• Aucun résultat trouvé

CHEMICAL, ISOTOPIC, AND MICROBIOLOGICAL EVIDENCE FOR NITRIFICATION BELOW THE PLANT ROOT ZONE FROM

3. MATERIALS AND METHODS

4.3. Isotopic Investigations

To verify these results with an independent method we have used δ15N and δ18O isotope ratios of nitrate in unsaturated zone water samples obtained from the lysimeters (Appendix I).

Samples for δ15N and δ18O of nitrate were analysed monthly at the outflows of the suction plates and cups (Fig. 6 and 7).

As mentioned before the application of the δ15N–NO! and δ18O–NO! isotope ratios is a useful technique to identify sources and fate of nitrate. Due to the large oxygen isotopic difference between nitrate produced in the atmosphere and that produced by microbial processes in the soil (nitrification), the oxygen isotopes in nitrate are particularly powerful for distinguishing between nitrate originating from fertilizer application and nitrate from atmospheric deposition. In addition, changes in the concentration and isotopic composition of nitrate can be used to identify processes such as denitrification [6]. The isotope ratios in the unsaturated zone will be also influenced by mixing processes from different nitrate sources. In our case, the two main sources of nitrate are from nitrification in the soil and from atmospheric deposition. During nitrification in soil, the δ18O values in the resulting nitrate normally decrease because the amount and availability of isotopically heavy atmospheric nitrate decreases with increasing depth. The mean isotopic composition of atmospheric nitrate was determined as 9.1‰ for δ15N– NO! and 37‰ for δ18O. The outflow of the suction plates and cups ranged from approximately 2‰ to 12.6‰ for δ15N– NO! and 2.2‰ to 19.1‰ for δ18O–NO!.

The lysimeter samples collected during the study period, together with groundwater and the atmospheric composition of δ15N–NO! and δ18O–NO! are plotted in Fig. 8. The unsaturated zone water samples show a clear trend of increasing nitrate concentration accompanied by decreasing δ18O values of nitrate with increasing depth. This trend could be explained by continuously admixing of nitrate originating from nitrification along the whole profile in the unsaturated zone (Fig. 9).

5. CONCLUSIONS

The isotopic composition of nitrate is not only a powerful tool to determining its sources, but can also provide information about nitrogen transformation processes such as nitrification and denitrification in the unsaturated zone. The combined use of δ15N–NO! and δ18O–NO! data confirmed that nitrate in the unsaturated zone was predominately derived from microbial nitrification and to a much lesser extent from atmospheric deposition. The δ15N–NO! and δ18O–NO! data further suggested that nitrification can occur in the whole profile of the unsaturated zone. From this study it is concluded that nitrification can occur below the plant root zone also and therefore plays a significant role in the speciation and transport of nitrogen compounds in the unsaturated zone.

ACKNOWLEDGEMENTS

Discussions with the colleagues in the CRP are acknowledged. I wish to thank my colleagues Mr. W.

Berg and M. Koinigg for assistance in soil sampling, Ms. B. Zirngast for sampling of seepage water and Mr. J. Fank and Mr. A. Stuhlbacher for providing data. I am also grateful to the Hydroisotop laboratory staff for the δ13C–DIC, δ15N–NO! and δ18O–NO! isotope analyses.

FIG. 4. Distribution of nitrifying bacteria in several soil profiles (0-1.5 m).

1.0 10.0 100.0 1000.0 10000.0

FIG. 5. Actual and potential nitrifying activity of soil profile STW09.

40 60 70 150 300 between May 1998 and April 1999.

40 70 110 150 300 between May 1998 and April 1999.

0

NO3 from mineral fertilizer (nitrate) NO from plants

NO3 from mineral fertilizer (ammonia) NO from soil organic matter

NO from manure and septic system effluent

δ15N-NO3 (‰)

FIG. 9. Typical ranges for δ15N and δ18O values of nitrate from atmospheric deposition, nitrate containing mineral fertiliser and nitrification of ammonia derived from plant material, mineral fertiliser, soil organic matter, manure and septic system effluents. Also shown are the unsaturated zone water samples obtained from the lysimeters, groundwater and rain.

-10 0 10 20 30

FIG. 10. Mixing between two different sources of nitrate in the unsaturated zone. Source A is nitrate in atmospheric deposition and source B is nitrate originating from nitrification

REFERENCES

[1] HASTINGS, R.C., CECCHERINI, M.T., MICLAUS, N., SAUNDERS, J.R., BAZZICALUPO, M., MCCARTHY A.J., Direct molecular biological analysis of ammonia oxidising bacteria population in cultivated soil plots treated with swine manure, FEMS Microbiol. Ecol 23 (1997) 45–54.

[2] CECCHERINI M.T., CASTALDINI M., PIOVANELLI C., HASTINGS R., MCCARTHY A.J., BAZZICALUPO M. AND N.MICLAUS, Effects of swine manure fertilization on autotrophic ammonia oxidizing bacteria in soil, Applied Soil Ecology 7 (1998) 149–157.

[3] AMBERGER, A., SCHMIDT, H.-L., Natürliche Isotopengehalte von Nitrat als Indikatoren für dessen Herkunft, Geochim. Cosmochim. Acta 51 (1987) 2699–2705.

[4] KENDALL, C., “Tracing nitrogen sources and cycling in catchments”, Isotope Tracers in Catchment Hydrology (KENDALL, C., MCDONNELL, J.J., Eds.), Elsevier Science B.V., Amsterdam, (1998) 517–576.

[5] CLARK, I., FRITZ, P., Environmental Isotopes in Hydrogeology, Lewis Publishers, New York, NY (1997).

[6] BÖTTCHER, J., O. STREBEL, VOERKELIUS, S., SCHMIDT, H.-L., Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol. 114 (1990) 413–424.

[7] WASSENAAR, L.I., Evaluation of the Origin and Fate of Nitrate in the Abbotsford Aquifer using the Isotopes 15N and 18O in NO!, Appl. Geochem. 10 (1995) 391–405.

[8] ARAVENA, R., EVANS, M.L., CHERRY, J.A., Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems, Ground Water, 31 (1993) 180–186.

[9] CAMPBELL, D.H., KENDALL, C., CHANG, C.C.Y., SILVA, S.R., TONNESSEN, K.A, Pathways for nitrate release from an alpine watershed: Determination using δ15N and δ18O, Water Resour. Res. 38 5 (2002) 1052.

[10] HARUM. T., FANK, J., “Solute transport and water movement in the unsaturated zone of a gravel filled valley: tracer investigations under different cultivation types”, Future Groundwater Resources at Risk, Proc. of the Helsinki Conference, June 1994, IAHS-Pub. No 222, Wallingford, UK (1994) 341–354.

[11] FANK, J., Die Bedeutung der ungesättigten Zone für Grundwasserneubildung und Nitratbefrachtung des Grundwassers in quartären Lockersediment-Aquiferen am Beispiel des Leibnitzer Feldes (Steiermark, Österreich), Beiträge zur Hydrogeologie 49/50 (1999) 101–388.

[12] ZOJER, H., RAMSPACHER, P., FANK, J., „Die kombinierte Lysimeteranlage Wagna“, Art der Sickerwassergewinnung und Ergebnisinterpretation, Bericht über die Gumpensteiner Lysimetertagung, Gumpenstein (1991) 55–62.

[13] FEICHTINGER, F., „Erste Erfahrungen beim Einsatz eines modifizierten Feldlysimeters“, Lysimeter und ihre Hilfe zur umweltschonenden Bewirtschaftung landwirtschaftlicher Nutzflächen, 2. Gumpensteiner Lysimetertagung, BAL Gumpenstein, 28–29.4.1992, Gumpenstein (1992) 59–62.

[14] EDER, G.,“ Lysimeteranlagen in Österreich“, Lysimeter — Demands, Experiences, Technical Concepts, Beiträge zur Hydrogeologie (LEIS, A., Ed.), Graz (2002) 15–232.

[15] BERG, W., ČENČUR CURK, B., FANK, J., FEICHTINGER, F., NÜTZMANN, G., PAPESCH, W., RAJNER, V., RANK, D., SCHNEIDER, S., SEILER, K.-P., STEINER, K.-H., STENITZER, E., STICHLER, W., TRČEK, B., VARGAY, Z., VESELIČ, M., ZOJER, H., Tracers in the Unsaturated Zone, Beiträge zur Hydrogeologie 52 (2001) 7-102.

[16] FANK, J., “Tracer investigations at the research station Wagna (Leibnitzer Feld, Austria) to detect the role of the unsaturated zone for groundwater protection”, New Approaches Characterizing Groundwater Flow (SEILER, K.P., WOHNLICH, S. Eds.). Proc. of the XXXI.

IAH International Association of Hydrogeologists Congress Munich, Germany, Vol. I, München, Swets & Zeitlinger, Lisse (2001) 55–58.

[17] http://www.lysimeter.at/HP_EuLP/web/austria/at27a.html

[18] LANTHALER, C., Lysimeter Stations and Soil Hydrology Measuring Sites in Europe — Purpose, Equipment, Research Results, Future Developments, Diploma Thesis (http://www.lysimeter.at/Publikationen/THESIS_LYSIMETERS.pdf) Uni Graz (2004) 145.

[19] SCHINNER, F., ÖHLINGER, R., KANDELER, E., MARGESIN, R. Bodenbiologische Arbeitsmethoden, Springer Verlag, Berlin, Heidelberg, New York, (1993).

[20] DUNGER, W., FIEDLER, H.J., Methoden der Bodenbiologie, Gustav Fischer Verlag, Stuttgart New York (1989).

[21] HOLT, J.G., Bergey’s manual of systematic bacteriology, Vol.1, Williams & Wilkins Co., Baltimore (1984).

[22] HOLT, J.G., Bergey’s manual of systematic bacteriology, Vol.2, Williams & Wilkins Co., Baltimore (1986).

[23] HOLT, J.G., Bergey’s manual of systematic bacteriology, Vol.3 and 4, Williams & Wilkins Co., Baltimore (1989).

Appendix 1

δ 15N– NO! AND δ 18O– NO! DATA IN WATER SAMPLES

Sample type Date δ15N–NO! (‰) δ18O–NO! (‰) Seepage water 40 cm (crop rotation) 20.05.1998 6.3 11.6 Seepage water 40 cm (crop rotation) 23.06.1998 6.4 13.6 Seepage water 40 cm (crop rotation) 21.09.1998 8.5 7 Seepage water 40 cm (crop rotation) 20.10.1998 8.1 7.8 Seepage water 40 cm (crop rotation) 17.11.1998 8.8 7 Seepage water 40 cm (crop rotation) 16.12.1998 8.5 6.2 Seepage water 40 cm (crop rotation) 28.01.1999 5.3 11.1 Seepage water 40 cm (crop rotation) 20.04.1999 22 22.7 Seepage water 40 cm (crop rotation) 25.02.1999 4.2 11.3 Seepage water 40 cm (crop rotation) 26.03.1999 7.5 12.6 Seepage water 40 cm (crop rotation) 19.05.1999 8.6 8.1 Seepage water 40 cm (crop rotation) 21.06.1999 5.6 7.8 Seepage water 70 cm (crop rotation) 23.06.1998 4 13.2 Seepage water 70 cm (crop rotation) 21.07.1998 7.3 8.9 Seepage water 70 cm (crop rotation) 21.09.1998 6.8 10.3 Seepage water 70 cm (crop rotation) 20.10.1998 8 6.7 Seepage water 70 cm (crop rotation) 17.11.1998 8.2 7.6 Seepage water 70 cm (crop rotation) 21.12.1998 3.4 9 Seepage water 70 cm (crop rotation) 28.01.1999 3 10 Seepage water 70 cm (crop rotation) 25.02.1999 6.5 10.2 Seepage water 70 cm (crop rotation) 26.03.1999 6.6 7.4 Seepage water 70 cm (crop rotation) 19.05.1999 5 10.4 Seepage water 70 cm (crop rotation) 21.06.1999 4.5 4.6 Seepage water 110 cm (crop rotation) 05.05.1998 2 8.5 Seepage water 110 cm (crop rotation) 26.05.1998 3.2 8.6 Seepage water 110 cm (crop rotation) 23.06.1998 5.2 10.1 Seepage water 110 cm (crop rotation) 21.07.1998 5.4 7.9 Seepage water 110 cm (crop rotation) 27.09.1998 7.2 16.7 Seepage water 110 cm (crop rotation) 20.10.1998 5.1 18.7 Seepage water 110 cm (crop rotation) 20.11.1998 6.3 15.4 Seepage water 110 cm (crop rotation) 19.12.1998 3.5 7.7 Seepage water 110 cm (crop rotation) 28.01.1999 4.6 6.6 Seepage water 110 cm (crop rotation) 19.05.1999 2.8 19.1 Seepage water 110 cm (crop rotation) 25.02.1999 4.3 14.3 Seepage water 110 cm (crop rotation) 26.03.1999 3.5 16.8 Seepage water 110 cm (crop rotation) 21.06.1999 4.1 8.4 Seepage water 110 cm (crop rotation) 29.07.1999 2.8 17.5

Sample type Date δ15N–NO! (‰) δ18O–NO! (‰) Seepage water 150 cm (crop rotation) 05.05.1998 3.3 5.2 Seepage water 150 cm (crop rotation) 26.05.1998 4 4.4 Seepage water 150 cm (crop rotation) 23.06.1998 3.4 9.5 Seepage water 150 cm (crop rotation) 21.07.1998 4.1 3.1 Seepage water 150 cm (crop rotation) 21.09.1998 5.3 9.7 Seepage water 150 cm (crop rotation) 20.10.1998 7.3 9.2 Seepage water 150 cm (crop rotation) 17.11.1998 6.2 5.4 Seepage water 150 cm (crop rotation) 16.12.1998 4.9 2.1 Seepage water 150 cm (crop rotation) 28.01.1999 5.6 5.3 Seepage water 150 cm (crop rotation) 25.02.1999 3.3 10.6 Seepage water 150 cm (crop rotation) 26.03.1999 5.4 2.1 Seepage water 150 cm (crop rotation) 20.04.1999 4.7 13.7 Seepage water 150 cm (crop rotation) 26.05.1999 3.8 7 Seepage water 150 cm (crop rotation) 21.06.1999 4.2 12 Seepage water 150 cm (crop rotation) 29.07.1999 3.7 7.2 Seepage water 300 cm (crop rotation) 05.05.1998 5.8 4.4 Seepage water 300 cm (crop rotation) 26.05.1998 6.6 4.9 Seepage water 300 cm (crop rotation) 23.06.1998 6 4 Seepage water 300 cm (crop rotation) 21.07.1998 5.3 6.1 Seepage water 300 cm (crop rotation) 21.09.1998 4.9 2.7 Seepage water 300 cm (crop rotation) 20.10.1998 6.3 3.4 Seepage water 300 cm (crop rotation) 17.11.1998 6.9 5.9 Seepage water 300 cm (crop rotation) 16.12.1998 4.2 4.6 Seepage water 300 cm (crop rotation) 28.01.1999 5.4 3 Seepage water 300 cm (crop rotation) 25.02.1999 5.5 5.2 Seepage water 300 cm (crop rotation) 26.03.1999 5.7 3.5 Seepage water 300 cm (crop rotation) 20.04.1999 4.7 1 Seepage water 300 cm (crop rotation) 21.06.1999 3.4 5.6 Seepage water 300 cm (crop rotation) 29.07.1999 3.2 7

Seepage water 40 cm (maize) 21.09.1998 13.8 10.3 Seepage water 40 cm (maize) 25.10.1998 12.1 11 Seepage water 60 cm (maize) 05.05.1998 5.9 11.9 Seepage water 60 cm (maize) 26.05.1998 6.3 11.2 Seepage water 60 cm (maize) 23.06.1998 5.9 13

Seepage water 60 cm (maize) 21.09.1998 8.4 13.2 Seepage water 60 cm (maize) 20.10.1998 5.2 8.1

Seepage water 60 cm (maize) 25.11.1998 12.6 18.8 Seepage water 60 cm (maize) 28.12.1998 10.3 19.1 Seepage water 60 cm (maize) 25.02.1999 5.5 13.5 Seepage water 60 cm (maize) 19.05.1999 5.9 15.1 Seepage water 60 cm (maize) 21.06.1999 3.9 13.8

Sample type Date δ15N–NO! (‰) δ18O–NO! (‰) Seepage water 70 cm (maize) 05.05.1998 6.9 4.6 Seepage water 70 cm (maize) 26.05.1998 6.9 5.5 Seepage water 70 cm (maize) 23.06.1998 7.1 8.3

Seepage water 70 cm (maize) 21.07.1998 8.6 17.2 Seepage water 70 cm (maize) 21.09.1998 7.2 16

Seepage water 70 cm (maize) 20.10.1998 7 5.5 Seepage water 70 cm (maize) 17.11.1998 7.4 7.1

Seepage water 70 cm (maize) 21.12.1998 4.1 12.4 Seepage water 70 cm (maize) 28.01.1999 5.3 12.2 Seepage water 70 cm (maize) 20.04.1999 4.3 13.1 Seepage water 70 cm (maize) 25.02.1999 4.8 11.8 Seepage water 70 cm (maize) 26.03.1999 4.7 16.4 Seepage water 70 cm (maize) 19.05.1999 4.7 6.3

Seepage water 70 cm (maize) 21.06.1999 3.4 9.5 Seepage water 150 cm (maize) 05.05.1998 4.9 5.7 Seepage water 150 cm (maize) 26.05.1998 5.3 6.7 Seepage water 150 cm (maize) 04.07.1998 6.3 7.13 Seepage water 150 cm (maize) 21.07.1998 7.5 12.6 Seepage water 150 cm (maize) 21.09.1998 4.6 13.5 Seepage water 150 cm (maize) 20.10.1998 7.7 16.1 Seepage water 150 cm (maize) 16.12.1998 4.8 7 Seepage water 150 cm (maize) 28.01.1999 4.2 11.3 Seepage water 150 cm (maize) 25.02.1999 5.1 7.4 Seepage water 150 cm (maize) 26.03.1999 4.4 9.2 Seepage water 150 cm (maize) 20.04.1999 3.8 13.1 Seepage water 150 cm (maize) 19.05.1999 4.2 10.1 Seepage water 150 cm (maize) 21.06.1999 4.7 2.8 Seepage water 150 cm (maize) 29.07.1999 5.7 7.1 Seepage water 300 cm (maize) 05.05.1998 5.1 5 Seepage water 300 cm (maize) 26.05.1998 6.2 4.9 Seepage water 300 cm (maize) 23.06.1998 4.7 10.7 Seepage water 300 cm (maize) 21.07.1998 5.4 14 Seepage water 300 cm (maize) 21.09.1998 5.4 7.6 Seepage water 300 cm (maize) 20.10.1998 4.9 3.6 Seepage water 300 cm (maize) 17.11.1998 5.1 2.2 Seepage water 300 cm (maize) 16.12.1998 4.3 5.7 Seepage water 300 cm (maize) 28.01.1999 4.6 9.9 Seepage water 300 cm (maize) 25.02.1999 4 5.9 Seepage water 300 cm (maize) 26.03.1999 5.8 8.6 Seepage water 300 cm (maize) 20.04.1999 5.6 7.2 Seepage water 300 cm (maize) 19.05.1999 3.4 5.5

Sample type Date δ15N–NO! (‰) δ18O–NO! (‰) Seepage water 300 cm (maize) 21.06.1999 3.6 9.9 Seepage water 300 cm (maize) 29.07.1999 4.2 7 Ground water 21.09.1998 6 10.5

Ground water 16.12.1998 5.5 7

Ground water 05.05.1998 7.3 17.7 Ground water 23.06.1998 5.1 11.8 Ground water 07.07.1998 5.1 12.5 Ground water 25.02.1999 3.8 12.5 Ground water 20.04.1999 4.3 13.7 Ground water 21.06.1999 3.1 13.5

Appendix II

δ13C–DIC DATA IN WATER SAMPLES

Sample type Date δ13C–DIC (‰) Seepage water 40 cm (crop rotation) 14.09.1998 –9.9 Seepage water 40 cm (crop rotation) 09.11.1998 –12.5 Seepage water 40 cm (crop rotation) 13.01.1999 –12.1 Seepage water 40 cm (crop rotation) 17.03.1999 –11.5 Seepage water 40 cm (crop rotation) 12.05.1999 –11.6 Seepage water 40 cm (crop rotation) 12.07.1999 –6.9 Seepage water 70 cm (crop rotation) 30.06.1998 –11.7 Seepage water 70 cm (crop rotation) 14.09.1998 –8.5 Seepage water 70 cm (crop rotation) 09.11.1998 –10.7 Seepage water 70 cm (crop rotation) 13.01.1999 –11.5 Seepage water 70 cm (crop rotation) 17.03.1999 –8.8 Seepage water 70 cm (crop rotation) 12.05.1999 –10.5 Seepage water 70 cm (crop rotation) 12.07.1999 –7.9 Seepage water 110 cm (crop rotation) 09.06.1998 –13.2 Seepage water 110 cm (crop rotation) 14.09.1998 –10.4 Seepage water 110 cm (crop rotation) 09.11.1998 –11.7 Seepage water 110 cm (crop rotation) 13.01.1999 –12.4 Seepage water 110 cm (crop rotation) 17.03.1999 –10.5 Seepage water 110 cm (crop rotation) 12.05.1999 –13.6 Seepage water 110 cm (crop rotation) 12.07.1999 –9.1 Seepage water 150 cm (crop rotation) 20.09.1998 –6.3 Seepage water 150 cm (crop rotation) 08.06.1998 –12.7 Seepage water 150 cm (crop rotation) 30.06.1998 –12.3 Seepage water 150 cm (crop rotation) 03.08.1998 –9.3 Seepage water 150 cm (crop rotation) 14.09.1998 –10.4 Seepage water 150 cm (crop rotation) 09.11.1998 –10.8 Seepage water 150 cm (crop rotation) 13.01.1999 –10.6 Seepage water 150 cm (crop rotation) 17.03.1999 –10.2 Seepage water 150 cm (crop rotation) 12.05.1999 –12.6 Seepage water 300 cm (crop rotation) 03.08.1998 –10.9 Seepage water 300 cm (crop rotation) 14.09.1998 –10.7 Seepage water 300 cm (crop rotation) 09.11.1998 –10.5 Seepage water 300 cm (crop rotation) 13.01.1999 –10.1

Seepage water 40 cm (maize) 18.09.1998 –11.3 Seepage water 40 cm (maize) 17.03.1999 –10.7 Seepage water 40 cm (maize) 12.05.1999 –12.7 Seepage water 60 cm (maize) 09.06.1998 –10.2 Seepage water 60 cm (maize) 14.09.1998 –8.4 Seepage water 60 cm (maize) 09.11.1998 –11.3

Sample type Date δ13C–DIC (‰)

Seepage water 60 cm (maize) 13.01.1999 –12.5 Seepage water 60 cm (maize) 17.03.1999 –11.5 Seepage water 60 cm (maize) 12.05.1999 –9.9 Seepage water 60 cm (maize) 12.07.1999 –7.1 Seepage water 70 cm (maize) 09.06.1998 –11.3 Seepage water 70 cm (maize) 14.09.1998 –7.1 Seepage water 70 cm (maize) 09.11.1998 –11.5 Seepage water 70 cm (maize) 13.01.1999 –13.7 Seepage water 70 cm (maize) 17.03.1999 –15.4 Seepage water 70 cm (maize) 12.05.1999 –13.1 Seepage water 70 cm (maize) 12.07.1999 –6.6 Seepage water 150 cm (maize) 04.07.1998 –5.6 Seepage water 150 cm (maize) 03.08.1998 –7 Seepage water 150 cm (maize) 15.09.1998 –7.1 Seepage water 150 cm (maize) 09.11.1998 –7.7 Seepage water 150 cm (maize) 13.01.1999 –8.3 Seepage water 300 cm (maize) 27.07.1998 –5.9 Seepage water 300 cm (maize) 03.08.1998 –5.8 Seepage water 300 cm (maize) 14.09.1998 –3.9 Seepage water 300 cm (maize) 09.11.1998 –4.8 Ground water 09.06.1998 –11.8

Ground water 03.08.1998 –11.1 Ground water 14.09.1998 –10.8 Ground water 09.11.1998 –11.2 Ground water 13.01.1999 –12.5 Ground water 17.03.1999 –11.2 Ground water 12.05.1999 –11.4 Ground water 12.07.1999 –10

Appendix III

δ34S-SO4 AND δ 18O-SO4 DATA IN WATER SAMPLES

Sample type Date 34S–SO4 (‰) 18O–

SO4 (‰) Seepage water 110 cm (crop rotation) 03.07.1998 9

Seepage water 150 cm (crop rotation) 03.07.1998 6.2 Seepage water 300 cm (crop rotation) 12.07.1998 8.7

Seepage water 60 cm (maize) 07.07.1998 5.2 Seepage water 70 cm (maize) 03.07.1998 3.5 Seepage water 150 cm (maize) 05.07.1998 3.7 4.2

NITRATE IN GROUNDWATER AND THE UNSATURATED ZONE,

Documents relatifs