 1986, 14, 61-69. (64) Maddison, D. S.; Unsworth, J. Optimization of synthesis conditions of polypyrrole

from aqueous-solutions. Synthetic Metals 1989, 30, 47-55.

(65) Qian, R. Y.; Qiu, J. J. Electrochemically prepared polypyrroles from aqueous-solutions. Polymer Journal 1987, 19, 157-172.

(66) Liang, W. B.; Lei, J. T.; Martin, C. R. Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole. Synthetic Metals 1992, 52, 227-239.

(67) Sun, B. T.; Schweinsberg, D. P. Electrochemical, thermal and spectral characteristics of thick polypyrrole films electropolymerized on active metal-electrodes. Synthetic

Metals 1994, 68, 49-56.

(68) Heinze, J.; Frontana-Uribe, B. A.; Ludwigs, S. Electrochemistry of Conducting Polymers-Persistent Models and New Concepts. Chemical Reviews 2010, 110, 4724-4771.

(69) Zotti, G.; Schiavon, G. Poly (2,5-thienylene) - coated electrodes formed by electroreduction of a nickel adduct with 2,5-dibromothiophene. Journal of

Electroanalytical Chemistry 1984, 163, 385-388.

(70) Jung, Y.; Singh, N.; Choi, K.-S. Cathodic Deposition of Polypyrrole Enabling the One-Step Assembly of Metal-Polymer Hybrid Electrodes. Angewandte

Chemie-International Edition 2009, 48, 8331-8334.

(71) Nam, D.-H.; Kim, M.-J.; Lim, S.-J.; Song, I.-S.; Kwon, H.-S. Single-step synthesis of polypyrrole nanowires by cathodic electropolymerization. Journal of Materials

Chemistry A 2013, 1, 8061-8068.

(72) Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids.

Chemical Reviews 2008, 108, 2238-2264.

(73) Boxall, D. L.; Osteryoung, R. A. Switching potentials and conductivity of polypyrrole films prepared in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate.

Journal of the Electrochemical Society 2004, 151, E41-E45.

(74) Damlin, P.; Kvarnstrom, C.; Ivaska, A. Electrochemical synthesis and in situ

spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene)

(PEDOT) in room temperature ionic liouids. Journal of Electroanalytical Chemistry

2004, 570, 113-122.

(75) Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrooxidative polymerization of aromatic

compounds in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate

room-temperature ionic liquid. Journal of Electroanalytical Chemistry 2003, 557, 1-7. (76) Heinze, J.; Rasche, A.; Pagels, M.; Geschke, B. On the origin of the so-called

nucleation loop during electropolymerization of conducting polymers. Journal of

(77) Parthasarathy, R. V.; Martin, C. R. Synthesis of polymeric microcapsule arrays and their use for enzyme immobilization. Nature 1994, 369, 298-301.

(78) Martin, C. R. Template synthesis of electronically conductive polymer nanostructures.

Accounts of Chemical Research 1995, 28, 61-68.

(79) Martin, C. R. Membrane-based synthesis of nanomaterials. Chemistry of Materials

1996, 8, 1739-1746.

(80) Han, M. G.; Foulger, S. H. 1-dimensional structures of poly( 3,4-ethylenedioxythiophene) (PEDOT): a chemical route to tubes, rods, thimbles, and belts. Chemical Communications 2005, 3092-3094.

(81) Cao, Y.; Mallouk, T. E. Morphology of Template-Grown Polyaniline Nanowires and Its Effect on the Electrochemical Capacitance of Nanowire Arrays. Chemistry of

Materials 2008, 20, 5260-5265.

(82) Martin, C. R. Nanomaterials - a membrane-based synthetic approach. Science 1994,

266, 1961-1966.

(83) Cho, S. I.; Lee, S. B. Fast electrochemistry of conductive polymer nanotubes: Synthesis, mechanism, and application. Accounts of Chemical Research 2008, 41, 699-707.

(84) Hulteen, J. C.; Martin, C. R. A general template-based method for the preparation of nanomaterials. Journal of Materials Chemistry 1997, 7, 1075-1087.

(85) Lee, J. I.; Cho, S. H.; Park, S.-M.; Kim, J. K.; Kim, J. K.; Yu, J.-W.; Kim, Y. C.; Russell, T. P. Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. Nano Letters 2008, 8, 2315-2320.

(86) Pan, L.; Qiu, H.; Dou, C.; Li, Y.; Pu, L.; Xu, J.; Shi, Y. Conducting Polymer Nanostructures: Template Synthesis and Applications in Energy Storage. International

Journal of Molecular Sciences 2010, 11, 2636-2657.

(87) Brinker, C. J.; Lu, Y. F.; Sellinger, A.; Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Advanced Materials 1999, 11, 579.

(88) Brinker, C. J. Evaporation-induced self-assembly: Functional nanostructures made easy. Mrs Bulletin 2004, 29, 631-640.

(89) Han, M. G.; Foulger, S. H. Facile synthesis of poly(3,4-ethylenedioxythiophene) nanofibers from an aqueous surfactant solution. Small 2006, 2, 1164-1169.

(90) Meng, L.; Lu, Y.; Wang, X.; Zhang, J.; Duan, Y.; Li, C. Facile synthesis of straight polyaniline nanostick in hydrogel. Macromolecules 2007, 40, 2981-2983.

(91) Yoon, H.; Chang, M.; Jang, J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors.

Advanced Functional Materials 2007, 17, 431-436.

(92) Samitsu, S.; Takanishi, Y.; Yamamoto, J. Self-Assembly and One-Dimensional Alignment of a Conducting Polymer Nanofiber in a Nematic Liquid Crystal.

Macromolecules 2009, 42, 4366-4368.

(93) Han, J.; Song, G.; Guo, R. Nanostructure-based leaf-like polyaniline in the presence of an amphiphilic triblock copolymer. Advanced Materials 2007, 19, 2993.

(94) Anilkumar, P.; Jayakannan, M. Single-molecular-system-based selective micellar templates for polyaniline nanomaterials: Control of shape, size, solid state ordering, and expanded chain to coillike conformation. Macromolecules 2007, 40, 7311-7319. (95) Anilkumar, P.; Jayakannan, M. Divergent Nanostructures from Identical Ingredients:

Unique Amphiphilic Micelle Template for Polyaniline Nanofibers, Tubes, Rods, and Spheres. Macromolecules 2008, 41, 7706-7715.

(96) Anilkumar, P.; Jayakannan, M. A Novel Supramolecular Organogel Nanotubular Template Approach for Conducting Nanomaterials. Journal of Physical Chemistry B

2010, 114, 728-736.

(97) Yin, Z.; Zheng, Q. Controlled Synthesis and Energy Applications of One-Dimensional Conducting Polymer Nanostructures: An Overview. Advanced Energy Materials 2012,

2, 179-218.

(98) Benhaddad, L.; Bernard, M. C.; Deslouis, C.; Makhloufi, L.; Messaoudi, B.; Pailleret, A.; Takenouti, H. Chemical synthesis of hollow sea urchin like nanostructured polypyrrole particles through a core-shell redox mechanism using a MnO2 powder as oxidizing agent and sacrificial nanostructured template. Synthetic Metals 2013, 175, 192-199.

(99) Lu, X. F.; Zhao, Q. D.; Liu, X. C.; Wang, D. J.; Zhang, W. J.; Wang, C.; Wei, Y.

Preparation and characterization of polypyrrole/TiO2 coaxial nanocables.

Macromolecular Rapid Communications 2006, 27, 430-434.

(100) Lu, X.; Mao, H.; Zhang, W. Surfactant directed synthesis of polypyrrole/TiO2 coaxial nanocables with a controllable sheath size. Nanotechnology 2007, 18.

(101) Liu, X. L.; Ly, J.; Han, S.; Zhang, D. H.; Requicha, A.; Thompson, M. E.; Zhou, C. W.

Synthesis and electronic properties of individual single-walled carbon

(102) Ding, M.; Tang, Y.; Gou, P.; Reber, M. J.; Star, A. Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes. Advanced Materials 2011, 23, 536.

(103) Ikeda, A.; Nobusawa, K.; Hamano, T.; Kikuchi, J.-i. Single-walled carbon nanotubes template the one-dimensional ordering of a polythiophene derivative. Organic Letters

2006, 8, 5489-5492.

(104) Ota, J.; Srivastava, S. K. Polypyrrole coating of tartaric acid-assisted synthesized Bi2S3 nanorods. Journal of Physical Chemistry C 2007, 111, 12260-12264.

(105) Li, X.; Gao, Y.; Gong, J.; Zhang, L.; Qu, L. Polyaniline/Ag Composite Nanotubes Prepared through UV Rays Irradiation via Fiber Template Approach and their NH3 Gas Sensitivity. Journal of Physical Chemistry C 2009, 113, 69-73.

(106) Pan, L.; Pu, L.; Shi, Y.; Song, S.; Xu, Z.; Zhang, R.; Zheng, Y. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide. Advanced

Materials 2007, 19, 461.

(107) Jiang, L.; Wang, X.; Chi, L. Nanoscaled Surface Patterning of Conducting Polymers.

Small 2011, 7, 1309-1321.

(108) Xu, Y.; Zhang, F.; Feng, X. Patterning of Conjugated Polymers for Organic Optoelectronic Devices. Small 2011, 7, 1338-1360.

(109) Tran, H. D.; Li, D.; Kaner, R. B. One-Dimensional Conducting Polymer Nanostructures: Bulk Synthesis and Applications. Advanced Materials 2009, 21, 1487-1499.

(110) Kim, F. S.; Ren, G.; Jenekhe, S. A. One-Dimensional Nanostructures of pi-Conjugated Molecular Systems: Assembly, Properties, and Applications from Photovoltaics, Sensors, and Nanophotonics to Nanoelectronics. Chemistry of Materials 2011, 23, 682-732.

(111) Wan, M. A template-free method towards conducting polymer nanostructures.

Advanced Materials 2008, 20, 2926-2932.

(112) Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews

2010, 110, 6664-6688.

(113) Greiner, A.; Wendorff, J. H. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angewandte Chemie-International Edition 2007, 46, 5670-5703. (114) Chronakis, I. S.; Grapenson, S.; Jakob, A. Conductive polypyrrole nanofibers via

electrospinning: Electrical and morphological properties. Polymer 2006, 47, 1597-1603.

(115) Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Advanced

Materials 2004, 16, 1151-1170.

(116) Lu, X.; Zhang, W.; Wang, C.; Wen, T.-C.; Wei, Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications. Progress in Polymer

Science 2011, 36, 671-712.

(117) Horowitz, G.; Fichou, D.; Peng, X. Z.; Xu, Z. G.; Garnier, F. A field-effect transistor based on conjugated alpha-sexithienyl. Solid State Communications 1989, 72, 381-384. (118) Tsumura, A.; Koezuka, H.; Ando, T. Polythiophene field-effect transistor - Its

characteristics and operation mechanism. Synthetic Metals 1988, 25, 11-23.

(119) Assadi, A.; Fu, Y.; Willander, M.; Svensson, C. Carrier transport across metal-polymer barriers. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &

Review Papers 1993, 32, 1696-1699.

(120) Garnier, F.; Horowitz, G.; Peng, X. H.; Fichou, D. An all-organic soft thin-film transistor with very high carrier mobility. Advanced Materials 1990, 2, 592-594.

(121) Burroughes, J. H.; Jones, C. A.; Friend, R. H. New semiconductor device physics in p olymer diodes and transistors. Nature 1988, 335, 137-141.

(122) Coakley, K. M.; McGehee, M. D. Conjugated polymer photovoltaic cells. Chemistry

of Materials 2004, 16, 4533-4542.

(123) Bredas, J. L.; Silbey, R.; Boudreaux, D. S.; Chance, R. R. Chain-length dependence of electronic and electrochemical properties of conjugated systems - polyacetylene, polyphenylene, polythiophene and polypyrrole. Journal of the American Chemical

Society 1983, 105, 6555-6559.

(124) Glenis, S.; Horowitz, G.; Tourillon, G.; Garnier, F. Electrochemically grown polythiophene and poly(3-methylthiophene) organic photovoltaic cellc. Thin Solid

Films 1984, 111, 93-103.

(125) Noufi, R.; Frank, A. J.; Nozik, A. J. Stabilization of n-type silicon photoelectrodes to surface oxidation in aqueous-electrolyte solution and mediation of oxidation reaction by surface-attached organic conducting polymer. Journal of the American Chemical

Society 1981, 103, 1849-1850.

(126) Skotheim, T.; Lundstrom, I.; Prejza, J. Stabilization of n-Si photoanodes to surface corrosion in aqueous-electrolyte with a thin film of polypyrrole. Journal of the

Electrochemical Society 1981, 128, 1625-1626.

(127) Fan, F. R. F.; Wheeler, B. L.; Bard, A. J.; Noufi, R. N. Semiconductor electrodes -

photoelectrochemical cells. Journal of the Electrochemical Society 1981, 128, 2042-2045.

(128) Skotheim, T.; Petersson, L. G.; Inganas, O.; Lundstrom, I. Photo-electrochemical behavior of n-Si electrodes protected with Pt-Polypyrrole. Journal of the

Electrochemical Society 1982, 129, 1737-1741.

(129) Moses, D. High quantum efficiency luminescence from a conducting polymer in solution - A novel polymer laser-dye. Applied Physics Letters 1992, 60, 3215-3216. (130) Kaneto, K.; Yoshino, K.; Inuishi, Y. Characteristics of polythiophene battery.

Japanese Journal of Applied Physics Part 2-Letters 1983, 22, L567-L568.

(131) Waltman, R. J.; Diaz, A. F.; Bargon, J. Electroactive properties of polyaromatic molecules. Journal of the Electrochemical Society 1984, 131, 740-744.

(132) Colaneri, N. F.; Shacklette, L. W. EMI shielding measurements of conductive polymer blends. Ieee Transactions on Instrumentation and Measurement 1992, 41, 291-297. (133) Taka, T. EMI shielding measurements on poly (3-octyl thiophene) blends. Synthetic

Metals 1991, 41, 1177-1180.

(134) Malinauskas, A.; Malinauskiene, J.; Ramanavicius, A. Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 2005, 16, R51-R62.

(135) Cosnier, S.; Holzinger, M. Electrosynthesized polymers for biosensing. Chemical

Society Reviews 2011, 40, 2146-2156.

(136) Korri-Youssoufi, H.; Desbenoit, N.; Ricoux, R.; Mahy, J. P.; Lecomte, S. Elaboration of a new hydrogen peroxide biosensor using microperoxidase 8 (MP8) immobilized on a polypyrrole coated electrode. Materials Science & Engineering C-Biomimetic and

Supramolecular Systems 2008, 28, 855-860.

(137) Chebil, S. Elaboration de nouveaux biocapteurs électrochimiques pour le diagnostic de la thrombose veineuse profonde. Thèse de l'Université Paris 11 (Orsay) 2010.

(138) Aravamudhan, S.; Bhansali, S. Development of micro-fluidic nitrate-selective sensor based on doped-polypyrrole nanowires. Sensors and Actuators B-Chemical 2008, 132, 623-630.

(139) Wang, J. J.; Myung, N. V.; Yun, M. H.; Monbouquette, H. G. Glucose oxidase entrapped in polypyrrole on high-surface-area Pt electrodes: a model platform for sensitive electroenzymatic biosensors. Journal of Electroanalytical Chemistry 2005,

(140) Al-Mashat, L.; Debiemme-Chouvy, C.; Borensztajn, S.; Wlodarski, W. Electropolymerized Polypyrrole Nanowires for Hydrogen Gas Sensing. Journal of

Physical Chemistry C 2012, 116, 13388-13394.

(141) Sirivisoot, S.; Pareta, R. A.; Webster, T. J. Electrically-Controlled

Penicillin/Streptomycin Release from Nanostructured Polypyrrole Coated on Titanium